
Self-contained CLI Assemblies

Bernhard Rabe
Haso-Plattner-Institute,
University of Potsdam

P.O. Box 90 04 60
14440 Potsdam, Germany

bernhard.rabe@hpi.uni-potsdam.de

ABSTRACT
High-level programming languages and bytecode-based virtual execution environments have become popular in
software development. Bytecode-based runtimes extend embedded system by techniques to improve safety, help
portability and interoperability. The ECMA/ISO Common Language Infrastructure (CLI) specifies a bytecode-
based execution environment (Common Language Runtime) and a comprehensive class library. CLI applications
suffer from long startup time, high memory consumption and the amount of referenced assemblies. Startup time
is determined by resolving references and high memory consumption through big class library assemblies. Often
CLI applications use a small subset of the CLI class library, but the whole memory footprint is basically deter-
mined by the class library. To overcome memory requirements of the class library, a minimal application format
that includes all essential class library functionality is reasonable. Self-contained CLI assemblies as an approach
for size-optimized deployment format are presented in this paper.

Keywords
CLI, assembly format, space-optimization.

1. INTRODUCTION
High-level programming languages and bytecode-
based execution environment have become popular
in development of desktop systems. The Common
Language Infrastructure (CLI) [Int03a] as imple-
mented in the .NET Framework [Mic05a] has been a
popular platform for creating component-based ap-
plications, because of:

• Platform independence of bytecode-based ex-
ecutables

• Fine granular security restrictions

• Revisable code

• Component model

It would be beneficial if CLI applications could be
executed on memory restricted systems that are not

covered by existing CLI implementation. .NET de-
velopers could then reuse their code for these sys-
tems instead of reimplementing their applications
from the ground up using C or C++.

Embedded systems differ from desktop systems in
various aspects:

• Hardware resources are often limited: memory
size, processing power, power supply.

• Software capabilities: Faulty programs can
crash the system, because memory protection is
not available.

• Capabilities for developer interaction, for de-
bugging, or communication bandwidth are often
limited.

CLI technology is integrated seamlessly in Rapid
Application Development tools as Microsoft's Visual
Studio suite for desktop development just as for em-
bedded development. Compiler and tools are avail-
able for multiple programming languages e.g. C#,
C++ .NET, or Delphi. The CLI could offer develop-
ers of embedded systems the same advantages as for
desktop systems.

Due to the predictable nature of the sandbox-mode
execution of CLI instructions, programming errors
never result in system crashes, but cause exceptions

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

to be thrown. This allows for a simpler postmortem
analysis of a fault. Due to the support for rapid proto-
typing, simulators for the target can be more easily
created. Ideally, much of the code would only use
standard library functions of the CLI, so that simula-
tors are only necessary for the target-specific hard-
ware.

The CLI as implemented in the Microsoft .NET
Framework, the Microsoft Compact Framework
[Mic05b], or the Mono Project [Mon06a] does not
meet the requirements of limited resources of sys-
tems. There are few implementations of the CLI for
small mobile devices e.g. for Symbian OS based
[Gef05a], or for Linux based [Dot06a].

The memory footprint of an executable assembly is
calculated by the assembly itself, the custom libraries
used, the Base Class Library (BCL) and the Common
Language Runtime (CLR). These are four items
where size optimization can occur. In this paper the
first three items were focused on. CLR optimization
would harm the "compile once run everywhere" ap-
proach of CLI.

In this paper we present an approach to reduce the
memory footprint of an executable assembly in that
way the unused library functionality is not required
to be present at runtime.

This can be achieved by compacting an assembly
with its used library functionality into a self-
contained assembly. The self-contained assembly
will contain only required library functionality and
will become smaller than the combined libraries.
Furthermore the number of referenced assemblies
which are required to be loaded is reduced to the
self-contained assembly itself. The self-contained
assembly is smaller than the sum of previously refer-
enced assemblies.

This work is based on the PERWAPI [Gou05a] li-
brary, which is extended to the needs of creating self-
contained assemblies.

The rest of this paper is structured as follows: Sec-
tion 2 briefly reviews the Common Language Infra-
structure. In Section 3 the mechanism of executing
CIL-code is discussed in detail. Next, self-contained
assemblies as approach for optimized memory foot-
prints and predictable behavior in are presented in
section 4. Section 5 gives an overview of related
work followed by conclusions and future plans.

2. COMMON LANGUAGE INFRA-
STRUCTURE
The CLI standard specifies the executable format, a
virtual runtime environment (Virtual Execution Sys-
tem (VES)) and a set of libraries as implemented in

the Microsoft .NET Framework, Shared Source
Common Language Infrastructure (SSCLI) [Mic02a],
or in the Mono project.

CLI executables, called assemblies are encoded in
the Common Intermediate Language (CIL) instruc-
tion set. An assembly is the deployment unit of the
CLI and may consist of multiple files (modules). An
assembly is loose coupled with the BCL and other
assemblies in a way similar to native applications and
shared libraries.

CIL is a stream of bytecodes similar to processor
instructions. Most opcodes are one byte long, a few 2
bytes long and may have an optional parameter (up
to 8 bytes long). Every method consists of a header, a
body and a possible footer. To evaluate opcodes a
stack is used. Bytecodes are located in the method
body.

Metadata
Assemblies are equipped with metadata about refer-
ences, type names, method names... Metadata are
organized in a number of named streams. These
streams are divided into 2 types: metadata heaps and
metadata tables. For executing assemblies the follow-
ing metadata tables are basically involved:
• Assembly: Assembly defined in the PE file.

• AssemblyRef: For execution required assem-
blies.

• TypeRef: Used types defined in external assem-
blies. Every type in this table refers its resolu-
tion scope that is located in the AssemblyRef-
table for the relevant cases.

• TypeDef: Contains all types that are defined
within an assembly.

• Method: All methods that are declared by types
in TypeDef-table. Every row in the Method-
table is owned by one and only one row in the
TypeDef-table.

• MemberRef: All methods or fields of external
defined types that are accessed within the as-
sembly. There is merely a 'forward-pointer'
from each row in the TypeRef-table.

References in metadata tables are tokens into table
rows and heaps or relative virtual addresses within
the assembly. Heaps are constant pools used for
metadata and CIL code.
Costa and Rohou [Cos05a] show that metadata size
varies from 40 percent up to 80 percent of the whole
assembly size for representative set of programs. The
metadata split 70 percent to 30 percent into constant
pool (heaps) and tables. Section 3 will show that ma-
jor parts of the #String are not required for executing

CIL code. For example textual descriptions of vari-
ables and properties are needed for reflection pur-
poses only.

Version compatibility
To overcome the problem resulting from different
versions of dynamic libraries on Windows systems
[And00a] the CLI introduced a version management
that builds up on version numbers and public keys.
An assembly version number consists of four parts:
major, minor, build and revision number. To make an
assembly reference distinct the assembly must have a
strong name. Strong names guarantee name unique-
ness by relying on unique key pair. All shared as-
semblies that reside in the GAC must have a strong
name. The BCL of actual CLI implementation have
all the same standard public key that does not require
a private key to sign. This is done to provide vendor
independent execution of assemblies. That means an
assembly which has references to the BCL (mscor-
lib.dll) may behave differently with different BCL
implementations.

3. EXECUTION OF .NET ASSEMB-
LIES

Figure 1: Resolving of an external method

When the CLR loads an assembly and starts execut-
ing a method all assemblies referenced within that
method have to get loaded too. This means that all
assemblies referenced in this assembly will be
loaded, even though they might not be needed most
of the time the application is executed.
A way to reduce the number of loaded modules is to
merge multiple modules into one [Mic06a]. In terms
of the CPU, assembly loads have fusion binding and
CLR assembly-loading overhead in addition to the
LoadLibrary call, so fewer modules mean less CPU
time. In terms of memory usage, having fewer as-

semblies also means that the CLR will have less state
to maintain.
To create the executable image the CLR has to locate
referenced CIL code within an assembly. The com-
plexity of this task is different for assembly internal
and assembly external references. Figure 1 shows
how CIL code of an external method will be located:
1. A CIL operation (call) has a token operand that

points to a MemberRef-table row.
2. The MemberRef-table row contains the name of

the method and a token into the TypeRef-table.
3. In the TypeRef-table row the namespace, the

type name and a token into the AssemblyRef-
table are included.

4. The AssemblyRef-table row provides the target
assembly name and optional a version number
as well as a public key token.

5. Within the referenced assembly the CLR looks
into the TypeDef-table for the requested type.
This is done by a linear search with string and
signature comparison until the matching row is
found.

6. The linear search for the matching method row
in the Method-table is optimized in the way that
the start of the relevant rows is known.

7. The matching Method-table row provides the
address to CIL code within the PE-file.

This task must be repeated for every external
method. In comparison with an external method call
requires an internal method call a single lookup in
the Method-table to get the address of the CIL code
within the assembly. Recapitulating it has been re-
flected that loose coupling of assemblies and conse-
quential external references cause the following
drawbacks:
• Memory consumption: each external assembly

must be loaded and metadata tables have to
build up.

• Processing power: multiple indirections, linear
search, string and signature compare during ref-
erence resolving cause additional CPU time in
contrast with internal references.

• Memory footprint: combination of functionality
into a single assembly (mscorlib.dll) causes a
high CLR memory footprint if only a single
type is referenced.

• Revisable code: CIL within an assembly can be
inspected for validity. External assemblies es-
pecially the BCL may be implemented differ-
ently and makes it impossible to predict the be-
havior of CIL code.

These drawbacks can be minimized if all external
referenced functionality is assembled to a single as-
sembly. This harms the loose coupling, but it allows
lower memory footprints and to analyze the assembly
in terms of CIL code.

4. SELF-CONTAINED CLI ASSEMB-
LIES
A key feature of the CLI is the revisable bytecode-
based execution of assemblies. The verification is
done at runtime. But there are also needs for static
revisable code before runtime e.g. prevent exceptions
while runtime.

The loose coupling and dynamic linking of applica-
tions and libraries assemblies does not permit an
static evaluation of CIL code, because CLRs may
provide different implementations of relevant assem-
blies.

To overcome version conflicts of assemblies, CLI
introduced strong names and side-by-side execution
of different versions of the same assembly.

This works fine for most strong named assemblies,
but fails for the BCL.

A static revisable assembly might not have depend-
encies to CLR-provided assemblies. With the self-
contained assembly approach a static revisable for-
mat based on CIL code is proposed. This approach
lifts up problems through different implementations
of referenced assemblies.

Self-contained assembly features are:

• Minimal memory footprint

• Predictable behavior based on CIL-code

• Reduced startup time

The memory footprint of the runtime environment
for an assembly is calculated by the CLR, the
relevant libraries and the assembly itself. In general
every assembly uses BCL features (e.g.
System.Object). The BCL is represented as
mscorlib.dll [Ecm02a]. But mscorlib.dll implementa-
tions of .NET Framework, Mono, Portable.NET
[Dot06a] and Rotor provide different additional
features, which are not used by most assemblies.
Independently from the amount of mscorlib.dll
features by an assembly the memory footprint for the
BCL is fixed. Self-contained assemblies do not need
additional library assemblies and form together with
the CLR the minimal footprint for an execution
environment. This feature targets mainly memory
restricted systems.

Prediction of execution behavior of a self-contained
assembly is possible, because all executable CIL

codes are within the assembly. A static behavior
evaluation can be done before runtime and allows for
example prediction of memory consumption.

Dynamic linking of assemblies at load time causes
delays until the first CIL code is executed. The time
is needed for loading assemblies and resolving refer-
ences. Self-contained assemblies does not require
additional assemblies, therefore the startup time is
shortened.
public class Hello{

 public static void Main(string[] args){

 Object obj=new Object();

 Console.WriteLine("Hello World!");

 }

}

Figure 2: Simple C# Hello world

Figure 2 shows a C# program cutout that has a Main-
method where an instance of Object is created and
"Hello World" is printed out. The second program in
figure 3 shows the IL-code1 of the Main-method
generated by the Ildasm tool. The local variable obj
disappeared, because it is not used furthermore. A
instance of System.Object is created with a call of
.ctor() from the mscorlib assembly. Then the
string "Hello World" is printed out by an call of
System.Console::WriteLine from the mscorlib
too.

...

.method public hidebysig static void Main(string[] args) cil
managed
{
 .entrypoint
 .maxstack 1
 newobj instance void [mscorlib]System.Object::.ctor()
 pop
 ldstr "Hello World!"
 call void [mscorlib]System.Console::WriteLine(string)
 ret
}
...

 Figure 3: IL code of the compiled Main-method

The program in figure 4 is generated from the second
program where the System.Object type was in-
cluded. The System.Object::.ctor() call does
not leave the assembly scope. The rest of the pro-
gram behaves the same.

The two IL-programs differ also in the .maxstack
value, because the Microsoft C# compiler generates a
Fat-method header and the PERWAPI library a Tiny-

1 The C# source code was compiled with .NET Framework

v1.1 compiler and optimization (/optimize+) enabled.

method header. None of the requirements for a Fat-
header are satisfied, so the 1 byte Tiny header is a
better alternative for size optimization.

....
method public hidebysig static void Main(string[] args) cil man-
aged
{
 .entrypoint
 .maxstack 8
 newobj instance void System.Object::.ctor()
 pop
 ldstr "Hello World!"
 call void [mscorlib]System.Console::WriteLine(string)
 ret
}
...

Figure 4: IL-code of Main-method with Sys-
tem.Object included
This demonstrates the adaptable level of containment
for specific aims. The System.Object type was
included and the reference to System.Console
::WriteLine() was kept.

Creating self-contained assemblies
Self-contained assemblies do not have any external
references. This means a CLR should able to execute
a self-contained assembly without loading the BCL
or other managed assemblies.
In contrast to statically linked native binaries, the
CLI abstracts from the operating system and the un-
derlying hardware. This fact makes it feasible to
build a CLR independent CLI assembly.
To get a self-contained assembly, the relevant as-
sembly must be disengaged from type references to
external assemblies. This work can be done by proc-
essing IL textual representation or by using an as-
sembly manipulation library.
In this project the library approach is used, because
ILDASM approach requires a lot of text substitution
and depends on available CLI framework tools.
The Reflection API of the .NET Framework does not
supports access to CIL code. Microsoft's new com-
piler framework Phoenix allows assembly modifica-
tions within a compiler run. After evaluation of ca-
pabilities of different assembly manipulation frame-
works the work presented in this paper finally bases
on PERWAPI [Gou05a] developed at the Queen-
sland University of Technology. PERWAPI provides
an abstract representation of the PE-file embodied as
object oriented structure. The library is implemented
in C# and is released as available for free. PERWAPI
was extended to support the creation of self-
contained assemblies.

Figure 5 shows the creation of self-contained assem-
blies with the Linker tool and an optional configura-
tion. The assembly on the left side references the
BCL (mscorlib) and may have references to multiple
custom libraries.

Figure 5: Creation of self-contained assemblies
The PERWAPI-based linker tool resolves references
controlled by an optional configuration file. The con-
figuration allows the instrumentation of the assem-
bling process inside the linker tool. The source for a
type to import could be set or types that should kept
as references.
Every type defined in an assembly must be reviewed
for the following list of elements:

Custom Attributes
A Custom Attribute points to a type constructor
method and contains optional constructor values.
Attributes can occur at assembly level, type level,
and method level.

Type
A Type has a parent type except System.Object
and may implement a number of interfaces. Methods
describe operations that may be performed on that
type. Fields are named subtypes of a type.

Interface
Interfaces are special types that do not have a super
type and contain no CIL code.

Method
A Method is a named operation and is characterized
by the types of its parameters. Besides the parameter
types also the return type and possible Custom At-
tributes have to set to the resolved type. Local vari-
ables are unnamed subtypes within a method resolu-
tion scope. CIL code may have a type, method or
field parameter. Exception clauses are defined by a
code range and the type of the exception.

Event
Events are handled like fields of a type.

CIL code
The following types of IL codes must be checked for
references to types, methods or fields references:
• Type Op.: castclass, newarr, initobj, ...

• Method Op.: call, calli, callvirt, newobj, ...

• Field Op.: ldfld, ldflda, stfld, stflda, ...

The challenge of assembling self-contained assem-
blies is to verify types for references and generate a
consistent PE-file. The current version of self-
contained assemblies addresses CLI v1.1 features
only. There are further size optimizations practicable.
To reduce the size of the constant pool, some kind of
type descriptions can be shorten or eliminated. Cus-
tom type names not required by the CLR, except
special names e.g. type constructor.

Proof of concept results
The current implementation of self-contained assem-
blies targets desktop CLR like .NET, Rotor, Mono or
Portable.NET.
public static int Main(string[] args){
 Object obj=new Object();
 return 1;
}

The above C# program has a single external refer-
ence (System.Object::.ctor) in CIL representa-
tion. But for the self-contained version a second
method from System.Object must be imported,
because the CLR calls the destructor (Finalize())
of the CLI-base type without further reference.
The compiled1 assembly with mscorlib reference had
a size of 3072 bytes. The size of the CLR is not con-
sidered, because it assumed to be constant. So the
memory footprint with .NET v1.1 mscorlib.dll is
2141184 bytes.
The self-contained version has an oval size of 2048
bytes and contains no references. These results are
prestigious in no means, but the potential of self-
contained assembly optimization.
To process more complex programs a clean BCL
implementation is reasonable, because existing
mscorlib.dll implementations are using none BCL
features2 for BCL functionality.

CLR implementation issues
The CLI defines a lot of possibilities for optimized
CLR implementations. This section discusses these
optimizations in terms of portability of self-contained
assemblies among different CLR.
The CLR is responsible for resolving references to
assemblies and loading types. References to external
types are available in textual representation. CLI
metadata are organized as a number of cross refer-

1 csc /optimize+ simple.cs
2Class attribute System.Runtime.InteropServices.

ClassInterfaceAttribute::.ctor in .NET v1.1
System.Object implementation

enced tables. A referenced in type in an external as-
sembly can have references to the same assembly or
the external assemblies. The CLI suggests resolving
all references before start the execution. Therefore all
related assemblies must be loaded to create a consis-
tent memory image.
For optimization issues the CLI introduced build in
primitive types e.g. bool, char, object,
string, ..., which does not induce type refer-
ences as long no type specific operation were per-
formed.
In contrast to Java the CLI provides an internal map-
ping of primitive type to their wrapper types. The
CLR knows the mapping of primitive types to their
wrapper types e.g. object≡System.Object. The
mapping of primitive types to BCL types, inside the
CLR, is realized with string compare, because a type
reference is given in textual representation. For types
implemented inside a self-contained assembly this
mapping is possible further on.
The CLI supports multiple ways to implement type
methods. Possible implementation flags [Lid02a] for
types inside the BCL:
• cil: The method is implemented in CIL code.

• internalcall: This flag indicates that the method
is internal to the runtime and must be called in a
special way.

• runtime: The method implementation is pro-
vided by the runtime itself.

• pinvokeimpl: The method has unmanaged im-
plementation and is called through the platform
invocation mechanism P/Invoke.

A cil implemented method can be executed by any
CLR. An internalcall method is not portable among
CLR implementations. This flag can occur in the
BCL and additional features provided by the CLR. A
runtime supplied implementation is also CLR de-
pendent. The pinvokeimpl flag indicates the CLR
provided mechanism (P/Invoke) to call native code.
Figure 7 shows three different implementations of
the System.Object::Equals(object) method.
The Microsoft .NET Framework uses the internalcall
manner to perform the comparison. This implies the
existence of a dispatch table for internalcalls.
Microsoft .NET v1.1.4322
.method public hidebysig newslot virtual instance bool
Equals(object obj) cil managed internalcall {}

Mono v1.1.13.2
.method public hidebysig newslot virtual instance bool
Equals(object obj) cil managed
{
 .maxstack 8
 IL_0000: ldarg.0
 IL_0001: ldarg.1
 IL_0002: ceq
 IL_0004: ret
}

Compact Framework v1.0.500
.method public hidebysig newslot virtual instance bool
Equals(object obj) cil managed
{
 .maxstack 8
 IL_0000: ldarg.0
 IL_0001: ldarg.1
 IL_0002: call bool System.PInvoke.EE::Object_Equals(object,
object)
 IL_0007: ret
}
.method public hidebysig static pinvokeimpl("mscoree" as "#17"
winapi) bool Object_Equals(object obj1, object obj2) cil managed
preservesig {}

Figure 7: Implementation of System.Object::
Equals(object) in .NET, Mono and Compact
Framework
Mono provides a implementation based on CIL code,
which makes the implementation portable.

In the Compact Framework BCL System.Object
::Equals(object) is implemented with a
additional call through the P/Invoke mechanism.

The current version of self-contained assembly’s
implementation is portable among different CLR as
long as no implementation specifics are used. One
can benefit from self-contained features as long as is
executed with the CLR that provided the BCL im-
plementation.

5. RELATED WORK
There are several approaches to optimize Java class
files to meet the requirements of small embedded
devices. The optimizations are often done on a per
class basis.
IBM’s WebSphere® Studio Device Developer
(WSDD) [IBM06a] includes the SmartLinker tool
(formerly JAX [alp06a]) to optimize J2ME [Sun06a]
applications.
SmartLinker removes unused code, merges classes,
and introduces short identifiers to reduce the overall
code size. Resulting applications are composed in the
Java Executable format (JXE), which is not interop-
erable with jad/jar format as specified in J2ME.

Rayside et al. [Ray99a] propose a modified Java
class file format with significant space reduction with
little or no runtime penalty.
Clausen et al. [Cla00a] use macros for multiple oc-
currences of code fragments and an extended JVM
with macro support.
The JamaicaVM[aic06a] developed by aicas GmbH
includes a builder tool for integrating Java bytecode
and a corresponding Virtual Machine implementation
into a single executable application binary. Bytecode
is embedded as C-Array definition and linked with
the JamaicaVM library.
TinyVM[Sol06a] is a firmware replacement for the
Lego™ Mindstorm™ RCX hardware. The firmware
executes (interprets) Java programs that are com-
pacted into custom images.
The Lego.NET [Osm05a] project has developed a
GCC front-end which translates CIL code into native
machine code of the Lego™ Mindstorm™ RCX
processor.
Microsoft's .NET Compact Framework is a subset of
the .NET platform for mobile and embedded devices.
The Compact Framework class libraries occupy at
least 2 Megabyte of memory. The assembly format
and execution environment differ only in trifles from
the desktop version.
Microsoft’s ILMerge[Mic06a] is a utility that can be
used to merge multiple .NET assemblies into a single
assembly. ILMerge does not support a selection of
types which should be merged together.
AppForge, Inc. offers with Crossfire[App06a] a
product for multi-platform applications for mobile
and wireless devices based on .NET. The CIL byte-
code is transferred into a custom executable format
that is executed by platform specific Crossfire-Client
software.

6. CONCLUSION AND FUTURE
WORK
This paper proposes an approach of self-contained
assemblies to reduce memory consumption and
shorter startuptime while executing the assembly.
CLI assemblies are loose coupled with other assem-
blies (shared class libraries, custom libraries).
Creating of self-contained assemblies is done at type
level with a customized version of the PERWAPI
assembly manipulation library. The compaction of
assemblies bases on referenced types of an assembly
and requires no source code, nor compiler support.
Self-contained assemblies are size optimized in terms
of assembly footprint and memory consumption
while execution.

Furthermore the effect of an executed self-contained
assembly is identical among the acceptance the CLR
is CLI-complaint and no CIL-code is executed out-
side of the assembly.
The customized PERWAPI library allows adaptive
compaction at type level that means certain types
remain as references.
It has to be analyzed to what extent the abstraction of
CLR internals from the BCL implementation could
be realized CLI-compliant.
The proof-of-concept results must be analyzed in
terms of memory consumption, startup time and exe-
cution performance with CLR implementations.
Self-contained assemblies could offer useful features
for embedded systems development, for predictable
execution behavior and more generally for an adap-
tive deployment format.

7. ACKNOWLEDGMENTS
We would like to thank the reviewers for their useful
comments and suggestions.

8. REFERENCES
[Aic06a] aicas GmbH. JamiacaVM. Available at ai-

cas.com, 2006
[And00a] Anderson R. The End of DLL Hell. Micro-

soft Cooperation. Available at
msdn.microsoft.com/library/en-
us/dnsetup/html/dlldanger1.asp, 2000

[App06a] AppForge, Inc. Crossfire homepage.
Available at www.appforge.com/products/
crossfire, 2006.

[Cla00a] Clausen L.R., Schultz U.P., Consel C., and
Muller G. Java bytecode compression for low-
end embedded systems. ACM Transactions on
Programming Languages and Systems,
22(3):pp.471–489, 2000.

[Cos05a] Costa R.,and Rohou E. Comparing the size
of .net applications with native code. in
CODES+ISSS ’05: Proceedings of the 3rd
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthe-
sis, pp. 99–104, ACM Press, 2005.

[Dot06a] The DotGNU project. Portable.NET. Avail-
able at www.dotgnu.org, 2006

[Ecm02a] Ecma international. Standard Ecma-335,
Common language infrastructure (Cli). Available
at www.ecma-international.org/ publications/
standards/Ecma-335.htm, 2002.

[Gef05a] Gefflaut A., van Megen F., Siegemund F.,
Sugar R. Porting the .NET Compact Framework
to Symbian Phones – A Feasibility Assessment.
.NET Technologies’05 conference proceedings,
UNION Agency – Science Press, ISBN 80-
86943-01-1, 2005

[Gou05a] Gough J., and Corney D. PERWAPI-a pe
file reader/writer. Available at
www.plas.fit.qut.edu. au/perwapi, 2005.

[IBM06a] IBM. WebSphere Everyplace Micro Envi-
ronment. Available at www-306.ibm.com/ soft-
ware/wireless/wsdd, 2006

[Int03a] International Standards Organisation. In-
formationtechnology – Common Language Infra-
structure, ISO/IEC 23271:2003(E) First edition,
2003.

[alp06a] alphaWorks/IBM. JAX. Available at
www.alphaworks.ibm.com/tech/JAX, 2006

[Lid02a] Lidin S. Inside Microsoft .net il assem-
bler.Microsoft Press, 2002.

[Mic02a] Microsoft Corporation. Shared source
common language infrastructure. Available at
msdn.microsoft.com/net/sscli, 2002.

[Mic05a] Microsoft Corporation. .NET Framework.
Available at msdn.microsoft.com/netframework,
2005.

[Mic05b] Microsoft Corporation. .NET Compact
Framework. Available at msdn.microsoft.com/
netframework/programming/netcf, 2005.

[Mic06a] Microsoft Research. ILMerge, Available
at re-
search.microsoft.com/~mbarnett/ILMerge.aspx,
2006

[Mon06a] The Mono project. website. Available at
www.mono-project.com, 2006.

[Osm05a] Operating systems and middleware group.
Lego.net website. Available at
www.dcl.hpi.unipotsdam.de/research/lego.NET/,
2005.

[Ray99a] Rayside D., Mamas E., and Hons E. Com-
pact java binaries for embedded systems. In
CASCON ’99: Proceedings of the 1999 confer-
ence of the Centre for Advanced Studies on Col-
laborative research, page 9. IBM Press, 1999.

[Sol06a] Solorzano J.H. TinyVM website. Available
at tinyvm.sf.net, 2006.

[Sun06a] Sun Microsystems, Inc. Java Platform, Mi-
cro Edition. Available at javasoft.com/j2me, 2006

http://www.alphaworks.ibm.com/

