
Building .NET GUIs for Haskell applications
Beatriz Alarcón

DSIC, UPV, Camino de Vera s/n,
46022 Valencia, Spain
balarcon@dsic.upv.es

Salvador Lucas
DSIC, UPV, Camino de Vera
s/n, 46022 Valencia, Spain

slucas@dsic.upv.es

ABSTRACT

.NET is an emerging Microsoft’s project which promotes a new framework for Software Development emphasizing the use of
Internet resources and the interaction between components written in different programming languages. Whereas functional
programming languages such as Haskell are well-suited for developing tools to analyze, verify and transform programs, typical
Haskell compilers do not provide sophisticated capabilities such as support for XML-Web services, assisted GUI development,
HTML processing, etc., which are frequent in most .NET development frameworks. We show how to integrate software
components developed in a functional language as Haskell together with (graphic) components developed in C# or another
.NET language. To achieve our objective we use the facilities offered by .NET to import COM components, on the one hand,
and the technology developed to generate COM components from Haskell modules, on the other.

Keywords: COM, Haskell, Interoperability, .NET, Programming environments.

1 INTRODUCTION
International efforts to develop a global framework to
use software resources have in Java and .NET their
most well-known exponents. .NET is an emerging Mi-
crosoft’s project which promotes a new framework for
Software Development emphasizing the use of Inter-
net resources and the interaction between components
written in different programming languages [Cha02].
Within the .NET platform we can integrate already ex-
isting technologies and products as well as new ele-
ments. The XML project promoted by the WWW con-
sortium1 is also related to this effort through the use
of XML to document programs in .NET, the support of
Web services based on XML, etc.

The scientific communities that develop languages
and declarative software technology are carrying out
an important effort to make use of this kind of initia-
tives. Functional languages like Haskell2 offer many
programming features and resources which make them
powerful tools for developing software projects and
rapid prototypes. However, typical Haskell compilers
(e.g. GHC, Hugs,...) do not provide visual tools for eas-
ily defining graphical user interfaces (GUIs), as, on the
contrary, many other programming languages have. Al-
though there are several libraries and systems which can
be used to develop GUIs in Haskell (e.g., wxHaskell3,
Gtk2Hs4, HToolkit5, etc.), a Haskell programmer can
waste too much time in giving form to his application if
he make use of such tools due to the lack of a graphic
assistant which makes easier the design of a GUI. With
an Integrated Development Environment (IDE) like Vi-

1 http://www.w3c.org
2 http://www.haskell.org
3 http://wxhaskell.sourceforge.net
4 http://haskell.org/gtk2hs/
5 http://htoolkit.sourceforge.net/

sual Studio .NET, this is pretty simple. The support
to define Web services offered by the .NET platform is
a second aspect of Haskell applications for which we
could argue similarly.

Of course, having graphic libraries for functional lan-
guages is very interesting and useful. Unfortunately,
we can not affirm that such libraries (e.g., wxHaskell,
which we have used to develop a large Haskell appli-
cation like the termination tool MU-TERM [Luc04]) be-
haves like a completely stable and handy system (yet)
since you have to make sure that you have the same
version of the GHC compiler installed that requires the
version of wxHaskell you want to use. The design, de-
scription, and use of forms and graphic controls is not
very easy and it can take time to obtain what one is
looking for. Moreover, it is necessary to get a grip on
three basic concepts: widgets, layout and events.

This gave us a first motivation to start the research in
this paper. Another (more general) motivation comes
from the frequent need (in software development) of
combining software pieces of code written in different
programming languages. Of course, this is the well-
known problem of interoperability of software compo-
nents in sofware engineering and there are a number
of middleware solutions available for dealing with this
(also for Haskell applications, as we will see below).
However, as far as we know, no attempt to use the .NET
technology in practice (i.e., with a real Haskell appli-
cation) has been reported yet. We have also tackled
this task: In 1999, Finne et al. [FLMP99] explored
the possibility of encapsulating Haskell programs like
COM objects (Microsoft’s Component Object Model
[Rog97, COM04]). Why couldn’t we take a step fur-
ther and achieve our goal by means of COM and .NET
interoperability? Microsoft has left opened the possibil-
ity of using already existing COM components in .NET;
thus, a Windows programmer does not need to rewrite

all his applications to run them under .NET. In our case,
we show how to take advantage of this to pack Haskell
programs as software components and integrate them
into applications written in other languages, for exam-
ple in C#, the most popular .NET language. Let’s give
a brief overview of our approach.

Our starting point is HaskellDirect (HDirect [Fin99,
FLMP99, HDi99]) a framework for Haskell FFI (For-
eign Function Interface) based on the standard IDL (In-
terface Definition Language) which allows to specify a
programming interface in a programming language in-
dependent manner. There are many possibilities that
HDirect offer to the programmer: Creating Haskell
bindings to external libraries, creating external bindings
to Haskell libraries, creating Haskell client interfaces to
COM objects, and creating Haskell COM objects. In
our case, starting from a Haskell component, we build
a COM component which is encapsulated into a Dy-
namic Link Library (DLL), making it able to interoper-
ate with Windows applications and, in particular with
.NET applications. Our particular interest is furnishing
Haskell applications with .NET GUIs, but most of the
discussion is completely general and independent from
this concrete goal. HDirect implements in Haskell all
the required functionality to build a COM component
and exempts the programmer from the knowledge of the
COM specification since it is generated automatically.
Next, we make use of the .NET facility to import COM
components which can be used as external functions to
implement the C# event handlers for the controls in the
.NET GUI.

The paper is organised as follows: Section 2 briefly
describes .NET graphic controls. Section 3 introduces a
simple case study which we use to illustrate our devel-
opment. Section 4 explains how to build a COM com-
ponent from a Haskell module. Section 5 addresses the
problem of its integration into .NET. Section 6 reports
on the results obtained on a concrete (realistic) appli-
cation of our technique. Section 7 displays our conclu-
sions and lines of future research.

2 OVERVIEW OF .NET GRAPHIC
CONTROLS

When a Windows programmer writes a .NET applica-
tion (in, e.g., C#), he or she can take advantage of the
System.Windows.Forms namespace, which provides a
variety of control classes for developing rich user in-
terfaces. Some controls are designed for data entry
in the application (e.g., TextBox and ComboBox con-
trols). Other controls display application data (e.g.,
Label and ListView controls). The namespace also
provides controls for invoking commands within the
application, such as the Button and MainMenu con-
trols. In this paper we are specially interested in show-
ing how Haskell applications can take advantage from
.NET technology, specially from .NET GUIs. Thus,

we only consider the information (or data) that graphic
controls and Haskell components should (usually) ex-
change. Although other control properties (e.g., con-
trol labels, colors, etc.) could also be managed through
Haskell components, we will not consider them in de-
tail here; we center the attention on the non-graphic part
of this information exchange . Extending the treatment
of controls to achieve such more generality would be
managed in a similar way, if necessary.

The hierarchy of .NET controls is very large. Here,
according to [FPB+03] we mention the most common
controls (which are also the most frequently used, in our
personal practice). We consider that these controls suf-
fice for giving a complete account of the problems and
solutions that any other control could rise and require
to achieve our purpose.

The table in Figure 1 shows the Haskell-like data as
could be considered to be managed by each .NET con-
trol. This table shows that with few simple Haskell
datatypes can be managed all necessary information, re-
garding our main purpose of having the graphic part of
the application developed in .NET (C#) and the ‘logic’
of the program written in Haskell.

3 A SIMPLE CASE STUDY
In order to discuss the techniques developed here, we
use a simple case study. It includes a simple graphic
interface to introduce and manipulate strings by means
of simple transformations:

• converting the characters of the string into capital or
small letters,

• removing spare blank spaces, and

• simple encryption (based on the well-known Cae-
sar’s method)

The length of each string is also stored (as an integer
value). In order to highlight the role of Haskell as the
language which actually implements the logic of the ap-
plication, the use of C# here is strictly limited to provide
a GUI, i.e., to ease the introduction and visualization of
strings by means of graphic controls. The length of the
current string is displayed in a read only text control.
The different transformations are triggered by means
of buttons. The current string is selected from a Com-
boBox which shows the strings introduced so far (see
Figure 2).

In the Haskell part, we have the structures of func-
tional data which are necessary to control the state of
the system: we store each pair string-length in a list
that is indexed by a integer that points out at the current
position of the list (Focus):

WINDOWS FORMS ASSOCIATED DATA

Button, GroupBox, Panel, Label, Splitter -
CheckBox, RadioButton Bool
ListBox ([Int],[String])
ComboBox (Int,[String])
ListView [[String]]
TrackBar, ProgressBar, NumericUpDown Int
TextBox, RichTextBox String
MainMenu, OpenFileDialog, SaveFileDialog, FolderBrowserDialog -

Figure 1: .NET controls and data

Figure 2: Simple example of interoperability

type Focus = Int
type Length = Int
data HL = H_L [(String, Length)]

Focus deriving Show

The algebraic data type HL contains all necessary in-
formation to implement the required functionality ex-
plained above. The following mappings manipulate this
data structure:
- Adds a new string and its length
addPair :: HL -> String -> HL
- Obtains the ‘current’ string
getString :: HL -> String
- Updates the ‘current’ string
writeString :: HL -> String -> HL
- Length of the ‘current’ string
getLength :: HL -> Int
- Sets the (index of)‘current’ string
setFocus :: HL -> Int -> HL

The following mappings implement the transforma-
tions over strings.
toUpperCase :: String -> String
toLowerCase :: String -> String
deleteB :: String -> String
encrypt :: String -> String

Haskell files and other (IDL, C#, etc.) archives as ex-
plained below can be retrieved from
http://www.dsic.upv.es/~balarcon/

example.zip.

4 INTEROPERABILITY BY MEANS
OF COM IN HASKELL

Microsoft’s COM technology is used to create re-usable
components (possibly written in different programming

languages) and connect them together. In the follow-
ing, we show how to use COM technology to connect
Haskell with .NET components.

4.1 Haskell modules and COM compo-
nents

A Haskell program that implements a COM component
consists of four parts:

• The application code, written in Haskell by the pro-
grammer.

• An IDL specification establishing those Haskell
functions which we want to make accessible
through the DLL.

• A set of Haskell modules which are automatically
generated from the IDL by the HDirect tool.

• A Haskell library module, Com, that exports all the
functions needed to support COM objects in Haskell
and a C library module that provides some run-Time
support (RTS)

In the following sections we briefly describe and dis-
cuss these steps of the process.

4.2 The IDL of the Haskell component
IDL is a declarative language which is used to describe
interfaces and classes disregarding any programming
language [Hlu98]. An IDL specification describes the
interface of a component.

The IDL code in Figure 3 is used in our case study.
We have followed the example in [FLMP99], the indi-
cations of the manual of HDirect [Fin99] and the infor-
mation about IDL [Hlu98]. We declare all (and only!)
Haskell functions that we wish to have accessible from
C# code together with their arguments and the type of
the returned value.

Now we are going to describe the IDL code. This is
useful to understand what we are going to obtain from
COM [Rog97, Ste04, COM04]. On the basis of the
IDL code, we are going to build the skeleton of the ob-
ject that we want to encapsulate. For that purpose, we
have a library (Example), an interface (Iexam-
ple) and a class (EXAMPLE).

[uuid(35E80A56-3664-4d91-9C6C-3018496A8D61) ,
helpstring("Haskell COM component") ,
version(1.0)]

library Example {

importlib("stdole32.tlb");

[object,
uuid(4DB0C045-CC9F-4607-B79A-26D27E0C1594)]

interface Iexample : IUnknown {

HRESULT addPair([in,string]BSTR in);
HRESULT getString([out,retval] BSTR *out);

HRESULT getLength([out,retval] int *out);
HRESULT setFocus([in] int in);
HRESULT toUpperCase();
HRESULT toLowerCase();
HRESULT deleteB();
HRESULT encrypt();

};

[object,
uuid(49D98D24-DC88-4d24-8C5D-404FE510644D)]
coclass EXAMPLE {

[default]interface Iexample;

};

};

Figure 3: IDL code for the case study

A type library is a binary file that contains the same
information that we could find in a C or C++ header file.
It includes the names of the classes and the interfaces
which are implemented in the server and the number
and type of parameters for each method of their inter-
faces. Note that it also contains the GUID (Globally
Unique IDentifiers), a very important part of the model
of COM programming, for each class and interface. A
GUID is a structure of 128 bits “statistically guaran-
teed" to be unique. In our case we have used the tool
Create GUID (which is part of Visual Studio .NET) to
generate them.

A COM interface is a collection of linked methods
that perform a functionality. All are based on the IUn-
known interface; each of them receives a unique inter-
face identifier (IID).

A COM class is the implementation of one or more
COM interfaces, while a COM object is an instance
of a class. Each object has a class identifier (CLSID).
CLSID and IID are subgroup of GUID.

The name of our interface is Iexample and inher-
its from IUnknown the use of methods QueryInterface,
AddRef and Release. Inheritance from multiple inter-
faces is not allowed. The first attribute, object, which
is locked up in brackets next to the GUID, identifies
the interface as a COM interface. For each method
in the interface, we specify the parameters with which

the method will be called (from C#). The attribute in
indicates that the parameter is used as an input given
to the method (e.g., in addPair), out indicates output
(e.g., in getString). The attribute string is used
with parameters that are pointers to characters. The
retval keyword indicates that the parameter must be
interpreted as the returned value of the function. It must
do it in this way, because the literal return of the method
is a HRESULT type, which is used to give back the in-
formation of errors.

4.3 Encapsulating a Haskell component
as a COM component

Once the IDL has been specified, the next step is to
generate the proxy and the skeleton of our component.
In order to generate those modules we use the following
(HDirect) command:
ihc -fcom example.idl -s -skeleton

This generates two Haskell files: EXAMPLE.hs and
ExampleProxy.hs. The first one contains the skeleton
of the methods that implement our component, that
is, the Haskell structure for the methods declared in
the IDL. The second one provides a proxy that adapts
our methods behind an interface COM to make the
communication possible.

Regarding the definition of the skeleton, HDirect ac-
complishes three fundamental tasks:

• To import the necessary Haskell modules to give
support to the characteristics of the interface spec-
ified by the IDL.

• To introduce a State type to implement the (neces-
sary) persistence of the functional data by means of
a mutable variable that can be initialized, read and
modified by means of the functions of the IOExts
library of GHC6.

• To include Haskell declarations corresponding to the
functions defined in the IDL. Haskell functions will
have an additional argument corresponding to the
state of the application (that will be able to be read
or modified) and a monadic return type IO t where
t is the (non monadic) type returned as indicated in
the IDL (String or Integer, in our case).

The following step is to fill up the skeleton with the
Haskell code of our methods. In our case, the HList
module contains the methods in pure functional code,
so we will fill up the skeleton with the corresponding
calls to methods and the operations to read and write,
the state by means of readIORef and writeIORef
(defined in IOExts). For instance, for deleteB, we
have:

6 Glasgow Haskell Compiler, http://www.haskell.org/ghc.

module EXAMPLE where (...)

import IOExts

-Pure Haskell Component
import qualified Hlist

data State = State(IORef HList.HL)
.
.
.

deleteB :: State
-> Prelude.IO ()

deleteB (State st) = do
hl <- readIORef st

;str’ <- Prelude.return
(HList.deleteB (HList.getString hl))

; writeIORef st(HList.writeString str’ hl)

4.4 Creating a COM DLL from Haskell
modules

The next step is to compile the two new files to generate
the .hi and .o files and the stubs of the proxy:
ghc -c EXAMPLE.hs ExampleProxy.hs

Now we have to decide how to encapsulate our com-
ponent. HDirect provides solutions to build servers of
internal processes (DLLs) or servers of external pro-
cesses (EXEs). We have chosen to implement a DLL.
Although it entails a bit more effort, the user benefits
from a simpler use of the COM model, as the COM
object is loaded without any intervention from the user.

In order to implement a DLL, the next step is to in-
clude the ComDllMain.lhs and dll_stub.c modules in
the directory and compile them. Finally it is neces-
sary to provide a Main module (required by GHC for
descriptive purposes).

Once the module Main has been compiled, we build
the type library (.tlb) using HDirect from the IDL and
the proxy, generating example.tlb:

ihc -s -fanon-typelib -v -c example.idl -o

ExampleProxy.hs -output-tlb=example.tlb

The type library is a resource that we must bind to our
DLL. Resources are specified using a special and very
simple text file, called resource script or .rc file. The
file contains the specification of the resources that we
want to include in the program or DLL (in our case the
type library) for compiling it with the resource com-
piler. The resource compiler converts the file .rc into an
object file (.o). The resource compiler is a GNU binary
utility called windres. We use it along with cygwin to
include example.tlb in our project. Now, we can build
the DLL.

5 INTEGRATION OF COM INTO .NET
At this point, we must insert the COM DLL into our
Visual Studio.NET project7. Having the DLL, it is
necessary to register the generated component. The
simplest way is using regsvr32.exe, in the command-
prompt window. COM only uses a registry branch:

7 We use Visual Studio.NET 2003.

HKEY_CLASSES_ROOT. Under it, we can find all
the CLSIDs of the components installed in the system.
A CLSID is contained in the registry as an alphanu-
meric string with the following format: {xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxx}.

5.1 Using COM components in .NET ap-
plications

A .NET client cannot directly communicate with a
COM component because the interfaces exposed by
the COM component cannot be read from the .NET
application. The data types, the mechanisms for
managing errors, etc., are different for managed and
unmanaged objects8. In order to simplify the interoper-
ation between the components of .NET Framework and
the unmanaged code, the CLR (Common Language
Runtime) hides the differences between them both to
clients and servers. This is achieved by means of a
RCW (Runtime Callable Wrapper)(to understand the
whole process see Figure 4) . The .NET SDK provides
RCW to obtain it, thus a .NET application can see the
unmanaged component as if it was managed. In .NET
there are several ways to do this:

• Using the Type Library Importer utility (Tl-
bimp.exe), provided together with the .NET
Framework.

• Making reference to the COM component directly
from the C# application.

Tlbimp is a console application that converts the type
definitions found in a COM type library into equivalent
definitions in a .NET assembly. The assembly produced
by the Tlbimp.exe tool is a standard .NET assembly that
can be examined with Ildasm.exe (MSIL disassembler).

Figure 4: Interoperability with .NET from Haskell

After registering our DLL, we use Tlbimp and we run
VS.NET. From our Windows application we click the

8 The .NET native CLR code is called ‘managed’, in contrast to any
other machine-dependent code which is ‘unmanaged’ [Cha02].

right button on the References file in the VS Solution
Explorer, we select Add reference and look for the as-
sembly which we have just generated. Now it can be
used exactly as any other .NET assembly: we just cre-
ate an instance (denoted by h) of the appropriate class:
ExampleClass h = new ExampleClass();

Now we can access to Haskell functions as if they
were C# functions (see Figure 5).

Figure 5: Haskell functions in C#

We can use them to program the event handlers on
the GUI that we have developed.

6 A .NET VERSION OF MU-TERM

MU-TERM is a termination proof tool for (Context-
Sensitive) Rewriting Systems. (Context-sensitive)
Rewrite Systems are useful for describing seman-
tic aspects of a number of programming languages
(e.g., Maude, OBJ2, OBJ3, or CafeOBJ) and
analyzing the computational properties of the cor-
responding programs, in particular termination (see
[DLM+04, Luc01, Luc02]). The tool implements the
generation of the appropriate orderings and transfor-
mations for proving termination. MU-TERM is written
in Haskell and wxHaskell was used to develop the
graphical user interface. The system consists of around
30 Haskell modules containing more than 5000 lines
of code. We refer the reader to [Luc04] for more
information about the use and functionality of the tool.
Compiled versions and instructions for the installation
are available on the MU-TERM WWW site.

We have developed a new (hybrid) version of
MU-TERM which, having the same functionalities
(implemented by the same Haskell modules), includes
a GUI written in C# which replaces the old one. Let’s
take a look to the windows which constitute the GUI
of MU-TERM (see Figures 6 and 7) and let’s consider
the corresponding controls. As it can be noticed,
the controls to manage in the interface are MenuFile,
Button, ComboBox, CheckBox, TextBox, ListBox, etc.
In Section 2 we discussed them and their associated
data. We have applied the process described in Sections
4 to 5 to MU-TERM and the obtained results were very
satisfactory. The new version of MU-TERM is now
composed of the same number of Haskell modules but
the WinMuTerm.hs module, which contained about
1200 lines of code, has been replaced by a new module
WinMuTermNET.hs, that contains less than 800 lines.

On the other hand, the C# part of the .NET version of
MU-TERM (consisting of six new modules with about
2000 lines altogether, most of them generated automat-
ically(!) by the graphic assistant) includes a new C#
module WinMuTermNET.cs that implements the cre-
ation of the new user interface and manages the events
transforming them in function calls to Haskell code by
means of exchanges of strings and integers. This C#
component uses the COM DLL generated from Win-
MuTermNET.hs (together with the other Haskell mod-
ules). The .NET version of MU-TERM is available on
the MU-TERM WWW site.

7 CONCLUSIONS AND FUTURE
WORK

We have shown how to integrate software components
developed in Haskell together with (graphic) compo-
nents developed in C#, or other .NET language. Our
starting point is HDirect which permits to build a COM
component from a Haskell module, and making it avail-
able as a COM DLL which can interoperate with .NET
applications. We have shown the practicality of this ap-
proach by giving a new .NET GUI to a Haskell tool like
MU-TERM. Other remarkable aspects are:

• it is a complete experience of ’weak’ integration
of software components written in a functional lan-
guage like Haskell in a software development plat-
form like .NET that still does not manage the inclu-
sion of sources written directly in this language.

• it is a pioneer experience in the functional program-
ming community, since MU-TERM is the first com-
plex software written in Haskell that uses COM
technology by means of HDirect.

• it is also a pioneer experience for the academic com-
munity interested in the interoperability of program
analysis software tools, specially regarding tools for
proving termination, where interoperability of dif-
ferent tools can be important 9.

In the world of functional languages, there are
more or less complete approximations to .NET for
the languages10. Regarding Haskell, a full-featured
Haskell development environment has been recently
implemented. It is called Visual Haskell [AM05]. Al-
though it is an interesting contribution for the Haskell
community, it does not treat the possibility of building
graphic user interfaces for Haskell programs using
the .NET resources. In their project they have also
used HDirect, although they did not find it completely

9 See, for instance, http://www.lri.fr/~marche/
termination-competition.

10ML http://www.cl.cam.ac.uk/Research/TSG/SMLNET
or Mondrian http://www.mondrian-script.org.

Figure 6: Principal window of MU-TERM

Figure 7: Rest of MU-TERM windows

appropriate for their purposes. This is also in contrast
to ours: due to the simplicity of the information
exchange between the C#-based user GUI and the core
Haskell application, we find HDirect to be easy to use
(although it took time to reach a sufficient know-how).
For instance, HDirect limits the structures of Haskell
data that are directly interchangeable by means of
COM to strings and integers (of 32 bits). This can be a
problem for most applications, but it is not problematic
for developing GUIs, since the involved data types (see
Section 2) are easily exchangeable in such format.

These initiatives to integrate functional languages
into the .NET framework reveal the interest of the
community to converge to this platform. Our expe-
rience is also encouraging. We plan to develop the
theoretical aspects of our work, and also envisage
possible extensions of this experience to other tools
and programming languages in the future. In particular,
we want to explore the use of the .NET facilities for
using Web Services based on XML with these tools
and programming languages. A first candidate, again,

could be the termination tool MU-TERM.

ACKNOWLEDGEMENTS
Work partially supported by Spanish MEC grant SELF
TIN 2004-07943-C04-02, Acción Integrada HU 2003-
0003, and EU-India Cross-Cultural Dissemination
project ALA/95/23/2003/077-054.

REFERENCES
[AM05] K. Angelov and S. Marlow. Visual Haskell. In Proc.

of Haskell Workshop, Haskell’05, pages 5-16, ACM
Press, 2005.

[Arc01] T. Archer. Inside C#. McGraw-Hill, 2001.

[Cha02] D. Chappell. Understanding .NET. Addison Wesley,
2002.

[COM04] COM, Component Object Model. http://www.
etse.urv.es/EngInf/assig/ens4/2004/
net4a.pdf

[DLM+04] F. Durán, S. Lucas, J. Meseguer, C. Marché, and X.
Urbain. Proving Termination of Membership Equa-
tional Programs. In P. Sestoft and N. Heintze, editors,

Proc. of ACM SIGPLAN 2004 Symposium on Partial
Evaluation and Program Manipulation, PEPM’04,
pages 147-158, ACM Press, New York, 2004.

[Fin99] S. Finne. HaskellDirect UserÂ«s Manual. Novem-
ber, 1999.

[FLMP99] S. Finne, D. Leijen, E.Meijer, S. Peyton Jones. Call-
ing hell from heaven and heaven from hell. In Proc.
of 4th ACM SIGPLAN International Conference on
Functional Programming, ICFP’99, Sigplan Notices
34(9):114-125, 1999.

[FPB+03] J. Ferguson, B. Patterson, J. Beres, P. Boutquin, and
M. Gupta. C#’s bible. Microsoft Press, 2003.

[HDi99] H/Direct: supporting component programming
in Haskell. http://www.haskell.org/
hdirect/design.html#toc3

[Hlu98] B. Hludzinski. Understanding Interface Defini-
tion Language: A Developers Survival Guide,
1998. http://www.microsoft.com/msj/
0898/idl/idl.htm

[Hoa03] T. Hoare. The Verifying Compiler: A Grand Chal-
lenge for Computing Research. Journal of the ACM,
50(1):63-69, 2003.

[Luc01] S. Lucas. Termination of Rewriting With Strategy
Annotations. In Proc. of LPAR’01, LNAI 2250:669-
684, Springer-Verlag, Berlin, 2001.

[Luc02] S. Lucas. Context-sensitive rewriting strategies. In-
formation and Computation, 178(1):293-343, 2002.

[Luc04] S. Lucas. MU-TERM: A Tool for Proving Termina-
tion of Context-Sensitive Rewriting In V. van Oost-
rom, editor, Proc. of 15h International Conference
on Rewriting Techniques and Applications, RTA’04,
LNCS 3091:200-209, Springer-Verlag, Berlin,
2004. Available at http://www.dsic.upv.es/
~slucas/csr/termination/muterm.

[Rog97] D. Rogerson. Inside COM. Microsoft’s Component
Object Model. Microsoft Press, 1997.

[Ste04] P. Steele. 15 Seconds: COM Interop Exposed.
2004. http://www.15seconds.com/issue/
040721.htm

[Tro02] A. Troelsen. COM and .NET Interoperability.
Apress, 2002.

