
State Machine Design Pattern

Anatoly Shalyto

Head of Programming
Technologies Department

St. Petersburg State University of
Information Technologies,

Mechanics and Optics
14 Sablinskaya Street

 Saint-Petersburg, Russia 197101

shalyto@mail.ifmo.ru

Nikita Shamgunov

Software Design Engineer, SQL
Server Engine, Microsoft,

11407 183rd Pl NE #M1071
USA 98052, Redmond, WA

u04921@mail.ru

Georgy Korneev
Assistant Professor of

Programming Technologies
Department

St. Petersburg State University of
Information Technologies,

Mechanics and Optics
14 Sablinskaya Street

 Saint-Petersburg, Russia 197101

kgeorgiy@rain.ifmo.ru

ABSTRACT

This paper presents a new object-oriented design pattern — State Machine design pattern. This pattern extends

capabilities of State design pattern. These patterns allow an object to alter its behavior when its internal state

changes. Introduced event-driven approach loosens coupling. Thus automata could be constructed from

independent state classes. The classes designed with State Machine pattern are more reusable than ones designed

with State pattern.

Keywords

design, pattern, automaton, automata, finite automata, finite state machine, behavior, state, transition, state chart

1. INTRODUCTION
Finite automata have been widely used in

programming since the appearance of [Kle56] which

introduced regular expressions and proved an

equivalence of a finite automaton and of a regular

expression.

Another area where finite automata are widely used is

object oriented programming, in which they are used

to design object logic. In this area states that have

major impacts on object’s behavior (control states)

are being extracted. Note that these automata are

significantly different from those used for regular

expression matching. In particular, objects are

designed in terms of interfaces and methods (terms

that don’t exist in classical automata) not in terms of

recognizable strings. This paper discusses automata

that are used in OOP.

In OOP, when people think of object behavior, they

consider the functionality of its methods. But in many

real world applications this definition is insufficient

— the internal state of an object should also be

considered.

The most famous implementation of an object whose

behavior depends on its state is the State pattern

[Gamma98]. However, pattern description is far from

being complete, in different sources [Ster01, Gra02]

it is implemented in different ways, sometimes even

too verbose. Another disadvantage of the pattern is

that the implementation of states in different classes

causes distribution of the transition logic among these

classes. This adds dependencies between the state

classes which lead to different issues in class

hierarchies design. In spite of these issues State

pattern is used in many practical projects including

JDO [JDO01].

This paper addresses issues of State pattern by

introducing a new pattern named State Machine. Note

that [San95] introduced a pattern with the same name

for parallel system programming in Ada95 but still

the authors have chosen this name.

To make reuse of state classes possible we introduce

an event mechanism. Events are used to let the

automaton know that the state should be changed.

This allows centralization of the automaton transition

logic and loosens coupling between state classes.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press,

Plzen, Czech Republic

More than twenty possible implementations of

State pattern are described in [Ada03]. State Machine

pattern might continue this list. The closest pattern

from the list is a combination of State and Observer

patterns [Odr96]. However, this pattern is too

complicated and it also introduces a new abstraction

layer: ChangeManager class. In contrast to

relatively verbose Observer implementation, in State

Machine transitions between states are based on

event-based mechanism. In [San95] another

implementation of State was introduced. State classes

coupling was loosened through a state change

mechanism based on a state name. This

implementation doesn’t reduce semantic

dependencies between classes and doesn’t provide

type safety.

2. Pattern Description

Intent
An intent of State Machine is the same as an intent of

State: to make it possible for an object to alter its

behavior when its internal state changes (it looks like

an object has changed its class). More extensible

design is required, than one provided by State.

Note that in the intent description so called control

states are considered. The difference between control

and evaluation states can be illustrated in the

following example. In an imaginary bank

management system it might make sense to identify

two modes: normal mode and bankrupt mode. This

modes would be control states. On the other hand

particular amount of money on the clients’ accounts

would be an evaluation state.

Motivation
Consider a class Connection that represents a

network connection. A simple connection has two

control states: Connected and Disconnected. A

transition between these states occurs either in case of

an error or intentionally — via execution of methods

connect or disconnect. In the Connected state a user

can call methods send and receive of a

Connection object. In case of an error

IOException is thrown and connected breaks. If an

object is in the Disconnected state, send and

receive methods will throw an exception as well.

Consider an interface, implemented by Connection

class.

public interface IConnection {

 public void connect();

 public void disconnect();

 public int receive();

 public void send(int value);

}

The basic idea of State Machine is to separate classes

which implement transition logic (Context) and state

classes. To provide an interaction between Context

and state classes we use events which are basically

objects that state objects pass to Context. A difference

from the State pattern is the way the next state is

determined. In State next state is explicitly pointed

out by the current state. In the proposed pattern it is

done by notifying the Context with an event. After

that it’s a Context’s responsibility to react and

possibly change the state. This is done according to

the state chart.

The advantage of this design solution is that state

classes may be designed independently. They don’t

need to be aware of each other.

Note that the state charts that are used in State

Machine are different from those described in

[Aho85].

They consist only of states and transitions marked

with events. Transition from the current state S to the

next state S* occurs on receiving event E if there is a

corresponding transition in the state chart.

State chart for the Connection class is shown on

figure 1.

Figure 1. State Chart for class Connection

State classes are called ConnectedState and

DisconnectedState. Event CONNECT is used to

establish a connection and event DISCONNECT is used

to break it. ERROR is used to indicate an i/o error.

To illustrate the work of the network connection let us

take a closer look at its breach in case of an i/o error.

If it were implemented through State its

ConnectedState would tell context to switch to

DisconnectedState. In the State Machine case it

notifies the context through ERROR that an i/o error

has occurred and the context changes its current state.

Thus in State Machine case ConnectedState and

DisconnectedState classes are not aware of each

other.

Application
State Machine could be applied wherever State is

applied but it also provides additional level of

flexibility allowing to reuse the state classes in

different automata. It also allows building state class

hierarchies.

Structure
Figure 2 shows a structure of State Machine.

Figure 2. Structure of State Machine

IAutomatonInterface is an interface of an object

to implement, operation1, operation2, … are the

methods of this interface. This interface is

implemented by the main class Context and by the

state classes ConcreteState1, ConcreteState2,

… . Events event1_1, event2_1, …, event2_1,

event2_2, …, are used to change state. They are

instances of the Event class. The Context class has

references to all of the state classes

(ConcreteState1 and ConcreteState2) and a

reference to the current state. The state classes have a

reference to the data model (dataModel) and to the

event notification interface (eventSink). For the

purpose of brevity, relations between the state classes

and the Event class are not shown in the figure.

Members
State Machine consists of the following parts.

• Automata interface (IAutomatonInterface)

— is implemented by the context and is the only

way of interaction between the automata and a

client. This interface is also implemented by state

classes.

• Context (Context) — is a class that

encapsulates transition logic. It implements the

automata interface and holds an instance of the

data model and the current state.

• State classes (ConcreteState1,

ConcreteState2, …) — determine behavior in

a particular state. Each of them implements the

automata interface.

• Events (event1_1, event1_2, ...) — initiated

by the state classes and passed to the context that

does a transition depending on the event and the

current state.

• Event notification interface (IEventSink) —

implemented by a context. This is the only way

of interaction between the state classes and the

context.

• Data model (DataModel) — is a class to

provide a shared storage between the state

classes.

Note that automata interface in the proposed pattern

is implemented by the context and by the state

classes. This allows making certain compile-time

consistency check. In the State pattern such a check is

impossible because the context interface doesn’t

match state classes’ interfaces.

Relations
During its initialization the context creates an instance

of data model and uses it to create instances of states.

It passes the data model an event notification

interface (which is a this pointer).

During its lifetime an automaton delegates its

methods to the current state class. While executing a

delegated method the state object might generate an

event and notify the context using event notification

interface.

The next state is determined by the context on the

basis of the current state and the event.

Results
• As in the State pattern, the state-dependent

behavior is localized in the state classes.

• Unlike the State pattern in the proposed pattern

transition logic is separated from the behavior in

a particular state. The state classes should only

notify a context of a particular event.

• Implementation of an automata interface is trivial

and could be generated automatically.

• Transition could be implemented as a simple

index lookup.

• State Machine provides pure (no unneeded

methods) interface to a client. To prevent a client

from using IEventSink we could use private

inheritance (in C++) or define a private

constructor and a static method that creates an

instance of Context.

• State Machine, unlike State, doesn’t contain

redundant interfaces for the context and the state

classes — they all implement the same interface.

• It is possible to reuse state classes; moreover,

state classes’ hierarchies can be created. Note

that it is mentioned in [Gam98] that new

subclasses are easily added to the state classes. In

fact, adding a subclass to a state class causes

modification of all the rest of the state classes

because the transition logic should be changed.

Thus extension of a particular automaton

implemented using State is being problematic.

Code Sample
The following sample in C# implements

Connection class described in 2.2. It is a simplified

model that allows transmitting and receiving data.

First let’s describe interfaces and base classes that are

used in this example. These classes are implemented

in an assembly ru.ifmo.is.sm. Class diagram is

shown on figure 3.

Figure 3. Class diagram for assembly ru.ifmo.is.sm

Let us describe all classes and events from this

package:

• IEventSink — event notification interface:

public interface IEventSink {

 void castEvent(Event ev);

}

• Event — event class:

public sealed class Event {

 private readonly String name;

 public Event(String name) {

 if (name == null) throw new

NullReferenceException();

 this.name = name;

 }

 public String getName() {

 return name;

 }

}

• StateBase — base class for all state classes.

public abstract class StateBase<AI> {

 protected readonly AI automaton;

 protected readonly IEventSink

eventSink;

 public StateBase(AI automaton,

IEventSink eventSink) {

 if (automaton == null || eventSink

== null) {

 throw new

NullReferenceException();

 }

 this.automaton = automaton;

 this.eventSink = eventSink;

 }

 protected void castEvent(Event ev) {

 eventSink.castEvent(ev);

 }

}

• AutomatonBase — base class for all automata.

It provides a method addEdge for its subclasses.

In addition AutomatonBase implements

IEventSink:

public abstract class AutomatonBase<AI>

: IEventSink {

 protected AI state;

 private Dictionary<AI,

Dictionary<Event, AI>> edges

=

 new Dictionary<AI,

Dictionary<Event, AI>>();

 protected void addEdge(AI source,

Event ev, AI target) {

 Dictionary<Event, AI> row =

edges[source];

 if (null == row) {

 row = new Dictionary<Event,

AI>();

 edges.Add(source, row);

 }

 row.Add(ev, target);

 }

 public void castEvent(Event ev) {

 state = edges[state][ev];

 }

}

Classes created according to the State Machine

pattern form an assembly Connection. Class

diagram is shown on a figure 5.

Figure 4. Class diagram for assembly connection

We use class Socket as a data model. It implements

IConnection interface in this example. Control

states of the automaton are ConnectedState and

DisconnectedState. In ConnectedState we can

expect ERROR and DISCONECT events and in

DisconnectedState we can expect CONNECT and

ERROR (figure 1).

The code of the state classes follows.

public class ConnectedState <AI>

 : StateBase<AI>, IConnection

 where AI : IConnection

{

 public static readonly Event

DISCONNECT = new

Event("DISCONNECT");

 public static readonly Event ERROR =

new Event("ERROR");

 protected readonly Socket socket;

 public ConnectedState(AI automaton,

IEventSink eventSink, Socket

socket)

 : base(automaton, eventSink)

 {

 this.socket = socket;

 }

 public void connect() {

 }

 public void disconnect() {

 try {

 socket.disconnect();

 } finally {

eventSink.castEvent(DISCONNEC

T);

 }

 }

 public int receive() {

 try {

 return socket.receive();

 } catch (IOException e) {

 eventSink.castEvent(ERROR);

 throw e;

 }

 }

 public void send(int value) {

 try {

 socket.send(value);

 } catch (IOException e) {

 eventSink.castEvent(ERROR);

 throw e;

 }

 }

}

Note that state classes only partially specialize

generic parameter of StateBase. It is used to

support inheritance.

Class DisconnectedState:

public class DisconnectedState <AI>

 : StateBase<AI>, IConnection

 where AI : IConnection {

 public static readonly Event CONNECT

= new Event("CONNECT");

 public static readonly Event ERROR =

new Event("ERROR");

 protected readonly Socket socket;

 public DisconnectedState(AI

automaton, IEventSink

eventSink, Socket socket)

 : base(automaton, eventSink)

 {

 this.socket = socket;

 }

 public void connect() {

 try {

 socket.connect();

 } catch (IOException e) {

 eventSink.castEvent(ERROR);

 throw e;

 }

 eventSink.castEvent(CONNECT);

 }

 public void disconnect() {

 }

 public int receive() {

 throw new IOException("Connection

is closed (receive)");

 }

 public void send(int value) {

 throw new IOException("Connection

is closed (send)");

 }

}

Note that state classes define only event generation

logic — transition logic is defined in the context.

3. Pattern extensibility
An extension of Connection will demonstrate how

we can extend automata interface. Let’s extend

automata interface in the following way.

public interface IPushBackConnection :
IConnection {

 void pushBack(int value);

}

When calling pushBack the value passed as an

argument is pushed on top of the stack to be popped

in the next call of receive. If the stack is empty at

the moment when receive is called, then the value is

being pulled from the socket as in the previous

example.

In this case the number of control states doesn’t

change but the state classes and the automaton must

implement an extended interface. Let’s call a context

of the new automaton PushBackConnection and

the new state classes PushBackConnectedState

and PushBackDisconnectedState. Here is an

implementation of PushBackConnectedState.

Note that this class extends ConnectedState

inheriting its logic.

public class PushBackConnectedState <AI>

: ConnectedState<AI>,

IPushBackConnection where AI

: IPushBackConnection

{

 Stack<int> stack = new

Stack<Integer>();

 public PushBackConnectedState(AI

automaton, IEventSink

eventSink, Socket socket)

 : base(automaton, eventSink,

socket) {

 }

 public int receive() {

 if (stack.empty()) {

 return base.receive();

 }

 return stack.pop();

 }

 public void pushBack(int value) {

 stack.push(new Integer(value));

 }

}

PushBackDisconnectedState class is

implemented in the same way. So we’ll only show the

PushBackConnection code.

public class PushBackConnection :

AutomatonBase<IPushBackConnec

tion>, IPushBackConnection {

 private PushBackConnection() {

 Socket socket = new Socket();

 IPushBackConnection connected =

new

PushBackConnectedState<PushBa

ckConnection>(this, this,

socket);

 IPushBackConnection disconnected =

new

PushBackDisconnectedState<Pus

hBackConnection>(this, this,

socket);

 addEdge(connected,

PushBackConnectedState<IPushB

ackConnection>.DISCONNECT,

disconnected);

 addEdge(connected,

PushBackConnectedState<IPushB

ackConnection>.ERROR,

disconnected);

 addEdge(disconnected,

PushBackDisconnectedState<IPu

shBackConnection>.CONNECT,

connected);

 state = disconnected;

 }

 public static IPushBackConnection

createAutomaton() {

 return new PushBackConnection();

 }

 public void connect(){

state.connect(); }

 public void disconnect() {

state.disconnect(); }

 public int receive() { return

state.receive(); }

 public void send(int value) {

state.send(value); }

 public void pushBack(int value) {

state.pushBack(value); }

}

A class diagram for PushBackConnection is

shown on figure 5.

Figure 5. Class diagram interface extensibility example

In a similar way we can reuse state classes when

creating a new automaton.

4. Conclusion
State Machine pattern improves State and inherits its

main idea — to encapsulate the state-dependent

behavior in a separate class.

The new pattern improves State in the following

aspects.

• When using State Machine it is possible to

design state classes independently. Thus the same

state class could be used in several automata.

This eliminates the major disadvantage of State

— reuse issues.

• In State transition logic is distributed throughout

state classes which introduces coupling between

them. State Machine addresses this issue. It

separates transition logic and the behavior in a

particular state.

• As opposed to State, State Machine doesn’t

cause interface redundancy.

In State Machine you still need to implement trivial

delegation of the automata interface methods to the

current state. Such a delegation could be done

automatically with the aid of CASE tools. Another

option is to modify a programming language to

support automata in a natural way. The authors are

working on such language.

5. REFERENCES
[Aho85] Aho A., Sethi R., Ullman J. Compilers:

Principles, Techniques and Tools. MA: Addison-

Wesley, 1985, 500 p.

[Ada03] Adamczyk P. The Anthology of the Finite

State Machine Design Patterns.

http://jerry.cs.uiuc.edu/~plop/plop2003/Papers/Adam

czyk-State-Machine.pdf

[JDO01] Java Data Objects (JDO).

http://java.sun.com/products/jdo/index.jsp.

[Kle56] Kleene S. C. Representation of Events in

Nerve Nets and Finite Automata, 1956 //Issue [6]. —

P. 3–41

[Gamma98] Gamma E., Helm R., Johnson R.,

Vlissides J. Design Patterns. MA: Addison-Wesley

Professional. 2001. — 395

[Gra02] Grand M. Patterns in Java: A Catalog of

Reusable Design Patterns Illustrated with UML.

Wiley, 2002. — 544 p.

[Odr96] Odrowski J., Sogaard P. Pattern Integration

— Variations of State // Proceedings of PLoP96.

http://www.cs.wustl.edu/~schmidt/PLoP-

96/odrowski.ps.gz [San96] Sandén B. The state-

machine pattern // Proceedings of the conference on

TRI-Ada '96

http://java.sun.com/products/jdo/index.jsp.

[San95] Sane A., Campbell R.. Object-Oriented State

Machines: Subclassing, Composition, Genericity //

OOPSLA ’95.

http://choices.cs.uiuc.edu/sane/home.html.

[Ster01] Steling S., Maassen O. Applied Java

Patterns. Pearson Higher Education. 2001, P. 608

