
Sampling profiler for Rotor as part of optimizing
compilation system

Sofia Chilingarova
St-Petersburg State University

28, Universitetskiy pr.,
Petrodvorets

 Russia 198504, St-Petersburg

sofie-chil@hotmail.ru

 Vladimir O. Safonov
St-Petersburg State University

28, Universitetskiy pr.,
Petrodvorets

 Russia 198504, St-Petersburg

v_o_safonov@mail.ru

ABSTRACT

This paper describes a low-overhead self-tuning sampling-based runtime profiler integrated into SSCLI virtual

machine. Our profiler estimates how “hot” a method is and builds a call context graph based on managed stack

samples analysis. The frequency of sampling is tuned dynamically at runtime, based on the information of how

often the same activation record appears on top of the stack. The call graph is presented as a novel Call Context

Map (CC-Map) structure that combines compact representation and accurate information about the context. It

enables fast extraction of data helpful in making compilation decisions, as well as fast placing data into the map.

Sampling mechanism is integrated with intrinsic Rotor mechanisms of thread preemption and stack walk. A

separate system thread is responsible for organizing data in the CC-Map. This thread gathers and stores samples

quickly queued by managed threads, thus decreasing the time they must hold up their user-scheduled job.

Keywords

SSCLI / Rotor, Just-in-time compilation, sampling-based profiling, de-virtualization, inlining.

1. INTRODUCTION
Optimization techniques based on profile data

obtained at run time form the essential part of

optimization strategy in modern dynamic compilation

frameworks.[Arn02][Sug01][Jav02] Static analysis

alone cannot provide sufficiently full information by

sufficiently low cost to make optimizations pay for

themselves in dynamic compilers. Managed

environments have the distinguishing capability to

provide feedback and use it in compilation at the very

time the program executes, and runtime profilers are

designed to utilize this capability. With profile data

enabling selective optimization of the “hot” pieces of

code we gain much more.

There are two main types of profile data optimizing

compiler may be interested in: individual methods

“hot counts”, i.e. precise or approximate estimation

of method execution frequency, and some kind of

“call graph” which can provide information about the

frequency of calls from one method to another. The

former is used to pick up the individual “hot”

methods for recompilation, the later helps to plan

optimizations in the broader context taking into

account the hot paths through the whole application.

Many techniques have been developed to collect and

store runtime profile data. But the key point has

always been a balance between the accuracy of

profile data and low overhead of profiling facilities,

which have to do their job at run time thus adding to

compilation overhead. Experiment results show that

strictly accurate profile is not necessary to make a

good recompilation decision, so sampling profilers

turned out an excellent tool to get rather complex

information about program behavior with low

overhead.

Typical sampling profiler working as a part of a

dynamic compilation framework acts as follows:

periodically it launches a task that looks up a stack

for managed methods frames, then forms collected

data into some structure reflecting dynamic call

context and stores it for the subsequent use. [Arn02]

[Wha00] Our profiler developed for SSCLI (Rotor)

also utilizes this classical schema. It uses the

mechanism for exploring stack that Rotor already has

(we will cover it later) and stores data in Call Context

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006

Copyright UNION Agency – Science Press,

Plzen, Czech Republic.

Map structure that contains counters for individual

methods calls, total count for every call done by one

method to the other, and detailed information about

the context in which the call occurs.

Contributions
This paper makes the following contributions:

• Data structures. It describes a Call Context

Map (CC-Map) data structure used for encoding

runtime profile information. It shows the

advantages of the Call Context Map: its

capability to provide the full information needed

for recompilation decisions quickly and with

minimum effort remaining at the same time a

rather compact structure. It describes the

algorithm for filling CC-Map from a raw stack

samples containing references to managed

methods metadata and offsets in code.

• Profiling Techniques. The paper presents a

profiling technique based on profiler and

managed threads cooperation and background

processing of raw samples data, which allows

maintaining a complex structure of profile data

storage not causing the managed threads to

postpone their jobs for a long time. The bunch

processing of samples helps to minimize

synchronization on the global samples cache.

• Experience using SSCLI features. The paper

shows how the SSCLI core functions and

structures were used to help collecting stack

samples and organizing profile data. It also

describes the utilization of core SSCLI

mechanism for threads cooperation and

synchronization to provide cooperative behavior

in gathering samples.

• Evaluation of overhead and accuracy of

profiling. The paper presents evaluation of

accuracy and overhead of the profiler ran on the

SSCLI quality test suit using simple execution

counters statistical correlation and Arnold &

Ryder overlap percentage measure[Arn02].

2. RELATED WORK
Many papers published in the last years show the

benefits of profile-driven optimizations and the ways

profile data may be used in compilation decisions.

Arnold[Arn02] in his PhD thesis paper describes in

detail several kinds of profile-driven optimizations

implemented in Jikes JVM. Suganuma et. al.

[Sug01] in their review of IBM DK optimizing JIT-

compilation framework give a full picture of how

instrumentation and sampling based profiling is used

to collect profile data from interpreted and compiled

code, respectively. They provide experiment results

showing the evident advantages of profile-based

selective optimizing compilation over both

optimizing non-selective and fast non-optimizing

non-selective compilation.

Several studies show the practical use of dynamic

profile data in such optimizations as inlining

[Sug02] and devirtualization[Ish00]. These two types

of optimization are very important for managed

environments with intrinsic support of object-oriented

languages where most method calls are virtual and

many levels of indirection often present. Suganuma

et. al. [Sug03] introduce an interesting optimization

technique, Region-Based Compilation, that allows

more effective use of profile data.

Whaley[Wha00] describes several different

approaches to profile data organization: Dynamic

Call Graph (DCG), Calling Context Tree (CCT),

Partial Calling Context Tree (PCCT). Arnold et. al.

[Arn00] shows in more detail how the DCG is

constructed. We’ll look closer at these structures in

the next section where we describe our data

representation choice, Call Context Map (CC-Map),

and compare it with the other options. CC-Map is in

many respects similar to CCT and PCCT, but

provides easier ways to retrieve full context

information. Also we don’t place such restrictions on

the length of a sample, as PCCT-based approach

described by Whaley. In our profiling framework we

allow sample buffers to grow when needed, although

we define some rather high limit for the cases of

incredibly deep stack, which are rare.

Arnold and Grove [Arn05] propose an interesting

variation of samples collection technique. Instead of

taking one sample at a time, their profiler takes a

bunch of samples: when profiling is requested, stack

walk is performed several times over a short interval.

Authors show how this approach helps eliminate

inaccuracy in some situations.

3. PROFILER DESIGN
In this section we describe an overall structure of the

profiler: how the sample data storage is organized

and how the samples gathering mechanism works.

We introduce a Call Context Map (CC-Map) that

allows easy retrieving of many kinds of data needed

for compilation/recompilation decisions. We present

a sampling strategy that helps to maintain a rather

complex CC-Map structure and at the same time not

cause the user threads job to be postponed for long

intervals. In the next section we’ll take a closer look

at the Rotor-specific issues and show how the profiler

uses intrinsic mechanisms of the SSCLI virtual

machine to do its job.

Call Context Map

3.1.1 Previous approaches
The common way to represent the sequences of calls

with their relative frequency in runtime profile data is

using some kind of call context tree. Call context tree

consists of nodes correspondent to the method calls

and directed edges, which denote caller-callee

relations. The examples are Dynamic Call Graphs

(DCG, DCG-E) described by Arnold et. al.

[Arn00] and Calling Context Tree/Partial Calling

Context Tree (CCT, PCCT) described by

Whaley[Wha00] . Dynamic Call Graph is shown on

the Figure 1b. Nodes represent method calls, edges

mark associations between caller and callee, and

weights assigned to edges mean the number of calls

from the specified caller to the specified callee

encountered in samples. This is rather compact

representation but the information we can retrieve

from it is limited. We can estimate how often one

method calls the other, but with DCG alone we

cannot determine, for example, that call chain ACD

has never been encountered in samples, ABC has

been encountered 2 times, and BCD – only once.

Thus DCG can effectively represent only one-level-

depth profile.

Figure 1. DCG and PCCT structures: a) samples

collected from stack; b) correspondent DCG; c)

correspondent PCCT

Partial Calling Context Trees (CCT) shown on Figure

1c provides more context information. Details of

PCCT construction are covered in [Wha00]. They

build PCCT using the fixed length buffer for samples,

so that a delay does not be very long when the stack

is extremely deep. When a sample is got and a PCC-

Tree with the outer caller as a root is found, profiler

updates counters for edges in this tree, otherwise a

new tree is created. Here we can point out longer call

sequences, but still cannot know, without additional

analysis, that calls from B to C have been

encountered 4 times, totally. To retrieve this

information we should examine all the trees looking

for edges BC and adding the counters to the total

sum.

One more problem is illustrated by Figure 2a. Let we

have a call graph shown at the left side of the figure.

A and E call B and in both cases B calls C. Then C

calls D or F. Also the samples with B as the outer

frame are found, as shown on the figure. Let we build

the Call Context Trees form these samples. We get

three of them, with A, E, and B as roots.

Figure 2. More complex call context

Here the hottest path is actually BCD, which executes

8 times. But we cannot retrieve this information

automatically having only the CC-trees in hand. We

cannot queue BCD path for possible recompilation

automatically when the total counter exceeds

threshold because we haven’s such a total counter.

The solution might be to construct/update CCT for

every caller in the chain when a sample is got, but

this way we fail to distinguish the frequencies of call

to BCD in different contexts. For example, if the

situation is like the one shown on Figure 2b, we’ll fail

to know that BCD path (executes 8 times totally) is

actual only for calls from A. For E call site the path

EBCF is really hot. The PCC-trees for this case (3

trees shown at the right side of the Figure 2b) reveal

it clearly. If we update counters for BC and CD in the

tree with B root every time the path is encountered in

a sample, at any place, we capture the information

about the total number of execution of BCD, but

loose the important context information. So we need

some combination of the described approaches.

3.1.2 Call Context Map Structure
Call Context Map (CC-Map) structure is designed to

address issues depicted in the previous subsection.

The higher level of the CC-Map is a hash-table

containing references to MethodProfile nodes.

MethodProfile node stores a total counter for the

method executions and references to the nodes

Figure 3. Call Context Map fragment

representing information about calls from this method

to the others.

The Callee nodes contain accumulated counters for

the total number of calls from the concrete caller to

the concrete callee, in any context. Additionally, the

tree of reference nodes is constructed for every call

sequence. These Ref nodes contain counters for calls

done in the given context and references to the nodes,

which store general information about the call.

A fragment of CC-Map structure is shown on Figure

3. Let method A calls method B, B calls C, and C

calls D. Every caller profile refers to CallSite node

that contains general information about the call site –

offset, reference to the caller profile, etc. CallSite

node refers to one or more Callee nodes, which store

call counters and, in turn, refer to the profiles of

callees. CallSiteRef and CalleeRef nodes refer to the

general CallSite and Callee nodes and CalleeRef

nodes store the context counters. Every node

representing general call information has Context

references to the nodes, which describe a context of

the call.

3.1.3 Advantages of CC-Map structure
CC-Map accumulates a total call count for every

caller-callee pair and at the same time it allows

retrieving information concerning calls in the specific

context. This information is easily available: a

compilation controller may lookup contexts by the

Context references when some counter exceeds a

threshold, as well as move up and down through a

call chain.

From the CallSite and CallSiteRef nodes a controller

can know whether the call has probably one target

(and so consider devirtualization). CallSite node

provides this information for all calls from a given

site, CallSiteRef – only for calls done in a given

context.

CC-Map is a rather compact structure. Nodes don’t

store duplicate data. CC-Map allows quick updating,

as well as rather quick removing of nodes, which

appear cold. Compilation controller need not perform

additional analysis of trees to get information

necessary for good decision: it can only follow

references.

Figure 4 shows an example: a simplified view of CC-

Map for the calling sequences presented on Figure 2a

and 2b. The CallSite nodes are omitted for simplicity,

as there is only one call site for each method in this

example. You can see that a bi-directional association

exists between a node with general information about

method call and nodes representing the same call in

the different contexts. When an event of a total

counter exceeding threshold takes place, a

compilation/recompilation controller can quickly

look through the contexts to make an appropriate

Figure 4. CC-Map for Fig. 2 examples. Bold arrows indicate references from nodes describing call in a

given context, thin arrows indicate references form a general information node to call-in-context nodes

(this association is represented by “Context” items on Fig. 3). The roots of the trees are MethodProfile

nodes containing the total counters for method executions

compilation decision (for example, consider the

common callers for de-virtualization or inlining too,

especially if only one callee has been detected at the

correspondent call sites so far). When analyzing a

frequently executed call sequence a controller can

browse all general call information nodes and access

other contexts from them. It can move up and down

the call sequence representation (see Fig. 3) to gather

all the information about callers and callees that

might affect a recompilation strategy choice.

3.1.4 CC-Map filling and updating
When a sample is being taken, all the data initially is

written into a buffer. The stack lookup starts from the

top of the stack and ends at the outermost frame or at

the first managed method activation record that has

already been visited by profiler. The profiler marks

managed method activation records when looks them

up (the JIT-compiler is configured to push the

additional slot on the stack for this purpose), so

during the following passes it can distinguish the new

frames from the old ones. When the profiler

encounters an old (marked as already visited) frame,

it records this frame data (as it is needed to register a

new call from the frame) and stops looking up the

stack.

So, at the start of the buffer we have a reference to

the method correspondent to the activation record at

the top of the stack (i.e., most inner call), and at the

end of the buffer – the outer caller (or the innermost

call that hasn’t returned from the previous lookup)

reference.

The pseudocode for sample buffer processing looks

as follows:

For(int i = 0; i < end_of_sample; i++)

{

 update MethodProfile(buf[i]);

 if (i > 0)

 {

 update Callee(buf[i],buf[i-1]);

 }

 for (j = i-2; j>=0;j--)

 {

 update CalleeRef(buf[j]);

 }

}

The real code is a little more optimized and a little

more complicated, but the underlying algorithm is the

same.

Profiling Algorithm
Maintaining such a complex structure as the CC-Map

requires some effort. Algorithm described in the

previous section may take a long time to complete.

But we cannot afford to stop user threads for

observable intervals because of profiling.

The solution we have chosen is to separate taking

sample from thread stack from storing the sample

data in the CC-Map. For this purpose we use two

profiler worker threads, as well as thread-local and

global queues for samples waiting for the profiler to

process them.

Profiling job is launched by the MarkThreadsWorker

system thread which marks every live managed

thread to make it know that it should take a sample

when reaches a safe point. Every live managed thread

has its own sample buffer and its own short samples

queue. The sample is written into the thread local

buffer and pushed into the thread local queue. When

local queue length exceeds a threshold (rather low,

now 10) all its contents is pushed to the global queue.

This schema is aimed to decrease the need to grab a

global queue lock, and thus to decrease possible

pauses caused by waiting for the lock. Little delay in

samples processing is not critical because only large

numbers are considered when making compilation

decisions.

The CC-Map manager thread periodically grabs the

global queue lock, takes out a bunch of samples and

put them into its own queue. Then it releases the lock

and proceeds with processing samples without hurry.

Global queue hashes samples by thread id so the CC-

Map manager thread can return the processed sample

buffers back to their thread so that it need not to

allocate new memory. Local thread buffer grows

automatically when needed, queued samples buffers

grow then they need to adapt to local buffer size. So

when threads get back their own buffers, previously

queued, these buffers are likely to have appropriate

size. If the thread is already finished when CC-Map

manager returns processed sample buffers for it, this

chain of buffers is put aside to be used by next new

thread.

Tuning Sampling Interval
The profiler is, self-tuning, it adapts an interval of

taking samples to the characteristics of environment

where it runs. To do this it uses a simple heuristics: it

tracks how often the same activation records appear

on the top of the stack. It doesn’t take much effort or

time: as the profiler already distinguishes between

visited and not visited frames and stops at the first

visited, we need only to reflect this condition in a

sample and check whether this frame is the first in a

sample (i.e. it is taken from the top of the stack) when

processing the sample. If so, a special counter is

incremented.

There are two threshold values defined: maximum

percentage of repetitions and minimum percentage of

repetitions. CC-Map manager thread evaluates actual

percentage of repetitions (of activation record

appearance on the top of the stack) every 1000

samples (more precisely, than processed samples

portions is more than 1000, because the manager

thread handles a bunch of samples in every pass). If

percentage of repetitions is lower then minimum

threshold, it is considered too low and sampling

interval decreases. If percentage of repetitions is

higher than maximum threshold, the sampling

interval increases.

4. INTEGRATION WITH ROTOR
Rotor has a built-in mechanism for walking the stack,

which is used for such purposes as exception

handling and security checks[Stu03]. It involves

several methods and functions of virtual machine and

among them the StackWalkFrames method of the VM

Thread class, which we use to take samples.

StackWalkFrames takes a function to execute on

every encountered stack frame as a parameter, so its

work is easily customizable. The advantage of using

it is that it already knows how to distinguish managed

method frames from unmanaged method frames, can

recognize context transitions (e.g. across application

domain boundaries), encapsulates calls to Rotor

facilities to get metadata references and offsets, and it

provides a convenient interface to do jobs on the

stack.

We make managed threads call StackWalkFrames

method at, so called, “safe points”, building upon the

other intrinsic Rotor mechanism – trapping threads

when they know that it is safe to suspend now. This

mechanism has been originally used to trigger

garbage collection. Checks for a suspension request

have been inserted by the JIT-compiler at back edges

and everywhere where the next piece of code may

take long time to execute[Stu03]. Such checks are

also performed by some of runtime helper functions

extensively used in Rotor. We utilize this mechanism

and add additional check points at the entry of every

method. At that new check points we test only for the

need to take sample.

We also used the SSCLI core HashMap class to

construct the CC-Map in Rotor. SSCLI HashMap

class implements a hash table used by VM for its

internal needs. It hashes pointer type values by the

pointer type keys (so allows storing profile objects by

the pointer-to-metadata keys), implements locking for

insert, delete and lookup, and takes care of cleaning

up itself. It is just what we need. So we choose

HashMap as a hash table to store MethodProfile

references at the highest level of CC-Map and as a

hash table to hold queues of samples waiting for

processing in the global samples store.

5. RESULTS
We tested our profiler on SSCLI 1.0. To measure

overhead and accuracy of profiling we used tests

from a suite supplied with SSCLI. To estimate

overhead we chose a set of base tests from bcl\system

and bvt subdirectories and tests from bcl\threadsafety

subdirectory of Rotor tests directory. To estimate

accuracy we used tests from bcl\threadsafety

subdirectory, where multiple threads execute the

same code. As measures we used statistical

correlation of the total executions counters stored in

MethodProfile nodes and Arnold & Ryder overlap

percentage[Arn02] for the whole tree comparison.

Overlap percentage of trees T1 and T2 is computed

as follows:

∑N in T1,T2 [min (Weight (NT1), Weight(NT2)]

where Weight (NTx) is:

value(NTx)/∑N in Txvalue(N),

N is a node holding a counter, value is a value of the

counter. When N is not found in Tx (thought it exist

in Ty and thus in TxTy set), it is assumed that

value(NTx) = 0.

For performance test the low threshold for repetitions

(cases when the same method appears on the top of

the stack) was set to 1%, high threshold for

repetitions was set to 15%. For the correlation and

overlap measurement tests the self-tuning was turned

off, because it can affect the correlation results

distinctly for short-running tests, as those we used.

However the great deal of these differences is

produced at the interval when the profiler is tuning,

so such results do not reflect the real picture in steady

state. Logging of sample interval changes in the

process of tuning revealed that the sample interval

becomes stable after 1-2 changes. We measured

correlation and tree overlap with different sample

intervals (with self-tuning turned off) and the best

results (95-99%) were obtained with the same

interval that the profiler found automatically.

In accuracy test we recorded and compared

executions counters and the whole CC-Maps from 10

subsequent runs. The results of every run were

compared with results of every other and an average

value was computed.

To make the CC-Map accessible even after the VM

was stopped running, we dumped the CC-Map (in the

fastchecked mode) to an XML file at VM shutdown.

Then original CC-Maps were restored from XML

representation and compared (in XML dump of CC-

Map managed methods are identified by the full name

and signature to make comparison possible, though at

runtime they identified only by pointer to metadata).

Table 1 shows the average correlation for 10

subsequent runs of the same test and average tree

overlap percentage. All the tests are from

bcl\threadsafety suite.

Test Name
Correlation,

%

Overlap,

%

co8545int32 99 97

co8546int16 99 92

co8547sbyte 99 94

co8548intptr 99 98

co8549uint16 99 95

co8550uint32 99 95

co8551byte 99 97

co8552uintptr 99 97

co8553char 99 96

co8555boolean 99 96

co8559enum 98 75

co8788stringbuilder 99 67

co8827console 99 77

co8830single 99 98

Table 1. Average correlation for total executions

counters and overlap percentage extracted from

comparison of results of 10 subsequent runs

We can see that though the correlation of simple

execution counters is always good (98-99%), overlap

percentage sometimes appears lower than 80%. We

think, however, this can be probably explained by the

fact than the tests themselves were very short.

Tests were run on Celeron433 processor, 256M

RAM. Sampling interval was set to 10ms. This is

rather short interval for this hardware configuration

and for long-running programs in may be longer.

However, the tuning mechanism can adjust the

interval well. When testing we started from interval

50ms, and for the tests, which performed bad with

such an interval, the profiler made it less. For the

tests, which performed well, the interval remained

unchanged. We see also in Table 1, that for some

tests accuracy is even redundant. 95-97% would be

enough to consider results statistically significant. For

the cases when we can get such accuracy with longer

interval, it will not decrease (or it can even increase if

the initial interval appears too short).

The profiling overhead was measured on the free

build against unchanged Rotor free build, on the same

hardware configuration, on the tests from bcl\system,

bvt, and bcl\threadsafety subsets of Rotor core test

suit. Initial sampling interval was set to 50ms. Tuning

was turned on. Tests were run 2 times, and the total

overhead did not exceed 3%. In the future we intend

to consider automatic turning off tuning after a

certain period of time so that to lower overhead.

6. REFERENCES
[Arn00] Arnold, M., Fink, S., Sarkar, V., Sweeney,

P. A comparative study of static and dynamic

heuristics for inlining. In ACM SIGPLAN

Workshop on Dynamic and Adaptive Compilation

and Optimization, Jan. 2000.

[Arn02] Arnold, M. Online Profiling and Feedback-

Directed Optimization of Java. PhD thesis,

Rutgers University, October 2002.

[Arn05] Arnold, M. and Grove, D. Collecting and

Exploiting High-Accuracy Call Graph Profiles in

Virtual Machines. In Proceedings of the

international Symposium on Code Generation and

Optimization, March 20 - 23, 2005.

[Jav02] The Java HotSpot™ Virtual Machine, v1.4.1,

d2, A Technical White Paper. Sun Microsystems,

September 2002.

[Ish00] Ishizaki, K., Kawahito, M., Yasue T.,

Nakatani, T. A study of devirtualization

techniques for a Java just-in-time compiler. In

ACM Conference on Object-Oriented

Programming Systems, Languages, and

Applications, Oct. 2000.

[Stu03] Stutz, D., Neward, T., Shilling, G. Shared

Source CLI Essentials. O’Reilly, 2003.

[Sug01] Suganuma, T., Yasue, T., Kawahito, M.,

Komatsu, H., Nakatani, T. A dynamic

optimization framework for a Java just-in-time

compiler. ACM Conference on Object-Oriented

Programming Systems, Languages, and

Applications (OOPSLA), October 2001.

 [Sug02] Suganuma, T., Yasue, T., Nakatani, T.: An

empirical study of method inlining for a Java Just-

In-Time compiler. In: Proceedings of USENIX

2nd Java Virtual Machine Research and

Technology Symposium (JVM'02), pp. 91–104,

2002.

[Sug03] Suganuma, T., Yasue, T., Nakatani, T., A

Region-Based Compilation Technique for a Java

Just-In-Time Compiler, ACM SIGPLAN 2003

Conference on Programming Language Design

and Implementation (PLDI 2003), pp. 312-323,

June 9-11, 2003.

[Wha00] Whaley, J. A portable sampling-based

profiler for Java virtual machines. In ACM 2000

Java Grande Conference, June 2000.

