A lightweight infrastructure to support
experimenting with heterogeneous Transformations

Wolfgang Lohmann Gunter Riedewald Thomas Zihlke
Rostock University Rostock University Rostock University
Albert-Einstein-Str. 21 Albert-Einstein-Str. 21 Albert-Einstein-Str. 21
18051 Rostock, Germany 18051 Rostock, Germany 18051 Rostock, Germany
wlohmann@informatik.uni- gri@informatik.uni- thomas.zuehlke@uni-
rostock.de rostock.de rostock.de
ABSTRACT

We report on a class library called Trane, whichvfites an infrastructure to support experimentirittp Wwans-
formations interactively. Transformations here malgorithms, which take software artifacts as ingd output
manipulated artifacts. Trane supports easy combimatf transformations available in different laages, li-
braries and tools. Several combinations can beepted at the same time, parameters can be vistlalyged,
and results can be compared. New transformatiom$bezaeasily added. Generated transformations fequare
ments can be integrated into the experiments atima

The paper presents the general model of the dlassy. We show how the class library profits bg fleatures
provided by .NET, such as language interoperabiiitseign language interface, shell access, réflecand web
services by demonstrating five variants to integyregw transformations.

Keywords
Transformations, .NET, Language interoperabilitpss-language inheritance, visual programming, eanrapt-
based transformation systems, platform independence

1. INTRODUCTION test with representative examples shows that the de
We report on a lightweight infrastructure developed Velopment might be on the desired way. Examples
to support experimenting with transformations inter Vary from combinations of UNIX command line tools
actively. Here, transformations mean algorithms, Such as sed, awk, grep to extract and manipulate in
which take software artifacts as input and Outpat m formation in text files to more Sophisticated exam-
nipulated artifacts or results of an analysis. e u Ples, such as refactoring, where there are mang way
NET, as it facilitates integration and combinatwin ~ t0 achieve an improvement of the source code, or to
heterogeneous transformations, i.e. transformationsachieve software evolution by transformations
available as programs in different |anguageS, mgst [Lam04, Set04] Another example is the collectidn o
command line tools, web services, libraries throagh individually changes for maintenance in batch files
foreign language interface, and dynamic compilation for later reuse in [KIuO5].

and loading of DLLs resulting from a transformation We intend to use Trane to experiment with transfor-

. . . mations on language components, e.g. grammars,
EXpe”.mentSWIth Transmrmatlon Nets semantic descriptions, and language processors,
Some kinds of complex transformation are developed

; lorati here th tended aft though it is not restricted to those applicationge
In an explorative way, where they are extended alte ant to extend languages stepwise during their de-

Permission to make digital or hard copies of alpart of ~ V€lopment, explore several possibilities, how a

this work for personal or classroom use is gramtitdout grammar could be changed, compare the variants,
fee provided that copies are not made or distribtioe extract parts of existing grammars and adapt theem t

profit or commercial advantage and that copies Hgiar form a sublanguage DSL, and directly connect the
notice and the full citation on the first page. opy generated output to front end generators to tesnex

otherwise, or republish, to post on servers oetistrib- ple programs. There are tools, but they are availab
ute to lists, requires prior specific permissiod/an a fee. in different formats, e.g. command like tools like
NET Technologies 2006 yacc and GDK [KorO?], left-recursion removal for
Copyright UNION Agency — Science Press, attributed grammars in Prolog and TXL [LohO4],

Plzen, Czech Republic. grammar representations in XML, BNF etc.

However, to the user, it should not matter, whether to Prolog by an XSLT based transformation. A
transformation is a command line tool like yaccanr Prolog-based transformation now analyses the inher-
analysis written in Prolog, and should be represgnt ent graph and generates a program for robot maves t

uniformly modulo their parameters. control its way through it. The program is savew t
filename is delivered to the generated compiler
Using .NET RunLisaCode for the robot language. The result of

We were interested in an implementation on .NET the execution, the final position of the robot tela

mainly because it comes with the promise of languag to start position (0, 0), is delivered to the Text@ut.

interoperability and crodanguage inheritance. With -

C# as main implementation language, we could make —

use of properties, generics, delegates, reflectiod, — .
;) i & swhrolog brebugirabotisa romse | of, (LSS

web services. The implementation was also an ex- == = JJLJ j Y

Eile

. Hierarchy 0

LisalavaCampile

periment in platform independence wrt. the avalabi == | ol e =

ity of .NET on Linux as well as Gtk# on Windows. 2 o LI T
. E [T::Sr;" | LabirL2PL PathFindzr S:VE " /h. .

Resulting Prototype o ol Jofyol | olnafF soea o

We designed a simple class model. Transformations - i
are represented by automatically generated or self- wan
designed boxes to be placed on a workspace, which i EE 8
itself part of a box. The boxes have typed input an iomews e

output ports, which can be connected using convert-Figure 1. Tranein action
ers to describe dataflov_v. Boxes can provide faedit 14 underlying structure is a directed graph with
to control transformation parameters. Several s€-,qjeq representing transformations. Nodes havé inpu
quences of transformations can be presented simulta, 4 output ports, which possess types, and corre-

neously, parameters are visually changeable, and respond to input and output positions of the transtor
sults can be compared. tions. Output ports can be connected to input pafrts
Trane can be extended easily with new transforma-other nodes by directed edges, assumed the types
tions. New boxes can be any program, a web serviceassociated to the ports are equal. This way, the ca
an encapsulated command on shell level, etc.,enritt graph of a composite transformation is modelled.

in any .NET language, as long as the box interface ~qnnections between ports of different types can be

implemented. Thus, the user creates transformatlonobtained indirectly by converters. These are specia

nets without paying attention to the implementation transformations, which map values of a given type

of a transformation. Due to reflection, no extraco .0 values of a related type. In the graphicateep
figuration files are necessary. Trane can alsog@®'S onation, they are hidden behind connections to al
as a wrapper archltecture or an mtqprete_r for.cal low a simplified view on the net. For example, it
graphs of complex functions. It is a lightweight-im = g514 ot matter that the result of a transforomets
plementation, because .NET already encapsulates, grammar in XML format, but the next transforma-

din0.031 s,

much work for the integration of transformations. tion expects it in a BNF style. An XML2BNF con-
R ind f the P. nection can transport the grammar and hide the nec-
emainder of the Faper essary format conversion. The user simply chooses

In Section 2 we present the concept of Trane. 1 Se e connector with the desired type combination.
tion 3 we discuss the model and the computation paia transported can be text as in UNIX-pipescstru

strategy. In Section 4 we show five categories of yreq data such as grammars, or file names fottsesu
transformation and how they are integrated. Sedion j;, fijes.

discusses some related work. Finally, the paper fin

ishes with concluding remarks. Transformations can be added at run time, e.gstran

formations created with Trane. Providing a new
2. TRANE CONCEPT transformation means to embed a transformation into
a node such that input and output ports are pravide
with data. To create a new converter means to pro-
vide a new transformation, which implements the
desired type mapping. This requires knowledge about
the structure of data.

Trane provides facilities to moddiransformation

nets with heterogeneous transformations. In Figure 1,
for example, an attribute grammar of a robot move
language is sent to the Lisa web-service, which gen
erates a compiler for that language. Using Lisa-
JavaCompile (wrapper for Java at command line), theThe order of computations is determined by the de-
Lisa generated code is compiled. In the second sefpendencies between transformations in the graph.
guence, a description of a maze in XML is converted Cycles are not considered, as their role is natrdle

2
Edge Node 0.1 | Representation
P1: ?nt 0. Graph 0.* Inputs : Lis¥<Port>
P2 :int Outputs : List<Port>
init_port_lists() : void
connect(N : Node,N : Node) : void init_representation(T : Node) : void
Interpreter TransformationGraph Transformation GtkRepresentation
1.
views : List
traverse() : void execute() : void
connect(T : Transformation,P : int, own_intern_execute() : void
T2:Transformation,P2:int) : void intern_execute() : void
init_representation(T : Transformation) : void
Backward | | Forward | TransformationNet Box Converter | GtkBox | GtkConverter
2
connect(B1 : Box,P1 :int,C : Converter,P2 : int,B2 : Box) : void
DllLoader | | | |
Workspace | Hierarchy | | Cmd | WebService | IdC | | IntC | | XML2BNF |
1

Figure 2. Classmodel of Trane

this setting. The computations are performed alwaysA subclass has to overrigsecute, where the actual
once, when a result is demanded and the requiredmapping from values of input ports to values of-out
input data for the transformation is available. iss put ports is defined or the embedded transformation
can be queried at any output port at any transforma is called. The computation can depend on several
tion, thus, comparing the values of different trans conditions, such as the actual computation strategy
formations is possible. The intermediate results ca or lazy computation (do not compute if input values
be investigated, which is helpful, if the result @f have not changed). To save the user from uninterest

transformation delivers unexpected values. ing management worlexecute is wrapped by meth-
ods intern_execute and own_intern_execute, which

3. OBJECT-ORIENTED MODEL take care of the conditions, and at a suitabletgdnin

Figure 2 shows the UML class diagram of the infra- the computation callexecute. init_representation

structure, which largely mirrors the concept. associates a representation to an instancerarfs-
formation.

First Level: Combination Infrastructure The difference between common kinds of transforma-

The classTransformation defines minimal require- ion nodes and converters is expressed by classes
ments of transformation nodes. As can be seerein th gox which box a desired transformation, a@dn-

class diagram, it provides lists for input and @fitp yerter, whose main task is to provide some kind of
ports. These ports manage edges connected to portgpe conversion. The provider of a converter vt

of other transformations, data, and a type anmstati it nice to implement it like any other transfornoati
which constrains data accepted. Data is packed in arney only differ from boxes through their represent
separate object, which provides its value and &.typ tion and arity. This enables converters of all kind
This allows for a subtype concept, i.e. the valae h simple converters or arbitrary complex computations

to be a subtype of the type of the port. The vaares from which the user would like to abstract in a @lod
used as input and output values for a transformatio

and the object representing the transformation. To
define the port lists of a special transformatibas

to override methodnit_port_lists to configure the
ports (e.g. with type annotations). Port lists are We decided for overriding of sonneit-methods over
tendable dynamically at run-time. Ports of transfor configuration inside of a constructor, becausehi t
mation objects are connected using the metturd chosen implementation language C# constructors of
nect/4 of TransformationGraph, which tests on type super classes are evaluated first before that ef th
conformance, creates an edge between the ports, andctual class. For some tasks provided in the super
keeps track of transformation objects and their-con class, e.g. for the generation of graphic represent
nections. Edges store the nodes and indices of thdions, it is necessary that the actual class ifigared
ports connected. already at least partially.

The TransformationNet provides a methodonnect/5
to connect two objects of tyfgox using aConverter
at the ports specified with the port index each.

Second Level: Interactivity and Views

required results and calls thewn_intern_execute.

The second level provides graphical representationsWith indirect data transport a separate objectass

for transformations. In the standard representation TransformationNet controls the traversal process, e.g.
rectangular boxes are generated for transformationscalls intern_execute. Note, that byconnect/5 the ob-
(e_g' most representations in F|g 1 are genebated' jeCt keepS book about created transformations and

Lists of buttons, which also activate the executién
the associated box, represent input and outpus.port

connections. This allows intercepting and changing
values for experimenting.

Converters are represented as a line, which cosinectBackward computation is initiated by requesting the

two boxes. This simplifies the view on the transfor
mation net.

If desired, the provider of the transformation cae-

output port of the last transformation of a chaijn b
initiating own_intern_execute /intern_execute, which
then determine missing input values for the computa

ate own representations for boxes and converters byiion of the embedded transformation, and activiage t

inheriting GtkBox and GtkConverter respectively.
Their instances are associated to the specificstran
formation class by overridingnit_representation.
Objects of clas$tkBox can be provided with addi-
tional buttons, fields, sliders, and other kindsirof
put/ output support for users to control the transf
mation.

preceding transformations. When all values arel-avai
able, the wrappedxecute is called. This strategy will

be used mostly to compare several transformations a
the end of a common sequence.

The forward computation strategy is thought for ex-
periments to investigate the effect of a changedtin
E.g. a composite transformation can be attachexd to

Objects of transformation nodes can provide severaltext editor, and show the results of a transforomati

views at them. The first level can already be abnsi

chain immediately while typing e.g. a new part of a

ered as the most basic view. The main view used isgrammar (or delay start until a save-command is
the graphic representation on a workspace to caebin fired). Forward computation is simulated on top of

them. In addition, more information and controlling
facilities are possible, e.g. a description of titzans-
formation represented by the object, a descriptibn
its input/output, complex tables for the user te de
scribe or influence the way the transformation is

the backward computation by calling the output port
of following transformations. This can be very enpe
sive, though. Cycles are not allowed in the computa
tion though we have not included a check to avoid
them yet (we could think of a graph analysis based

working, status messages, and logs. Note, the work-2 term generated from the net).

space in Fig. 1 is just another view on a speaal, b
allowing to create a hierarchical subnet interastyiv

Providing a New Box

4. VARIANTS OF BOXES
Many transformations will only inherit from the cem
mon box type, configure the input and output ports,

To create a new box, the following steps are fol- and define a mapping between them to create

lowed: 1) Choose a box to inherit from. 2) If desdir
overrideinit_port_lists to redefine input and output
ports by simply adding new ports to a generic B3t.
Override execute to describe, how values of input

different kinds of boxes. However, using .NET, sev-
eral different kinds of special box categories re

able, e.g. hierarchy boxes (to provide subnets and
workspaces), web service boxes, command line tool

ports are used by the transformation to compute val Wrappers, compilers, foreign libraries wrappers, or
ues and copy them into Output ports_ 4) If a nepy re DLL loaders Here we show five variants to integrate
resentation is desired, create a new subclass oflifferent transformations in boxes.

GtkBox and redefine components or add new features

to the inner frame, e.g. a button to show a newyvie
which can be any graphical object. Override
init_representation in the box to assign it to the box.

Computation Strategy
There are several variants to initiate computatbn

the transformation net: backward and forward compu-

tation (similarly to demand-driven vs. data-driven)
and direct vs. indirect data transport. The chasce
realised through an instance loterpreter, who per-
forms/initiates the traversal.

With direct data transport, a transformation itself

Web Services

As an example for a web service transformation we
show in Fig. 3, how to implement the compiler gen-
erator box LisaWS used in Fig. 1. Lisa [Mer99] is a
compiler generator system also available as web ser
vice. When sending an attribute grammar, it geesrat
and delivers Java code of a compiler. The code can
be compiled and the resulting compiler can be used
for the programs of that language.

LisaWS gets an input port for a string value, the a
tribute grammar. An output port is configured topr
vide a string for a path (to store the generatled)i

informs its successors / predecessors about resultsand further ports, where the generated lexer, srann

parser, and evaluator can be requested separately.

public class LisaWSBox : Box { added a transformation browser for choosing boxes

public override void init_port_lists(){ and converters. This browser makes use of reflectio
:Epﬂgié]dg;ta— new Port ("String”)); to analyse DLLs in a chosen directory and to create
P " hew ValueData (null , "String"); instances of provided classes.

Outputs.Add(new Port ("String"));
Outputs[0].data =

Nt Y public class HierarchyBox : Box {
/I Sg%\/\é \rrﬁiltjeec?&taut(rcl)trjtl'ls , "Sting”); public IdBox InputBox = new |dBox ();
} putp public IdBox OutputBox = new ldBox ();

/I Hide Inputs of this box by pointing

public override void execute(} / to corresponding interface box

CServiceBeanService lisaService =

; . < >
new CServiceBeanService — (); public set 0\{/?;%(&?50)(Ianlvﬁtts :Port Ir\;gltijt: {.}
System.Net. CookieContainer container= et { retun .In utBox.Inputs; } ’
new System.Net. CookieContainer (); } 9 p Anputs;
lisaService.CookieContainer=container;
lisaService.mkdir("wlohmann");

public override List <Port > Outputs{ ... }

/I read file with lisa specifications public override void init_port_lists(){

String path = Inputs[0].data.value; b L .)
i - : . ase .init_port_lists();
FileStream fs= File .OpenRead(path); TR A .
StreamReader r= new StreamReader (fs); InputBox.Double_PortLists();

String Spec = r.ReadToENd(); OutputBox.Double_PortLists();

lisaService.clearError();

public override void execute(){
OutputBox.owninternExecute();
/I Input execute not necessary

/I compile and save specifications
bool OK = lisaService.compile(Spec);
if (1OK){... [* error */ } else {
String scanner =
lisaService.getScanner();
Outputs[0].data.value = scanner;

/I save hierarchy in a separate subnet

private TransformationNet _TraNe =
new TransformationNet 0;

public TransformationNet TraNe {

}} get { return _TraNet;}
public override void
Figure 3. A web service box _init_representation() {
this .Representation = new ‘
We find it especially charming to integrate remote) Gtk_HierarchyBox_Representation (this);

applications into transformation nets from locally | y
existent algorithmsProblems might be that connec-
tions are unavailable, or slow. Depending on timel ki Figure4. A plain hierarchy box
of service boxed, the transformation could reqtare
re-compute always, even if no input values have
changed.

Use of Native Libraries

As an example for the use of existing DLLs outside
of .NET we choose SWI-Prolog [Wie06], mainly
because we want to use Prolog for experiments with
transformation tasks similar to [Loh04, LohO3h

Fig. 1, the PathFinder-box is based on Prologei d
termines a path through a labyrinth and generates a
control program in the Robot language for it.

Hierarchical Transformations

Hierarchy in transformation nets means to hide a
transformation subnefSN behind a boxBy, which
looks and behaves like other boxes with input and
output ports. Note, there are different types efdui-
chy boxes. They can differ in the number of input/
output ports, or in the way they are to be usedirigi

[Dllimport (DlIFileName)]

requires mapping inputs and outputsBpfto inputs internal static extern uint
and outputs necessary foSN. This can be easily PL_new_term_ref();
done by providing two identity boxdd and By as Il make a PITerm from a C# string
interface for inputs and outputs, between whi€\ public PITerm(string text) {
is constructed. Since transformations use propertie | m_term_ref= libpl .PL_new_term_ref();
. libpl .PL_put_atom_chars
to connect to ports, .NET helps to redirect poceas (m_term_ref text);
to the input ports oBy to input ports oB, as well as } 1/ SwiCs.cs by Uwe Lesta
output ports oBy to those oBg by simply overrid-
ing the definition of the properties (see Fig. e Figure 5. Snippet from SwiCs.cs

graphical representation is extended by a button,

which when pressed provides a second view, namely NET offers the attribut®Ilimport to define access
the workspace of the hierarchy box. Figure 1 shows, foreign libraries. We created a DLL based on

the inner view of a hierarchical box. We additidypal gpicscs (cf. [Les03]) where for each exported func-

tion in the library its name is declared after &tigib-

ute (Fig. 5). The DLL provides .NET programs with
methods and types to model Prolog terms and to
query a SWI-Prolog engine; and is used by the box.

public override void execute(){
String [] param = { @"H:\\ Projects" +
... "\Application.exe"
PIEngine e= new PIEngine (1, param);

/I Get query as Text, call it, e.g.
/I (tell('log"),write("HiWorld"),told);
string goal=(string)
(Inputs[0].data.copy().value);
PlQuery q= new PIQuery ("call" ,
new PITermv (new PICompound (goal)));
bool b = g.next_solution(); g.free();

}

Figure 6. Providing direct Prolog access

Figure 6 shows how to interpret a string input as
Prolog term directly and to call it. Combined with
text boxes it can serve as interactive Prolog inter
preter. Also, a Prolog box can provide programs tha
are more complex or initiate loading of a rule base

A problem is, in our opinion, that the attribudd I m-

port expects a static string, which has to be known at
compile-time. This makes replacing different vensio

of the Prolog DLL impossible without recompilation
of the interface DLLSwiCs.cs, thus, reducing plat-
form independence (the name of the dynamic librar-
ies differ between e.g. Windows and UNIX systems).

XSLT Boxes

.NET comes with good XML and XSLT support.
This offers a good basis to provide boxes to trans-
form XML documents. Fig. 7 gives an example for
the contents oéxecute.

String xml_input = (String)
((Inputs[0].data.copy()).value);
StringReader xml_reader =
new StringReader (xml_input);

XPathDocument xpath_document =
new XPathDocument (xml_reader);
XslCompiledTransform transformation =

new XslCompiledTransform 0;
StringReader xsl_script_reader =
new StringReader (Xslt_Script());

XmlITextReader xsl_script =
new XmlTextReader (xsl_script_reader);
transformation.Load(xsl_script);
StringWriter xml_output_writer = ...
XPathNavigator document_navigator =
xpath_document.CreateNavigator();

transformation. Transform(
document_navigator,
xml_output_writer);
Outputs[0].data.value =
xml_output_writer. ToString();

null

Figure 7. Apply XSLT script to input

The example takes some XML data from an input
port and delivers transformed data to the output po

Note, that the XSLT script in this case is providgd

a return value oKdlt_Scipt, a method to be overrid-
den by subclasses to specify a concrete transforma-
tion. Other variants of XSLT boxes might expect the
script itself, or a filename for the script as i a
port, or configured in another box view. A subclass
of this box is used in Fig. 1 to transform the digsc

tion of a labyrinth into Prolog notation.

Command Line Tools

Many transformations are available as command line
tools. Examples are compilers, but also yacc, lex,
awk. Additionally, there are tools like grammar de-
ployment kit [Kor02], which could be made available
through the integration in Trane. Figure 8 shows ho
to use the Java-compiler for Lisa-generated cofle (c
Fig. 1). Here, the tool represented is hard codéd i
the box, but could also be provided through extra
views with input fields or from input strings asrpaf

the transformation.

System.Diagnostics. Process p =

new Process ();
p.Startinfo.UseShellExecute = false ;
p.StartInfo.CreateNoWindow = true ;
p.Startinfo.RedirectStandardOutput= true ;
p.Startinfo.RedirectStandardinput= true ;

p.Startinfo.FileName = "cmd" ;
p.Start();
StreamWriter sw = p.Standardinput;
StreamReader sr = p.StandardOutput;
sw.AutoFlush = true ;
/Isw.WriteLine("dir /AD");or any cmd/tool
sw.WriteLine(@ “javac —classpath lisa.jar"
+path+ "* java"
sw.Close(); p.WaitForExit();
Outputs[0].Data.Value=TextBuffer.Text;

);

Figure 8. Wrapping command line tools

The problem with this kind of boxes is that platfor
independence is restricted to the availability foé t
integrated tools on the platform.

Dynamic Compilation and I ntegration

The command line tool approach can be used to
compile a transformation for Trane and make it us-
able at run-time. Depending on given options, the
resulting executable can be started as command
(maybe again wrapped in a box, as in Fig. 8), er th
DLL can be examined/loaded and classes instantiated
using reflection, if it is written in a .NET langye If

the compiler generates .NET code itself, the regylt
class can be directly instantiated instead of geimey

a DLL first.

F# and Other Languages

Though the above examples can use transformations
written in other languages, the boxes themselves ha
been specified using C#. It is better to use tme la
guage of choice itself to define a box. This reggiiit

is implemented on .NET. The resulting DLL can be

used in Trane, as if C# had been used due to crossstructured data. For compositions of complex trans-
language inheritance. Only thdhe real benefit of formations they provide the XTC model. A repository
.NET occurs in our opinion, as the still existinglp- registers locations of tools. An abstraction laiyer

lems of data conversion in approaches like commandplemented in Stratego supports transparent access,
line tools or foreign libraries could be avoided. allowing to call and use a tool like a basic transf

With F# [Fsh06] we were able to inherit from C# Mation step in Stratego programs. Additionally,
classes of Trane (the box), to create a new boi-(wr Stratego provides a foreign language interfaceatb c

ten in F#) and to instantiate from it in Trane ag## C fun_ctions. Trane is_designed main_ly to reusetand
is functional and thus, similar to Prolog, suitakde combine transformations for experiments. The XT

describe transformations. tools could be wrapped in boxes, and used for ex-

)) periments. We cannot generate stand-alone toats fro
Several languages on .NET are differently suitable. composite transformations.

We had not the expected success with P#, but this .
might be our fault. With Eiffel# it is necessarytaxke | he Meta-Environment [Bra01] also allows the com-
care of the naming scheme during compilation. J# isPination of different tools, but separates stridily-

not portable on Linux as it requires DLLs available tWeen coordination and computation. Basis is the
on Windows only. We would be interested in a TOOLBUS coordination architecture, a programma-

smooth integration of Haskell. There are some at- P& Software bus based on process algebra. Coerdina
tempts, but there is still a way to go. tion is expressed by a formal description of thepzo
eration protocol between components, while compu-

5. RELATED WORK tation can be expressed in any language. Meta-

Several tools provide a plugin structure and irtera Environment is ‘%S’?d to produce rea! I!fe produats,
tive placement of components. They are either |arge (€ Other hand, it is complex, and difficult to ptla

or provide a proprietary language to extend theth wi "€ 100l to the tool bus.

new objects. Trane has mainly been inspired by Can-In Trane, coordination and computation are tangled.
tata, the graphical user interface for the Khongs s Evaluation of a transformation net is just travegsio

tem to analyse and manipulate graphics [You95]. each node and computing as given by the inherent
Cantata allows to interactively construct suchefilt dependencies between transformation nodes. Trans-
pipelines. formations can be added easily by providing a wrap-

[Spi02] considers UNIX tools as components. A GUI per, where only two methods have to be overridden.

builder is used to create the visual programming-en In Eclipse, GEF allows to create similar models and
ronment. The placing relation of the components de-associate semantics to them. However, for new parts
scribes dataflow, which is text. UNIX tools have to of the model (e.g. similarly to a new box in Traite)
encapsulate as ActiveX components with much man-requires a new compilation, while Trane nets are
ual work. Connectors are simply a visual encapsula-open. We do not need to compile the net. It isatliye
tion of the operating system pipe abstraction. Con- executable. New transformations can be added
nector and glue-type components still need to ie wr dynamically. Like other plugin systems, in Eclipse
ten by hand. Trane is not restricted to one kind of plugin needs configuration files to add a new compo
data, though it is intended to be applied mainly to nent, while we use reflection to extract necessary
artifacts of language processors, i.e. data arm-gra information. The language plugins for Eclipse are
mars, specifications, rewrite rules, parts of parse Java classes in a JAR archive. Transformations in
etc. We provide among others a system call box, Trane do not need to be written in one specific-con
which can take the command call directly as striag. figuration language, as long it is supported by TNE

new wrapper box for a special command can be eas{sangg] also try to spread transformation system
ily written on top of the system box, which canéak technology over a set of reusable heterogeneous

even the options at input ports. Our converters cancomponents. Using Java, CORBA and HTTP, they
transport structured data of any kind, they juse® paye instantiated a communication layer. To config-
inherit from a general converter class and implémen e components, a description in a hybrid architect
additional treatment. description language is necessary.

Stratego/XT [Vis04] uses mainly ATerms [Bra00] to cajling functionality from foreign DLLs is not new.
provide input and output for terms in Stratego, ®d owever, usually the calls are determined at coenpil

exchange terms between transformation tools. NeWiime. \We offer to combine functionality, which migh
created transformations are wrapped into standealon ¢ome from different DLLs without recompilation.

components, which can be called from the command- = . L oo
line or from other tools. Those tools can be used YSING Trane is similar to programming in dataflow

similarly to Unix pipes, but can additionally wook languages. We refer to [Whi94] for further reading.

6. CONCLUDING REMARKS [Bra0Q] v. d. Brand , M.G.J., and de Jong, H. Ad Klint,
P., and Olivier, P. A., Efficient annotated terrBsft-

SUMMARY ware- Practice & Experience, 30, pp. 259-291, 2000
We have presented a lightweight infrastructurecihi [Fsh06] F# Home Page (Feb.2006)
allows to provide heterogeneous transformationk wit http://research.microsoft.com/fsharp

a uniform facade to combine and interact with them. [Kju05] Klusener, S., and Lammel, R., and Verhdgf;
The model has been given and the essential classes Architectural Modifications to Deployed Software.
have been explained. We presented five categofies 0 Science of Computer Programming 54, pp.143-211,
transformations such as integration of web seryices 2005

or command line tools. Integration of new transfor- [Kor02] Kort, J. and Lammel, R., and Verhoef, C.eTh
mations is simple. Due to reflection, no extra con- Grammar Deployment Kit, ENTCS 65, 3, Elsevier Sci-
figuration files are necessary. Trane is lightweigh ence Publ., 2002

a large part of the work for integration is encapsu [Lam04] Lammel, R.: Evolution of Rule-Based Progsam
lated in .NET. The biggest advantages have lan- Journal of Logic and Algebraic Programming, Special
guages that are implemented on .NET directly, but Issue on Structural Operational Semantics, 2004

we still wait for more pure .NET languages, without [Les03] Lesta, U.. C# Interface to SWI-Prolog.

name scheme or inheritance problems. http://gollem.science.uva.nl/twiki/pl/bin/view/Foga/
CSharplnterfaceversion Aug. 2003

FUTURE WORK [Loh03] Lohmann, W., and Riedewald, G. Towards auto

We are aware that Trane is rather a proof of cancep matical migration of transformation rules afterrgraar

than a tool yet. The type system is currently \axaly extension. In Proc. 7th European Conference on Soft

hoc. There are still conceptual. It is still mattefr ware Maintenance and Reengineering (CSMR'03),

research, what types mean in our context. For exam- Bénevento, ltaly, March, 2003

ple, for some transformations grammars of different [Loh04] Lohmann, W., and Riedewald, R. and Stoy, M.
languages are of the same type, if they are iisdnee Semantics-preserving migration of semantic rules du
format such as BNF. On the other hand, grammars ing left recursion r_emoval in attribute grammars,
can be considered as different types despite their ENTCS 110 C, Elsevier, 2004

format, if the algorithm using it is language sfiieci ~ [Mer99] Mernik, M., and Zumer, V., and Lenic, M.vé-

We want to design an extensible type hierarchy. causevic, E. Implementation of multiple attribute
. . .) grammar inheritance in the tool LISA. ACM SIGPLAN
The Visitor pattern might help with flexible compuit not., June 1999, Vol. 34, No. 6, pp. 68-75.

tions; also, to generate _cqmmand line tools f_ranma [San99] Sant’Anna, M., do Prado Leite, J.C.S., Achk

as well as te_rms describing nets Tor analysis. s a tectural Framework for Software Transformation,-Pro
other way to integrate transformations sockets ishou ceedings of the International Workshop on Software
be examined. The usability has to be increasedyvast Transformations: STS'99', ICSE'99, 1999
It might be interesting to initiate the evaluatioh http://www.dur.ac.uk/CSM/STS/

transformations in separate threads. A classifoati [ge04] Proceedings of the Workshop on SoftwarelEvo
of boxes would be nice. We need more transforma-- tjon through Transformations: Model-based vs. Imple
tions with grammar typical support to perform the mentation-level Solutions (SETra 2004), ENTCS 127
experiments. We are new to F# and need more ex- (3), April 2005

periments with it and with other .NET languages. [Spi02] Spinellis, D. Unix tools as visual programm
components in a gui-builder environment. Software -

7. ACKNOWLEDGMENTS Practice & Experience. 32, pp.57-71, 2002

We thank the reviewers for their comments, which [visp4] visser, E., Program Transformation with

provided answers, literature, and suggestions der f Stratego/XT: Rules, Strategies, Tools, and Systems

ture directions of the work, though we were noteabl StrategoXT-0.9., in C. Lengauer et al., editors,- Do

to implement most of them in this paper. We thank main-Specific Program Generation, LNCS 3016, pp.
Damijan Rebernak for help with the Lisa web service =~ 216--238. Spinger-Verlag, June 2004.
[Whi94] Whiting, P. G., and Pascoe, R. S. V. A Higtof

8. REFERENCES Data-Flow Languages, IEEE Annals of the History of
[Bra01] v. d. Brand , M.G.J., and v. Deursen, Ad &leer- Computing, Vol.16(4), pp.38-59, 1994
ing,J, and de Jong, H.A., and de Jonge, M., and Kui [Wie06] Wielemaker, J. SWI-Prolog Home Page
pers,T., and Klint,P., and Moonen,L., and Olivier, http://www.Swi-Prolog.org

P.A., and Scheerder,.J., and Vinju,J.J., and Vidser [You95] Young, M., and Argiro, D., and Kubica, SaiG

?;nd Visseh]é Thde I:A‘SF+SDF I;\/Ietal-enviroiméent_: A tata: Visual programming environment for the Khoros
omponent-Based Language Development Environ- system. Computer Graphics 29, 1995

ment, Procs. of the 10th International Conference o
Compiler Construction, p.365-370, April 02-06, 2001

