
Knowledge.NET ontology-based knowledge
management toolkit for Microsoft.NET

Vladimir Safonov
St. Petersburg university

28 Universitetsky prospect
Petrodvorets

 St. Petersburg 198504 Russia

v_o_safonov@mail.ru

Anton Novikov
St. Petersburg university

28 Universitetsky prospect
Petrodvorets

 St. Petersburg 198504 Russia

antonnovik@gmail.com

Alexey Smolyakov
St. Petersburg university

28 Universitetsky prospect
Petrodvorets

 St. Petersburg 198504 Russia

smlkvalex@mail.ru
 Dmitry Cherepanov Maxim Sigalin

 St. Petersburg university St. Petersburg university
 28 Universitetsky prospect 28 Universitetsky prospect

 Petrodvorets Petrodvorets
 St. Petersburg 198504 Russia St. Petersburg 198504 Russia

 hail@pochtamt.ru max_ilya@mail.ru

ABSTRACT

The integration of knowledge engineering to software engineering is one of the most promising software
development methodologies. It enables the combination of “traditional” programming features with knowledge
engineering constructs in one intelligent solution, which is desirable in modern software development.

Most of knowledge engineering tools are isolated, limited and based on very specific languages such as clones
of LISP[Car60a] or PROLOG[Der96a]. As such, they are prevented from integrating them with more
conventional languages and application packages.

In contrast, our Knowledge.NET knowledge management toolkit for Microsoft.NET is based on a hybrid
knowledge representation language, an extension of C# with knowledge engineering features – ontologies and
rule sets.

The system can be used to develop knowledge libraries (bases) and intelligent solutions for a variety of problem
domains. The knowledge can be developed using the Knowledge.NET system knowledge editor, or can be
extracted from the Internet or any text files.

The system also provides a knowledge converter from Knowledge.NET format to more commonly used KIF
(Knowledge Interchange Format).

Keywords
Microsoft.NET, knowledge management, ontology, rule set, C#, converter, knowledge extractor, knowledge
editor, Knowledge Interchange Format, knowledge converter, Microsoft Visual Studio.NET 2005, add-in

1. INTRODUCTION
Knowledge engineering originated in 1950s as a
part of Artificial Intelligence (AI). In general, it
studies how to create expert systems that solve
“creative” problems in certain problems domain
[Saf91a]. In reality, many problems can’t be

resolved by pure algorithms only. Problem solving
can be also related to some hierarchical
(conceptual), factual and heuristic knowledge.
Some of the popular methods of knowledge
representation listed below:

• Productions – represents knowledge as a
set of rules: IF condition THEN action.
Rules are convenient for representing
heuristic knowledge. Nowadays,
PROLOG is the most common language to
build rule-based expert systems;

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

• Frames – hierarchical knowledge
structures. A frame has a set of slots and
can be inherited from other frames. In
turn, each of the slots has a value which

mailto:v_o_safonov@mail.ru
mailto:antonnovik@gmail.com
mailto:smlkvalex@mail.ru
mailto:hail@pochtamt.ru
mailto:max_ilya@mail.ru

can be a value of simple type as well as a
reference to another frame. The concept
of frame was introduced by Marvin
Minsky in 1970s [Min74a].

• Ontologies. The term ontology was
borrowed from philosophy in early 1990s.
The most known definition of ontology
was formulated by Tom Gruber: “An
ontology is an explicit specification of a
conceptualization”. More specifically, we
define the ontology as a kind of
specification of a problem domain in terms
of its concepts and their relationships that
allows to describe and to share hierarchical
and factual knowledge in very efficient
way. Knowledge Systems Laboratory of
Stanford University supports visualization
tool Protégé [Tut04a], which allows to
manage ontology-based and frame-based
knowledge.

Usually, knowledge engineering tool supports only
one type of knowledge and has a very specific and
limited semantic of base language, e.g. LISP,
PROLOG. In our opinion, it increases complexity
of usage of these tools. In contrast to many other
tools, Knowledge.NET supports hybrid knowledge
(productions, ontologies). More of that, as a base
language, we use C# [Spe05a] extended by
additional keywords and constructs for knowledge
representation.
In section 2 we briefly describe principles of the
Knowledge.NET system. In section 3 we present
our approach to convert knowledge into KIF
format. Section 4 briefly describes knowledge
extractor subsytem. The summary section
concludes and outlines the perspectives for the
future.

2. PRINCIPLES OF
KNOWLEDGE.NET
Seamless Integration to Visual Studio
Like Aspect.NET, the Knowledge.NET system is
implemented as an add-in to Visual Studio.NET
2005. It actually means that, on installing the add-
in, Knowledge.NET GUI becomes part of Visual
Studio GUI. Due to that, it is possible to use all of
VS.NET’s wide spectrum tools and features for
application design, implementation, debugging,
profiling, etc., when developing an intelligent
solution in Knowledge.NET. The add-in contains
the following components:

• Knowledge Editor and Coloring;

• Coloring and IntelliSense for
Knowledge.NET language;

• Add new type of projects:
Knowledge.NET

Hybrid Knowledge Representation
Language
The Knowledge.NET language is an extension of
C# by constructs for representing hybrid, ontology-
based knowledge. Semantics of ontology in
Knowledge.NET is similar to that of the OWL
knowledge representation language [Ove04a]
developed by the W3C consortium.

A Knowledge.NET source code is at first converted
into the ordinary C# code, and then compiled by the
.NET C# compiler into an assembly that can be
used as any other .NET application.

2.1.1 Program structure
A Knowledge.NET application source code
consists of the following parts

• С# source code;
• Knowledge .NET – specific source code

(concepts, properties, instances, rule sets)
The С# source code part is separated from
Knowledge .NET source code by the “#ontology”
keyword.

The user can use from her C# code concepts and
their properties using standard way of addressing:
[concept_name].[property_name]

Query language
The Knowledge.NET query language is one of the
ways of accessing its knowledge base. It allows to
select from ontology instances satisfying a given
criterion (query).
As an example, consider a query on the ontology
“Vehicles”: “All the vehicles whose maximal speed
is not more than 100 kilometers per hour”:
Individuals of concepts Vehicle where
HasMaximumSpeed <= 100
The result of the above request will be a set of
instances of the Vehicle concept whose
HasMaximalSpeed property’s value is not greater
than 100 km/hour.
The query language is supported by the
QueryEngine class defined in the Knowledge.NET
class library.

Rule sets
Besides conceptual knowledge representation,
Knowledge.NET also allows to define heuristic
knowledge using rule sets. Thus, the above

mentioned hybrid knowledge framework is
supported. The format of rule set is very close to
that used in the KEE system. As a context of a rule
set, an ontology is used which contains that rule set.
To use rules, Knowledge.NET contains a classical
style implementation of forward and backward
chaining. If necessary, one can use her own
inference engine by implementing the
IProductionSystem interface.

Knowledge Editor
Besides the Knowledge.NET language, we also
developed a Knowledge Editor (see fig. 1). The
editor can be used to browse, update and enter
knowledge. So, the knowledge engineer can work
either in interactive mode or by creating knowledge
directly in Knowledge.NET source. The knowledge
editor also allows to navigate from graphical
knowledge representation to textual knowledge
representation and to call the converter from
Knowledge.NET into C#.

fig. 1

3. SUPPORTING FOR THE KIF
FORMAT

Knowledge.NET also contains a converter of
knowledge from Knowledge.NET to KIF
(Knowledge Interchange Format) [Spe98a], to
make the knowledge created in Knowledge.NET
available for experts working in more traditional
KIF format.
The conversion process consists of two stages. At
the first stage the input document in
Knowledge.NET is parsed and its internal
representation is generated, in the format of the
well known Ontolingua [Man97a] knowledge
representation language. Actually at this stage the
conversion process can be finished: the user can
now use the output document in Ontolingua format.
This approach is convenient because the user may
convert this document into any of the knowledge
representation languages supported by Ontolingua
(in particular, to use the Ontolingua’s KIF
compiler).
At the second stage, the knowledge is converted
into KIF format.

Overview of Ontolingua.
Ontolingua is a knowledge engineering
environment containing a set of functions to work
with ontologies (browsing, creating, updating and
using). The Ontolingua language is a superset of
KIF and contains constructs to represent frames and
ontologies. The system also has a number of
translators into other knowledge representation
languages – Loop, Epikit, Express, Generic-Frame,
Algernon, IDL and into KIF [Gru93a].

The Conversion Process
At the first stage, frames and concepts are
converted into structures corresponding to
Ontolingua’s define-class and define-instance (for
instances), properties – to define-relation.
At the second stage, the following happens:

1. All the used relations are determined.
Their representation in terms of KIF is written to
the output stream.

2. define-relation and define-class are
transformed into the DEFRELATION construct of
the KIF language the following way:
 :IFF-DEF replaced by ":="
 :DEF replaced bt ":=>"
 :CONSTRAINTS replaced by "=>"
 :EQUIVALENT replaced by "<=>"
 :AXIOM-DEF replaced by :AXIOM
3. For all primitive numbers used in the input
Knowledge.NET source, the appropriate relations
are generated (using the defrelation construct). The

following two KIF built-in numeric relations are
used:
integer - expression(integer t) denotes
that the t object is an integer;
real and (real t) – the same for real
numberss.
For example, the byte type can be converted as
follows:
 (defrelation byte (?x) :=
 (and (natural ?x) (<= ?x 255)))
 (defrelation natural (?x) :=
 (and (integer ?x) (>= ?x 0)))

4. DATA MINING

Knowledge.NET contains a knowledge extractor.
This subsystem can be used to generate “raw”
ontology from an array of documents or from some
repository (e.g., from the Internet).
The scheme of functioning of the knowledge
extractor is as follows:

• Morphological analysis of the input text
and constructing a set of entities;

• Semantic analysis of the set of entities and
constructing the knowledge graph;

• Analysis of the knowledge graph.
Morphological Analysis
At this stage, each word is converted to its normal
form using MRD dictionaries and XML
dictionaries.

Semantic Analysis
At this stage, a knowledge graph is constructed,
with the nodes representing entities and edges
representing relations. Analysis of entities is
performed by customizable templates written in a
specialized macro definition language.

Analysis of the Knowledge Graph
At this concluding stage:

• Different properties can be unified into
one class. For example, the properties
“big” and “giant” can be united into one
class

• The graph is cleaned up to delete obsolete
relations. For example, if an ascendant
class has some property, the same property
can be omitted from its descendant classes.

5. SUMMARY

Currently the work on Knowledge.NET is at the
initial stage – the first prototype is developed and
will be used to solve a variety of practical tasks that
require using both “traditional” programming and
knowledge engineering.
In future, we plan to integrate Knowledge.NET
with Aspect.NET [Saf05a], to enable using
Knowledge.NET for aspect-oriented knowledge
engineering.

6. REFERENCES
1. [Gru93a] Gruber, T.R. A Translation

Approach to Portable Ontology
Specifications, 1993

2. [Man97a] Ontolingua Reference Manual at
http://www-
ksl.stanford.edu/htw/dme/thermal-kb-
tour/ontolingua.html

3. [Ove04a] OWL Web Ontology Overview
at http://www.w3.org/TR/owl-features/

4. [Saf91a] Safonov, V.O. TIP technology
and its application in developing compilers
and expert systems for high-performance
computing systems. Doctoral dissertation,
Leningrad, 1991

5. [Saf05a] Safonov, V.O. Aspect.NET:
Aspect-Oriented Programming for
Microsoft.NET in Practice. NET
Developer’s Journal, July 2005

6. [Spe98a] KIF language specification at
http://logic.stanford.edu/kif/dpans.html

7. [Spe05a] C# Language Specification at
http://msdn.microsoft.com/vcsharp/progra
mming/language/#Language%20Specificat
ions

8. [Tut04a] Protégé OWL Tutorial at
http://www.co-
ode.org/resources/tutorials/ProtegeOWLT
utorial.pdf

9. [Min74a] Minsky, M. A Framework for
Representing Knowledge, MIT-AI
Laboratory Memo 306, 1974

10. [Car60a]McCarthy, J. Recursive Functions
of Symbolic Expressions and Their
Computation by Machine, Part I, April
1960

11. [Der96a]Deransart, P., Ed-Dbali, A., and
Cervoni, L. Prolog: The Standard, 1996

http://www-ksl.stanford.edu/htw/dme/thermal-kb-tour/ontolingua.html
http://www-ksl.stanford.edu/htw/dme/thermal-kb-tour/ontolingua.html
http://www-ksl.stanford.edu/htw/dme/thermal-kb-tour/ontolingua.html
http://www.w3.org/TR/owl-features/
http://logic.stanford.edu/kif/dpans.html
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf

	INTRODUCTION
	Knowledge engineering originated in 1950s as a part of Artif
	Some of the popular methods of knowledge representation list
	PRINCIPLES OF KNOWLEDGE.NET
	Seamless Integration to Visual Studio
	Hybrid Knowledge Representation Language
	Program structure

	Query language
	Rule sets
	Knowledge Editor

	SUPPORTING FOR THE KIF FORMAT
	Overview of Ontolingua.
	The Conversion Process

	DATA MINING
	Morphological Analysis
	Semantic Analysis
	Analysis of the Knowledge Graph

	SUMMARY
	REFERENCES

