
A lightweight infrastructure to support
experimenting with heterogeneous Transformations

Wolfgang Lohmann

Rostock University
Albert-Einstein-Str. 21

 18051 Rostock, Germany

wlohmann@informatik.uni-
rostock.de

Günter Riedewald
Rostock University

Albert-Einstein-Str. 21
18051 Rostock, Germany

gri@informatik.uni-
rostock.de

Thomas Zühlke
Rostock University

Albert-Einstein-Str. 21
18051 Rostock, Germany

thomas.zuehlke@uni-
rostock.de

ABSTRACT

We report on a class library called Trane, which provides an infrastructure to support experimenting with trans-
formations interactively. Transformations here mean algorithms, which take software artifacts as input and output
manipulated artifacts. Trane supports easy combination of transformations available in different languages, li-
braries and tools. Several combinations can be presented at the same time, parameters can be visually changed,
and results can be compared. New transformations can be easily added. Generated transformations from experi-
ments can be integrated into the experiments at run-time.
The paper presents the general model of the class library. We show how the class library profits by the features
provided by .NET, such as language interoperability, foreign language interface, shell access, reflection, and web
services by demonstrating five variants to integrate new transformations.

Keywords
Transformations, .NET, Language interoperability, cross-language inheritance, visual programming, component-
based transformation systems, platform independence

1. INTRODUCTION
We report on a lightweight infrastructure developed
to support experimenting with transformations inter-
actively. Here, transformations mean algorithms,
which take software artifacts as input and output ma-
nipulated artifacts or results of an analysis. We use
.NET, as it facilitates integration and combination of
heterogeneous transformations, i.e. transformations
available as programs in different languages, existing
command line tools, web services, libraries through a
foreign language interface, and dynamic compilation
and loading of DLLs resulting from a transformation.

Experiments with Transformation Nets
Some kinds of complex transformation are developed
in an explorative way, where they are extended after a

test with representative examples shows that the de-
velopment might be on the desired way. Examples
vary from combinations of UNIX command line tools
such as sed, awk, grep to extract and manipulate in-
formation in text files to more sophisticated exam-
ples, such as refactoring, where there are many ways
to achieve an improvement of the source code, or to
achieve software evolution by transformations
[Läm04, Set04]. Another example is the collection of
individually changes for maintenance in batch files
for later reuse in [Klu05].

We intend to use Trane to experiment with transfor-
mations on language components, e.g. grammars,
semantic descriptions, and language processors,
though it is not restricted to those applications. We
want to extend languages stepwise during their de-
velopment, explore several possibilities, how a
grammar could be changed, compare the variants,
extract parts of existing grammars and adapt them to
form a sublanguage DSL, and directly connect the
generated output to front end generators to test exam-
ple programs. There are tools, but they are available
in different formats, e.g. command like tools like
yacc and GDK [Kor02], left-recursion removal for
attributed grammars in Prolog and TXL [Loh04],
grammar representations in XML, BNF etc.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistrib-
ute to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

However, to the user, it should not matter, whether a
transformation is a command line tool like yacc, or an
analysis written in Prolog, and should be represented
uniformly modulo their parameters.

Using .NET
We were interested in an implementation on .NET
mainly because it comes with the promise of language
interoperability and cross-language inheritance. With
C# as main implementation language, we could make
use of properties, generics, delegates, reflection, and
web services. The implementation was also an ex-
periment in platform independence wrt. the availabil-
ity of .NET on Linux as well as Gtk# on Windows.

Resulting Prototype
We designed a simple class model. Transformations
are represented by automatically generated or self-
designed boxes to be placed on a workspace, which is
itself part of a box. The boxes have typed input and
output ports, which can be connected using convert-
ers to describe dataflow. Boxes can provide facilities
to control transformation parameters. Several se-
quences of transformations can be presented simulta-
neously, parameters are visually changeable, and re-
sults can be compared.

Trane can be extended easily with new transforma-
tions. New boxes can be any program, a web service,
an encapsulated command on shell level, etc., written
in any .NET language, as long as the box interface is
implemented. Thus, the user creates transformation
nets without paying attention to the implementation
of a transformation. Due to reflection, no extra con-
figuration files are necessary. Trane can also be seen
as a wrapper architecture or an interpreter for call
graphs of complex functions. It is a lightweight im-
plementation, because .NET already encapsulates
much work for the integration of transformations.

Remainder of the Paper
In Section 2 we present the concept of Trane. In Sec-
tion 3 we discuss the model and the computation
strategy. In Section 4 we show five categories of
transformation and how they are integrated. Section 5
discusses some related work. Finally, the paper fin-
ishes with concluding remarks.

2. TRANE CONCEPT
Trane provides facilities to model Transformation
nets with heterogeneous transformations. In Figure 1,
for example, an attribute grammar of a robot move
language is sent to the Lisa web-service, which gen-
erates a compiler for that language. Using Lisa-
JavaCompile (wrapper for Java at command line), the
Lisa generated code is compiled. In the second se-
quence, a description of a maze in XML is converted

to Prolog by an XSLT based transformation. A
Prolog-based transformation now analyses the inher-
ent graph and generates a program for robot moves to
control its way through it. The program is saved, the
filename is delivered to the generated compiler
RunLisaCode for the robot language. The result of
the execution, the final position of the robot relative
to start position (0, 0), is delivered to the TextOutput.

Figure 1. Trane in action

The underlying structure is a directed graph with
nodes representing transformations. Nodes have input
and output ports, which possess types, and corre-
spond to input and output positions of the transforma-
tions. Output ports can be connected to input ports of
other nodes by directed edges, assumed the types
associated to the ports are equal. This way, the call
graph of a composite transformation is modelled.

Connections between ports of different types can be
obtained indirectly by converters. These are special
transformations, which map values of a given type
onto values of a related type. In the graphical repre-
sentation, they are hidden behind connections to al-
low a simplified view on the net. For example, it
should not matter that the result of a transformation is
a grammar in XML format, but the next transforma-
tion expects it in a BNF style. An XML2BNF con-
nection can transport the grammar and hide the nec-
essary format conversion. The user simply chooses
the connector with the desired type combination.
Data transported can be text as in UNIX-pipes, struc-
tured data such as grammars, or file names for results
in files.

Transformations can be added at run time, e.g. trans-
formations created with Trane. Providing a new
transformation means to embed a transformation into
a node such that input and output ports are provided
with data. To create a new converter means to pro-
vide a new transformation, which implements the
desired type mapping. This requires knowledge about
the structure of data.

The order of computations is determined by the de-
pendencies between transformations in the graph.
Cycles are not considered, as their role is not clear in

this setting. The computations are performed always
once, when a result is demanded and the required
input data for the transformation is available. Results
can be queried at any output port at any transforma-
tion, thus, comparing the values of different trans-
formations is possible. The intermediate results can
be investigated, which is helpful, if the result of a
transformation delivers unexpected values.

3. OBJECT-ORIENTED MODEL
Figure 2 shows the UML class diagram of the infra-
structure, which largely mirrors the concept.

First Level: Combination Infrastructure
The class Transformation defines minimal require-
ments of transformation nodes. As can be seen in the
class diagram, it provides lists for input and output
ports. These ports manage edges connected to ports
of other transformations, data, and a type annotation,
which constrains data accepted. Data is packed in a
separate object, which provides its value and a type.
This allows for a subtype concept, i.e. the value has
to be a subtype of the type of the port. The values are
used as input and output values for a transformation
and the object representing the transformation. To
define the port lists of a special transformation, it has
to override method init_port_lists to configure the
ports (e.g. with type annotations). Port lists are ex-
tendable dynamically at run-time. Ports of transfor-
mation objects are connected using the method con-
nect/4 of TransformationGraph, which tests on type
conformance, creates an edge between the ports, and
keeps track of transformation objects and their con-
nections. Edges store the nodes and indices of the
ports connected.

A subclass has to override execute, where the actual
mapping from values of input ports to values of out-
put ports is defined or the embedded transformation
is called. The computation can depend on several
conditions, such as the actual computation strategy,
or lazy computation (do not compute if input values
have not changed). To save the user from uninterest-
ing management work, execute is wrapped by meth-
ods intern_execute and own_intern_execute, which
take care of the conditions, and at a suitable point in
the computation call execute. init_representation
associates a representation to an instance of Trans-
formation.

The difference between common kinds of transforma-
tion nodes and converters is expressed by classes
Box, which box a desired transformation, and Con-
verter, whose main task is to provide some kind of
type conversion. The provider of a converter will find
it nice to implement it like any other transformation.
They only differ from boxes through their representa-
tion and arity. This enables converters of all kinds,
simple converters or arbitrary complex computations,
from which the user would like to abstract in a model.

The TransformationNet provides a method connect/5
to connect two objects of type Box using a Converter
at the ports specified with the port index each.

We decided for overriding of some init-methods over
configuration inside of a constructor, because in the
chosen implementation language C# constructors of
super classes are evaluated first before that of the
actual class. For some tasks provided in the super
class, e.g. for the generation of graphic representa-
tions, it is necessary that the actual class is configured
already at least partially.

Figure 2. Class model of Trane

Graph

connect(N : Node,N : Node) : void

TransformationGraph

connect(T : Transformation,P : int,

 T2:Transformation,P2:int) : void

TransformationNet

connect(B1 : Box,P1 : int,C : Converter,P2 : int,B2 : Box) : void

Node

init_port_lists() : void

init_representation(T : Node) : void

Inputs : List<Port>

Outputs : List<Port>

Transformation

execute() : void

own_intern_execute() : void

intern_execute() : void

init_representation(T : Transformation) : void

views : List

Box Converter

Interpreter

traverse() : void

Backward Forward

Hierarchy IdC IntC XML2BNFCmd WebService

Representation

GtkRepresentation

GtkBox GtkConverter

DllLoader

Workspace

1..*

0..*

0..1

2

Edge

P1 : int

P2 : int

0..*

2

Second Level: Interactivity and Views
The second level provides graphical representations
for transformations. In the standard representation,
rectangular boxes are generated for transformations
(e.g. most representations in Fig. 1 are generated.).
Lists of buttons, which also activate the execution of
the associated box, represent input and output ports.
Converters are represented as a line, which connects
two boxes. This simplifies the view on the transfor-
mation net.

If desired, the provider of the transformation can cre-
ate own representations for boxes and converters by
inheriting GtkBox and GtkConverter respectively.
Their instances are associated to the specific trans-
formation class by overriding init_representation.
Objects of class GtkBox can be provided with addi-
tional buttons, fields, sliders, and other kinds of in-
put/ output support for users to control the transfor-
mation.

Objects of transformation nodes can provide several
views at them. The first level can already be consid-
ered as the most basic view. The main view used is
the graphic representation on a workspace to combine
them. In addition, more information and controlling
facilities are possible, e.g. a description of the trans-
formation represented by the object, a description of
its input/output, complex tables for the user to de-
scribe or influence the way the transformation is
working, status messages, and logs. Note, the work-
space in Fig. 1 is just another view on a special box,
allowing to create a hierarchical subnet interactively.

Providing a New Box
To create a new box, the following steps are fol-
lowed: 1) Choose a box to inherit from. 2) If desired,
override init_port_lists to redefine input and output
ports by simply adding new ports to a generic list. 3)
Override execute to describe, how values of input
ports are used by the transformation to compute val-
ues and copy them into output ports. 4) If a new rep-
resentation is desired, create a new subclass of
GtkBox and redefine components or add new features
to the inner frame, e.g. a button to show a new view,
which can be any graphical object. Override
init_representation in the box to assign it to the box.

Computation Strategy
There are several variants to initiate computation of
the transformation net: backward and forward compu-
tation (similarly to demand-driven vs. data-driven)
and direct vs. indirect data transport. The choice is
realised through an instance of Interpreter, who per-
forms/initiates the traversal.

With direct data transport, a transformation itself
informs its successors / predecessors about results/

required results and calls their own_intern_execute.
With indirect data transport a separate object of class
TransformationNet controls the traversal process, e.g.
calls intern_execute. Note, that by connect/5 the ob-
ject keeps book about created transformations and
connections. This allows intercepting and changing
values for experimenting.

Backward computation is initiated by requesting the
output port of the last transformation of a chain by
initiating own_intern_execute /intern_execute, which
then determine missing input values for the computa-
tion of the embedded transformation, and activate the
preceding transformations. When all values are avail-
able, the wrapped execute is called. This strategy will
be used mostly to compare several transformations at
the end of a common sequence.

The forward computation strategy is thought for ex-
periments to investigate the effect of a changed input.
E.g. a composite transformation can be attached to a
text editor, and show the results of a transformation
chain immediately while typing e.g. a new part of a
grammar (or delay start until a save-command is
fired). Forward computation is simulated on top of
the backward computation by calling the output ports
of following transformations. This can be very expen-
sive, though. Cycles are not allowed in the computa-
tion though we have not included a check to avoid
them yet (we could think of a graph analysis based on
a term generated from the net).

4. VARIANTS OF BOXES
Many transformations will only inherit from the com-
mon box type, configure the input and output ports,
and define a mapping between them to create
different kinds of boxes. However, using .NET, sev-
eral different kinds of special box categories are vi-
able, e.g. hierarchy boxes (to provide subnets and
workspaces), web service boxes, command line tool
wrappers, compilers, foreign libraries wrappers, or
DLL loaders. Here we show five variants to integrate
different transformations in boxes.

Web Services
As an example for a web service transformation we
show in Fig. 3, how to implement the compiler gen-
erator box LisaWS used in Fig. 1. Lisa [Mer99] is a
compiler generator system also available as web ser-
vice. When sending an attribute grammar, it generates
and delivers Java code of a compiler. The code can
be compiled and the resulting compiler can be used
for the programs of that language.

LisaWS gets an input port for a string value, the at-
tribute grammar. An output port is configured to pro-
vide a string for a path (to store the generated files),
and further ports, where the generated lexer, scanner,
parser, and evaluator can be requested separately.

We find it especially charming to integrate remote
applications into transformation nets from locally
existent algorithms. Problems might be that connec-
tions are unavailable, or slow. Depending on the kind
of service boxed, the transformation could require to
re-compute always, even if no input values have
changed.

Hierarchical Transformations
Hierarchy in transformation nets means to hide a
transformation subnet TSN behind a box BH, which
looks and behaves like other boxes with input and
output ports. Note, there are different types of hierar-
chy boxes. They can differ in the number of input/
output ports, or in the way they are to be used. Hiding
requires mapping inputs and outputs of BH to inputs
and outputs necessary for TSN. This can be easily
done by providing two identity boxes BI and BO as
interface for inputs and outputs, between which TSN
is constructed. Since transformations use properties
to connect to ports, .NET helps to redirect port access
to the input ports of BH to input ports of BI as well as
output ports of BH to those of BO by simply overrid-
ing the definition of the properties (see Fig. 4). The
graphical representation is extended by a button,
which when pressed provides a second view, namely
the workspace of the hierarchy box. Figure 1 shows
the inner view of a hierarchical box. We additionally

added a transformation browser for choosing boxes
and converters. This browser makes use of reflection
to analyse DLLs in a chosen directory and to create
instances of provided classes.

Use of Native Libraries
As an example for the use of existing DLLs outside
of .NET we choose SWI-Prolog [Wie06], mainly
because we want to use Prolog for experiments with
transformation tasks similar to [Loh04, Loh03]. In
Fig. 1, the PathFinder-box is based on Prolog. It de-
termines a path through a labyrinth and generates a
control program in the Robot language for it.

.NET offers the attribute DllImport to define access
to foreign libraries. We created a DLL based on
SwiCs.cs (cf. [Les03]) where for each exported func-

[DllImport (DllFileName)]
internal static extern uint

PL_new_term_ref();
 …
// make a PlTerm from a C# string
public PlTerm(string text) {
 m_term_ref = libpl .PL_new_term_ref();

libpl .PL_put_atom_chars
 (m_term_ref,text);

} // SwiCs.cs by Uwe Lesta

Figure 5. Snippet from SwiCs.cs

public class LisaWSBox : Box {
 public override void init_port_lists(){
 Inputs.Add(new Port ("String"));
 Inputs[0].data =
 new ValueData (null , "String");
 Outputs.Add(new Port ("String"));
 Outputs[0].data =
 new ValueData (null , "String");
 … // some more output ports
 }

 public override void execute(){
 CServiceBeanService lisaService =

new CServiceBeanService ();
 System.Net. CookieContainer container=
 new System.Net. CookieContainer ();
 lisaService.CookieContainer=container;
 lisaService.mkdir("wlohmann");

 // read file with lisa specifications
 String path = Inputs[0].data.value;
 FileStream fs = File .OpenRead(path);
 StreamReader r = new StreamReader (fs);
 String Spec = r.ReadToEnd();
 lisaService.clearError();

 // compile and save specifications
 bool OK = lisaService.compile(Spec);
 if (!OK) { … /* error */ } else {

String scanner =
 lisaService.getScanner();

 Outputs[0].data.value = scanner;
 … }
 }
}

Figure 3. A web service box

public class HierarchyBox : Box {
 public IdBox InputBox = new IdBox ();
 public IdBox OutputBox = new IdBox ();

 // Hide Inputs of this box by pointing
 // to corresponding interface box
 public override List <Port > Inputs {
 set { InputBox.Inputs = value ; }
 get { return InputBox.Inputs; }
 }

 public override List <Port > Outputs{ … }

 public override void init_port_lists(){
 base .init_port_lists();
 InputBox.Double_PortLists();
 OutputBox.Double_PortLists();
 }

 public override void execute() {
 OutputBox.ownInternExecute();
 // Input execute not necessary
 }
 // save hierarchy in a separate subnet
 private TransformationNet _TraNe =

new TransformationNet ();
 public TransformationNet TraNe {
 get { return _TraNet; }
 }
 public override void
 init_representation() {
 this .Representation = new
 Gtk_HierarchyBox_Representation (this);
 }
}

Figure 4. A plain hierarchy box

tion in the library its name is declared after the attrib-
ute (Fig. 5). The DLL provides .NET programs with
methods and types to model Prolog terms and to
query a SWI-Prolog engine; and is used by the box.

Figure 6 shows how to interpret a string input as
Prolog term directly and to call it. Combined with
text boxes it can serve as interactive Prolog inter-
preter. Also, a Prolog box can provide programs that
are more complex or initiate loading of a rule base.

A problem is, in our opinion, that the attribute DllIm-
port expects a static string, which has to be known at
compile-time. This makes replacing different versions
of the Prolog DLL impossible without recompilation
of the interface DLL SwiCs.cs, thus, reducing plat-
form independence (the name of the dynamic librar-
ies differ between e.g. Windows and UNIX systems).

XSLT Boxes
.NET comes with good XML and XSLT support.
This offers a good basis to provide boxes to trans-
form XML documents. Fig. 7 gives an example for
the contents of execute.

The example takes some XML data from an input
port and delivers transformed data to the output port.

Note, that the XSLT script in this case is provided by
a return value of Xslt_Scipt, a method to be overrid-
den by subclasses to specify a concrete transforma-
tion. Other variants of XSLT boxes might expect the
script itself, or a filename for the script as input at a
port, or configured in another box view. A subclass
of this box is used in Fig. 1 to transform the descrip-
tion of a labyrinth into Prolog notation.

Command Line Tools
Many transformations are available as command line
tools. Examples are compilers, but also yacc, lex,
awk. Additionally, there are tools like grammar de-
ployment kit [Kor02], which could be made available
through the integration in Trane. Figure 8 shows how
to use the Java-compiler for Lisa-generated code (cf.
Fig. 1). Here, the tool represented is hard coded into
the box, but could also be provided through extra
views with input fields or from input strings as part of
the transformation.

The problem with this kind of boxes is that platform
independence is restricted to the availability of the
integrated tools on the platform.

Dynamic Compilation and Integration
The command line tool approach can be used to
compile a transformation for Trane and make it us-
able at run-time. Depending on given options, the
resulting executable can be started as command
(maybe again wrapped in a box, as in Fig. 8), or the
DLL can be examined/loaded and classes instantiated
using reflection, if it is written in a .NET language. If
the compiler generates .NET code itself, the resulting
class can be directly instantiated instead of generating
a DLL first.

F# and Other Languages
Though the above examples can use transformations
written in other languages, the boxes themselves have
been specified using C#. It is better to use the lan-
guage of choice itself to define a box. This requires it
is implemented on .NET. The resulting DLL can be

public override void execute(){
 String [] param = { @"H:\\ Projects" +
 … "\\Application.exe" };
 PlEngine e = new PlEngine (1, param);

 // Get query as Text, call it, e.g.
 // (tell('log'),write('HiWorld'),told);
 string goal = (string)

 (Inputs[0].data.copy().value);
 PlQuery q = new PlQuery ("call" ,
 new PlTermv (new PlCompound (goal)));
 bool b = q.next_solution(); q.free();
}

 String xml_input = (String)
 ((Inputs[0].data.copy()).value);
 StringReader xml_reader =
 new StringReader (xml_input);
 XPathDocument xpath_document =
 new XPathDocument (xml_reader);
 XslCompiledTransform transformation =
 new XslCompiledTransform ();
 StringReader xsl_script_reader =
 new StringReader (Xslt_Script());

 XmlTextReader xsl_script =
 new XmlTextReader (xsl_script_reader);
 transformation.Load(xsl_script);
 StringWriter xml_output_writer = …
 XPathNavigator document_navigator =
 xpath_document.CreateNavigator();

 transformation.Transform(

document_navigator, null ,
xml_output_writer);

 Outputs[0].data.value =
 xml_output_writer.ToString();

System.Diagnostics. Process p =
 new Process ();

p.StartInfo.UseShellExecute = false ;
p.StartInfo.CreateNoWindow = true ;
p.StartInfo.RedirectStandardOutput= true ;
p.StartInfo.RedirectStandardInput= true ;
p.StartInfo.FileName = "cmd" ;
p.Start();
StreamWriter sw = p.StandardInput;
StreamReader sr = p.StandardOutput;
sw.AutoFlush = true ;
//sw.WriteLine("dir /AD");or any cmd/tool
sw.WriteLine(@ "javac –classpath lisa.jar"
 +path+ "*.java");
sw.Close(); p.WaitForExit();
Outputs[0].Data.Value=TextBuffer.Text;

Figure 6. Providing direct Prolog access

Figure 7. Apply XSLT script to input

Figure 8. Wrapping command line tools

used in Trane, as if C# had been used due to cross-
language inheritance. Only then the real benefit of
.NET occurs in our opinion, as the still existing prob-
lems of data conversion in approaches like command
line tools or foreign libraries could be avoided.

With F# [Fsh06] we were able to inherit from C#
classes of Trane (the box), to create a new box (writ-
ten in F#) and to instantiate from it in Trane again. F#
is functional and thus, similar to Prolog, suitable to
describe transformations.

Several languages on .NET are differently suitable.
We had not the expected success with P#, but this
might be our fault. With Eiffel# it is necessary to take
care of the naming scheme during compilation. J# is
not portable on Linux as it requires DLLs available
on Windows only. We would be interested in a
smooth integration of Haskell. There are some at-
tempts, but there is still a way to go.

5. RELATED WORK
Several tools provide a plugin structure and interac-
tive placement of components. They are either large,
or provide a proprietary language to extend them with
new objects. Trane has mainly been inspired by Can-
tata, the graphical user interface for the Khoros sys-
tem to analyse and manipulate graphics [You95].
Cantata allows to interactively construct such filter
pipelines.

[Spi02] considers UNIX tools as components. A GUI
builder is used to create the visual programming envi-
ronment. The placing relation of the components de-
scribes dataflow, which is text. UNIX tools have to
encapsulate as ActiveX components with much man-
ual work. Connectors are simply a visual encapsula-
tion of the operating system pipe abstraction. Con-
nector and glue-type components still need to be writ-
ten by hand. Trane is not restricted to one kind of
data, though it is intended to be applied mainly to
artifacts of language processors, i.e. data are gram-
mars, specifications, rewrite rules, parts of parsers,
etc. We provide among others a system call box,
which can take the command call directly as string. A
new wrapper box for a special command can be eas-
ily written on top of the system box, which can take
even the options at input ports. Our converters can
transport structured data of any kind, they just have to
inherit from a general converter class and implement
additional treatment.

Stratego/XT [Vis04] uses mainly ATerms [Bra00] to
provide input and output for terms in Stratego, and to
exchange terms between transformation tools. New
created transformations are wrapped into stand-alone
components, which can be called from the command-
line or from other tools. Those tools can be used
similarly to Unix pipes, but can additionally work on

structured data. For compositions of complex trans-
formations they provide the XTC model. A repository
registers locations of tools. An abstraction layer im-
plemented in Stratego supports transparent access,
allowing to call and use a tool like a basic transfor-
mation step in Stratego programs. Additionally,
Stratego provides a foreign language interface to call
C functions. Trane is designed mainly to reuse and to
combine transformations for experiments. The XT
tools could be wrapped in boxes, and used for ex-
periments. We cannot generate stand-alone tools from
composite transformations.

The Meta-Environment [Bra01] also allows the com-
bination of different tools, but separates strictly be-
tween coordination and computation. Basis is the
TOOLBUS coordination architecture, a programma-
ble software bus based on process algebra. Coordina-
tion is expressed by a formal description of the coop-
eration protocol between components, while compu-
tation can be expressed in any language. Meta-
Environment is used to produce real life products, on
the other hand, it is complex, and difficult to adapt a
new tool to the tool bus.

In Trane, coordination and computation are tangled.
Evaluation of a transformation net is just traversing to
each node and computing as given by the inherent
dependencies between transformation nodes. Trans-
formations can be added easily by providing a wrap-
per, where only two methods have to be overridden.

In Eclipse, GEF allows to create similar models and
associate semantics to them. However, for new parts
of the model (e.g. similarly to a new box in Trane) it
requires a new compilation, while Trane nets are
open. We do not need to compile the net. It is directly
executable. New transformations can be added
dynamically. Like other plugin systems, in Eclipse a
plugin needs configuration files to add a new compo-
nent, while we use reflection to extract necessary
information. The language plugins for Eclipse are
Java classes in a JAR archive. Transformations in
Trane do not need to be written in one specific con-
figuration language, as long it is supported by .NET.

[San99] also try to spread transformation system
technology over a set of reusable heterogeneous
components. Using Java, CORBA and HTTP, they
have instantiated a communication layer. To config-
ure components, a description in a hybrid architecture
description language is necessary.

Calling functionality from foreign DLLs is not new.
However, usually the calls are determined at compile
time. We offer to combine functionality, which might
come from different DLLs without recompilation.

Using Trane is similar to programming in dataflow
languages. We refer to [Whi94] for further reading.

6. CONCLUDING REMARKS

SUMMARY
We have presented a lightweight infrastructure, which
allows to provide heterogeneous transformations with
a uniform façade to combine and interact with them.
The model has been given and the essential classes
have been explained. We presented five categories of
transformations such as integration of web services,
or command line tools. Integration of new transfor-
mations is simple. Due to reflection, no extra con-
figuration files are necessary. Trane is lightweight as
a large part of the work for integration is encapsu-
lated in .NET. The biggest advantages have lan-
guages that are implemented on .NET directly, but
we still wait for more pure .NET languages, without
name scheme or inheritance problems.

FUTURE WORK
We are aware that Trane is rather a proof of concept
than a tool yet. The type system is currently very ad
hoc. There are still conceptual. It is still matter of
research, what types mean in our context. For exam-
ple, for some transformations grammars of different
languages are of the same type, if they are in the same
format such as BNF. On the other hand, grammars
can be considered as different types despite their
format, if the algorithm using it is language specific.
We want to design an extensible type hierarchy.

The Visitor pattern might help with flexible computa-
tions; also, to generate command line tools from a net
as well as terms describing nets for analysis. As an-
other way to integrate transformations sockets should
be examined. The usability has to be increased vastly.
It might be interesting to initiate the evaluation of
transformations in separate threads. A classification
of boxes would be nice. We need more transforma-
tions with grammar typical support to perform the
experiments. We are new to F# and need more ex-
periments with it and with other .NET languages.

7. ACKNOWLEDGMENTS
We thank the reviewers for their comments, which
provided answers, literature, and suggestions for fu-
ture directions of the work, though we were not able
to implement most of them in this paper. We thank
Damijan Rebernak for help with the Lisa web service.

8. REFERENCES
[Bra01] v. d. Brand , M.G.J., and v. Deursen, A., and Heer-

ing,J, and de Jong, H.A., and de Jonge, M., and Kui-
pers,T., and Klint,P., and Moonen,L., and Olivier,
P.A., and Scheerder,.J., and Vinju,J.J., and Visser, E,
and Visser,J. The ASF+SDF Meta-environment: A
Component-Based Language Development Environ-
ment, Procs. of the 10th International Conference on
Compiler Construction, p.365-370, April 02-06, 2001

[Bra00] v. d. Brand , M.G.J., and de Jong, H. A., and Klint,
P., and Olivier, P. A., Efficient annotated terms, Soft-
ware- Practice & Experience, 30, pp. 259-291, 2000

[Fsh06] F# Home Page (Feb.2006)
http://research.microsoft.com/fsharp

[Klu05] Klusener, S., and Lämmel, R., and Verhoef, C.:
Architectural Modifications to Deployed Software.
Science of Computer Programming 54, pp.143-211,
2005

[Kor02] Kort, J. and Lämmel, R., and Verhoef, C. The
Grammar Deployment Kit, ENTCS 65, 3, Elsevier Sci-
ence Publ., 2002

[Läm04] Lämmel, R.: Evolution of Rule-Based Programs.
Journal of Logic and Algebraic Programming, Special
Issue on Structural Operational Semantics, 2004

[Les03] Lesta, U.: C# Interface to SWI-Prolog.
http://gollem.science.uva.nl/twiki/pl/bin/view/Foreign/
CSharpInterface, Version Aug. 2003

[Loh03] Lohmann, W., and Riedewald, G. Towards auto-
matical migration of transformation rules after grammar
extension. In Proc. 7th European Conference on Soft-
ware Maintenance and Reengineering (CSMR'03),
Benevento, Italy, March, 2003

[Loh04] Lohmann, W., and Riedewald, R. and Stoy, M.
Semantics-preserving migration of semantic rules dur-
ing left recursion removal in attribute grammars,
ENTCS 110 C, Elsevier, 2004

[Mer99] Mernik, M., and Zumer, V., and Lenic, M., Avdi-
causevic, E. Implementation of multiple attribute
grammar inheritance in the tool LISA. ACM SIGPLAN
not., June 1999, Vol. 34, No. 6, pp. 68-75.

[San99] Sant’Anna, M., do Prado Leite, J.C.S., An Archi-
tectural Framework for Software Transformation, Pro-
ceedings of the International Workshop on Software
Transformations; STS'99', ICSE'99, 1999
http://www.dur.ac.uk/CSM/STS/

[Set04] Proceedings of the Workshop on Software Evolu-
tion through Transformations: Model-based vs. Imple-
mentation-level Solutions (SETra 2004), ENTCS 127
(3), April 2005

[Spi02] Spinellis, D. Unix tools as visual programming
components in a gui-builder environment. Software -
Practice & Experience. 32, pp.57-71, 2002

[Vis04] Visser, E., Program Transformation with
Stratego/XT: Rules, Strategies, Tools, and Systems in
StrategoXT-0.9., in C. Lengauer et al., editors, Do-
main-Specific Program Generation, LNCS 3016, pp.
216--238. Spinger-Verlag, June 2004.

[Whi94] Whiting, P. G., and Pascoe, R. S. V. A History of
Data-Flow Languages, IEEE Annals of the History of
Computing, Vol.16(4), pp.38-59, 1994

[Wie06] Wielemaker, J. SWI-Prolog Home Page
http://www.Swi-Prolog.org

[You95] Young, M., and Argiro, D., and Kubica, S. Can-
tata: Visual programming environment for the Khoros
system. Computer Graphics 29, 1995

