
eXtensible Multi Security:
Contracts for .NET Platform

Wiktor Zychla
University of Wroclaw, Poland

wzychla@ii.uni.wroc.pl

Abstract

This paper presents XMS – a language independent security framework calledeXtensible Multi Securitywhich is designed to
verify that modules written in .NET languages are safe with respect toContractsSafety Policy. Dynamic verification engine
uses code instrumentation to supervise the execution and validate contracts at run-time. Static verification engine is based on
the Proof-Carrying Code paradigm where it is up to the Code Producer to construct aCertificate of Safety– formal logic proof
enclosed in the code – which can be used by a Code Consumer to verify that the code is secure.

Keywords: intermediate language, dynamic verification, static verification, contracts

1 INTRODUCTION

Distributed systems play a major role in today’s com-
puter systems. However, the convenience and freedom
offered by such systems is sometimes misused. The
software and the hardware is a potential victim to a ma-
licious virus, the data is a potential victim to a trojan
horse or a spy-software.

In fact, there is a lot of carelessness when dealing
with distributed systems. There are critical bugs found
even in vital parts of Operating Systems and commonly
used applications. It is still very easy to trick the trust-
ing user and make him run a malicious code on his sys-
tem and it is usually impossible to check the software
and decide if it is secure or not.

Alas, over forty years after the Internet has been born,
the majority of users still have to believe that the soft-
ware they buy or download is secure in the sense that it
will not do any harm to their hardware and data.

Widely spread antivirus software can detect several
thousands of computer viruses. That’s good. Alas, it is
able to detect only these viruses that are known. That’s
bad. If a new virus is released, my machine is probably
vulnerable again.

Runtime environments can dynamically supervise the
code execution and disallow the execution of some po-
tentially harmful activities. That’s good. They cannot
however make sure that the code runs correctly. That’s
bad. Even the fancy managed code is not a bit helpful

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

when the banking software steals money from my bank
account.

The goal of eXtensible Multi Security (XMS) is to
unify various ideas in one coherent and extensible plat-
form. XMS evolved from logic systems that form a
powerful certification framework based on a notion of
Proof Carrying Code (PCC, [11]).

The original PCC approach focuses on type-safety.
However, the type-safety does not guarantee that other
important aspects of safety are preserved. In fact, vari-
ous aspects of security are rather independent. For ex-
ample, the code can be type-safe but not correct or type-
unsafe but perfectly safe from the control flow point of
view.

This is where the XMS starts. XMS infrastructure
focuses on selected notions of security and applies
them to the existing Microsoft Intermediate Language
(MSIL) Runtime Environment. XMS is designed
in the spirit of .NET platform – digital certificates
are language independent. Certificates are put in
attributes and then stored in binarymeta-dataso that
they do not play any role in the code execution but
instead they can be used in the verification process.

XMS is a Work in Progress – currently about60%
from over 200 MSIL opcodes are supported by Static
Contracts certification tools. Since compilers of some
high-level languages use only selected subsets of MSIL
opcodes, XMS is yet compatible with some existing
high-level compilers, for example the C# compiler.

1.1 Static vs Dynamic Security
In dynamicchecking, the safety policy is constantly
checked at the run time. This of course requires the
existence of a virtual machine or a runtime environ-
ment that would be powerful enough, in the sense that
it could detect any activity that breaks the safety policy.
An example of such an infrastructure is the Java Vir-
tual Machine or the Microsoft .NET Framework. Both
"supervise" the execution of code, and enforce precise

checks before any potentially dangerous instruction is
executed.

On the other hand in the process ofstatic checking
the code is verified without being actually run. The an-
swer of a static check is always positive or negative,
and the code is accepted or rejected. It is impossible
to break the execution in the middle, as in the dynamic
approach. A static checking does not necessarily need
any support from a runtime environment. In this sense
it is more general than the other. However, the static se-
curity policies are usually less precise because all non-
trivial security policies are undecidable. The user must
then accept the fact that some programs would be mis-
judged which means that some perfectly legal programs
could be rejected (the opposite situation, where an il-
legal code was accepted, would be a true disaster and
should never happen).

All these observations lead to an obvious conclusion:
there is no perfect way to enforce a safety policy. The
best what we could probably do would be to put the
advantages of dynamic and static checking together in
a framework that unifies all advantages of these two.

1.2 XMS = Static + Dynamic Security
This is exactly what XMS is. On one hand, XMS is
built to certify .NET code and that is why .NET dy-
namic security policies are still validated in run-time.
On the other hand, XMS is built on the top of the Proof
Carrying Code paradigm and that is why the safety poli-
cies are verified statically.

Here is a short summary of XMS benefits:

• XMS is designed to certify the MSIL language, one
of the most promising and widely used intermediate
languages.

• XMS certificates are compatible with high-level
.NET languages. A high-level language developer
does not need to knowMSIL to certify the code.

• To support XMS the .NET Runtime Environment
does not need to be changedin any way.

• XMS certificates are built around the notion of PCC
thus inherit all desirable properties of PCC:

– the certificates are sufficient to guarantee that the
code is valid,

– the authority of a code producer is completely in-
significant to the code security.

2 COMPARISON TO RELATED
WORK

Formal verification of software has long history ([15]).
The PCC framework ([11]) was a milestone at this area.
PCC was proposed to certify the type-safety of low
level languages as the alternative to the TAL ([14]).
There are several main PCC research directions:

• exploiting the core of PCC paradigm ([5])

• applying PCC type-safety to industrial environments
([9])

• developing other safety policies for research lan-
guages ([1], [2])

For many reasons the type security is strongly desir-
able for assembly-level languages. In such approach the
primary goal of PCC is to validate the language com-
piler by detecting compile-time bugs. This idea was fur-
ther adopted to certify the type safety of Java binaries
at machine-level (SpecialJ compiler described in [9]).

Initially XMS started as a PCC variant for a toy-like
object language. After migration to .NET platform,
XMS marks out its own way:

• XMS does not certify type-safety of the low level
language but instead it allows to certify other safety
policies of the MSIL language.

• Since the certificates can be applied to any high-
level language, XMS is more general than solutions
bound to a single low-level ([11]) or high-level ([6])
language.

• XMS will ultimately adopt other security policies,
such as Non-Interference, to its verification engine

Currently, as a contract verification framework, XMS
competes with specialized contract frameworks for
.NET Platform like the Spec# ([20]). Major differences
between these two:

• Unlike XMS, Spec# is bound to a single language -
it is a superset of C#.

• Unlike XMS, Spec# is bound to a single safety pol-
icy (contracts). XMS is an extensible framework
with pluggable verification engines

• In Spec# contracts are declared using the language
extensions and turned into inlined code during the
compilation. In XMS, contracts are external to the
language (attributes) and code instrumentation tech-
niques are used for dynamic analysis

• Spec# uses its own intermediate representation of
the code, BoogiePL, which is interpreted and trans-
formed before it is provided to the theorem prover.
XMS uses symbolic evaluation to build verifica-
tion traces directly from the .NET Intermediate Lan-
guage code.

3 XMS CERTIFICATES

3.1 Certification Scheme
The PCC certification scheme is based onVerification
Conditions, logic predicates that contain information

about the execution of programs. XMS Verification
Conditions are built by theVCGen – a tool that scans
MSIL binaries and performs symbolic evaluation of the
MSIL code. The Theorem of XMS Safety (3.1) says
thatif certificates are provablethen properties of corre-
sponding programs hold. Thus, formal proofs of Veri-
fication Conditions can be used asdigital certificates.
Such certificates are unbreakable since it is impossible
to hack a formal logic system if it is proven to be sound
and correct.

The XMS certification protocol assumes that a Safety
Policy is shared between Code Producer and Code Con-
sumer. The protocol is shown in Figure 3.

Figure 1: XMS Certification Protocol

The Code Producer and Code Consumer use the same
public and verified safety policy that define logic and al-
gorithms to build Verification Conditions for each logic.

The Code Producer:

1. adds method specifications to the source code,

2. uses VCGen to build and encode Verification Con-
ditions (VC),

3. constructs proofs for VCs,

4. embeds VCs and proofs as a metadata (metadata is
not used at runtime but is extracted in the certifica-
tion process).

The Code Consumer:

1. uses VCGen to build Verification Conditions,

2. checks if the same VCs have been supplied with the
code by the Code Producer,

3. validates the correctness of proofs (certificates).

Note that the protocol can fail at some point at the
Code Consumer side. Specifically:

1. the MSIL binary does not contain the metadata that
is required to build Verification Conditions,

2. the predicates built at Code Consumer side can differ
from these supplied with the code,

3. proofs supplied with the code can be invalid in the
sense that they do not prove Verification Conditions.

If the protocolfails for any of these reasons the Code
Consumer shouldreject the code as unsafe.

XMS introduces the concept ofVerification Traces.
While Verification Condition is a predicate that cap-
tures any execution of a method, the Verification Trace
is a predicate that represents execution of a single trace
of a method. And while Verification Condition acts like
a digital certificate which verifies code correctness, Ver-
ification Traces can be used by developers to identify
possible invalid execution traces in the code - any Ver-
ification Trace that is not provable refers such possible
invalid execution sequence.

3.2 Contracts

The Design By Contractsparadigm lays the base for
systematic object-oriented development [7]. It defines
a precise framework where software components can
be seen as communicating entities whose interaction is
based on mutual obligations. These obligations take
the form of predicates: preconditions, postconditions
and invariants. It means that the specification of each
method must be a quadruple:

SpecF = (SigF ,PreF ,PostF , InvF)

whereSigF is a method’s signature,PreF is a pre-
condition predicate,PostF is a postcondition predicate,
InvF is a partial function that maps MSIL instruction
numbers to invariants.

Currently XMS supports Eiffel-style Contracts [8]
with the complete compatibility (i.a. subcontracting) as
the ultimate goal. Contracts are provided in attributes.

3.3 Dynamic Contracts

There are two main techniques of code instrumenta-
tion for the .NET platform, .NET Profiler API and
context-bound objects. .NET Profiler API is a great
way for transparent instrumentation since is it com-
pletely decoupled from the source code. It is how-
ever COM-based and thus not portable. For now XMS
uses then context-bound objects and by implement-
ing IContributeServerContextSink interface
it is able to intercept method invocations and returns.

3.4 Static Contracts

Both Security Policy for static verification and accom-
panying Theorem are stated formally using formal op-
erational semantics of the .NET intermediate language
(defined for XMS formally by following the .NET draft
[21]).

Definition 3.1 (Safety Policy of Contracts).A method
F is safe with respect to Static Contracts if for any ini-
tial stateΣ0 = (0,ρ0) such thatρ0(PreF) and any state
Σ = (i,ρ) reachable from the initial state we have that
if Fi = ret thenρ(PostF). We will denote this fact as
SafeSC(F).

SafeSC(F)⇐⇒

∀Σ0=(0,ρ0),Σ=(i,ρ) ρ0(PreF) ∧ Σ0 7→∗ Σ ∧ Fi = ret⇒

ρ(PostF)

A moduleM is safe with respect to Static Contracts
if all methods from the module are safe. We will denote
this fact as SafeSC(M).

SafeSC(M)⇐⇒∀F∈M SafeSC(F)

This formal definition gives the base of the XMS
Static Contracts certification. It says that if a method’s
precondition is satisfied when the execution begins then
the method is safe only if the postcondition is satisfied
when the execution is about to end. It also says that
Static Contracts aremodularwhich means that a mod-
ule is safe only if all its methods are safe.

The underneath theorem is the central part of Static
Contracts for XMS. It formally states the soundness of
the VC-based certification framework.

Theorem 3.1 (Theorem of Safety for Static Con-
tracts). If the verification condition for a given mod-
ule M is valid, i.e. if |= VC(M) then all executions
of any module methods are correct with respect to their
contracts, i.e. SafeSC(M).

The VCGen algorithm the theorem refers to and the
proof of the theorem are long, technical and will not be
presented here. Both are inductive on the MSIL instruc-
tion set.

Symbolic evaluation of an object language (like
MSIL) which is a heart of the algorithm arise several
issues:

arithmetics an arithmetic instruction causes VCGen to
update its symbolic store to new state.

conditionals a conditional jump causes VCGen to split
the symbolic evaluation into recursive paths for all
branches. Conditions became assumptions inside
the verification predicate.

backward jumps backward jumps could lead to infi-
nite analysis. VCGen requires then that each back-
ward jump targets instructions which haveinvari-
ants provided. Invariants are validated when they
are seen for the first time and then validated again
when a backward jump is encountered.

method calls a method call makes VCGen to put the
method’s precondition as an assumption into the
predicate and then initialize a new state with all
variables which could be modified inside the called
method (out parameters) set to new, fresh values.

objects objects are evaluated symbolically.

arrays an array is stored as a index-value dictionary.

polymorphism is it not known until the run-time
which exact method is called from a class hierarchy.
VCGen relies here on asubcontractingparadigm
([8]) according to which contracts of inherited
methods must depend on contracts of base-class
methods.

0-values contracts must allow to use original values in
postconditions. VCGen uses special form of an as-
sumption to support such possibility.

3.5 XMS Architecture
XMS Architecture is presented in Figure 2. Both en-
gines (static and dynamic) are written in C#.

The main core of the dynamic verification engine is
about 250 lines long and uses .NET context attributes
and message sinks to instrument the code at run-time.
Expressions are evaluated using .NET dynamic code
execution technique.

The main core of the static verification engine has
currently 1500 lines of code but uses external parser
for specification parsing and external IL decompiler.
The symbolic evaluator maintains the state of evaluated
code between recursive calls and produces either one
Verification Condition or a set of Verification Traces for
each method. A simple windowed user interface is pro-
vided for user’s convenience.

Figure 2: XMS Architecture

3.6 An Example of XMS Certification
To give a glimpse of the XMS framework we present a
simple example of an interactive session with the XMS
toolkit.

Suppose that the Code Producer has a code of a sim-
ple C# method to compute the GCD of two positive in-
teger numbers using the Euclid algorithm:

[XMS_Spec(
"x>=0 & y>=0", "VALUE = GCD(x,y)",
"GCD(x,y)=GCD(V_0,V_1)", "by auto.")]

public static int GDC(int x, int y) {
int k = x;
int l = y;

while (k-l != 0) {
if (k > l)

k -= l;
else

l -= k;
}

return k;
}

There is nothing special with the code except for the
XMS_Specattribute. It is supplied by the Code Pro-
ducer and it carries the information about the method’s
specification:

• the precondition:x≥ 0 ∧ y≥ 0

• the postcondition:VALUE= GCD(x,y)

• the loop invariant:GDC(x,y) = GDC(V0,V1)

The precondition establishes an initial assumption on
method’s parameters. The postcondition characterize
method’s expected behaviour. The invariant describe a
constant condition that is valid in any execution of the
loop.

The Verification Condition Generator (VCGen) pro-
duces the Verification Condition that captures all es-
sential aspects of arbitrary invocation of the method.
Both Code Producer and Code Consumer use VCGen
invoked on a binary module:

> VCGen.exe gdc.exe

It examines the module structure, reads the MSIL bi-
nary code and specification metadata and produces the
Verification Condition. Note how the specification and
conditional branches become assumptions for further
parts of the VC.

forall x. forall y. (x >= 0 & y >= 0 =>
(((x-y) =0=> x = GCD(x,y)) &

((x-y)!=0=>GCD(x,y)=GCD(x,y) &
forall V_0_. forall V_1_.

GCD(x,y)=GCD(V_0_,V_1_)=>

((V_0_>V_1_ =>
((((V_0_-V_1_)-V_1_) =0=>

(V_0_-V_1_) = GCD(x,y)) &
(((V_0_-V_1_)-V_1_)!=0=>

GCD(x,y)=
GCD((V_0_-V_1_),V_1_)))) &

(V_0_<=V_1_ =>
(((V_0_-(V_1_-V_0_)) =0=>
V_0_ = GCD(x,y)) &

((V_0_-(V_1_-V_0_))!=0=>
GCD(x,y)=
GCD(V_0_,(V_1_-V_0_)))))))))

The last XMS attribute parameter, "by auto. " is
the proof of the predicate supplied by the Code Pro-
ducer. In our example this is a simple proof for a tac-
tical theorem prover. The Code Consumer uses this
proof to verify the reliability of the C# method – be-
cause the proof is correct for the Verification Condition
(|= VC(F)), the Code Consumer can be sure thatany
execution of the method is safe according to the Static
Contracts Safety Policy (SafeSC(F)). Ultimately, XMS
will allow to use a tactical theorem prover (Isabelle) to
shorten proofs or a proof checker (Twelf) for faster val-
idation.

Another example:

[XMS_Spec(0,
"n >= 0",
"VALUE=sum(0, n)",
"V_0=sum(0, V_1) & n >= V_1",
"", "")]

public int Sum_I(int n)
{

int sum = 0;
for (int k=0; k<=n; k++)
{

sum += k;
}

return sum;
}

Produces following Verification Condition:

forall n. (n >= 0 => 0=sum(0, 0) & n >= 0 &
forall V_0_. forall V_1_.
V_0_=sum(0, V_1_) &
n >= V_1_=>

((V_1_<n => (V_0_+(V_1_+1))=
sum(0, (V_1_+1)) & n >= (V_1_+1)) &

(V_1_>=n => V_0_=V_0_ &
V_0_=sum(0, n))))

Let us also look at the example of dynamic verifica-
tion:

[XMSIntercept]
public class Test : ContextBoundObject
{

[Process(typeof(XMSProcessor))]
[XMS_Spec(1,

"true",
"x == y_0 && y == x_0", "", "", "")]

public void Swap(ref int x,
ref int y)

{
int z = x;
x = y;
y = z;

}
}

This time the method is declared to swap input val-
ues, the return value ofx is equal to original value ofy
(y0) and vice versa. Actual client code:

int u = 0, v = 1;
t.Swap(ref u, ref v);

And the engine outputs:

Preprocessing Test.Swap.
Specification found:
Pre=[true]
Post=[x == y_0 && y == x_0]

Precondition : true
Substituted expression : true
Evaluated expression : True

Postcondition : x == y_0 && y == x_0
Substituted expression : 1 == 1 && 0 == 0
Evaluated expression : True

4 FROM MSIL TO HIGH-LEVEL LAN-
GUAGES

The .NET paradigm unifies many programming lan-
guages at MSIL level. Whether you use C#, VB.NET,
Managed C++ or any other .NET language, your code
can closely cooperate with any other .NET code.

Since the Verification Condition Generator works at
MSIL level, it cannot determine which language was
used to produce MSIL binary. And no matter if a binary
was produced by IlAsm compiler, C# compiler or any
other language compiler, it should be certifiable in the
uniform way.

The goal of "lifting" the certification framework from
MSIL to a high-level language is then executed under
two paradigms:

• A high-level language developer should not be
forced to learn MSIL language. In particular, a
solution where a high-level code is first compiled to
MSIL and then manually certified is unacceptable.
Certificates should be then easily applicable to a
high-level language code.

• A high-level compiler should not require any major
changes to support the certification. In fact, it would
be perfect, if the high-level compiler did not require
any changes. In particular, existing high-level lan-
guage compilers should not damage certificates that
were applied to high-level code.

It seems that comparing to other security policies,
Static Contracts is quite difficult to be lifted to high-
level languages. There are several important difficulties
that have to be addressed:

• Static Contracts Invariants have the formInvF(i) =
(P, . . .) wherei is the MSIL instruction number and
P is the invariant predicate. It could be however
extremely difficult to determine the MSIL instruc-
tion number for given high-level instruction, since it
would require a deep knowledge of compiler trans-
formation routines.

• During the compilation to MSIL, names of local
variables are omitted.

The first difficulty can be addressed with a clever
technical trick. We would like to avoid attributing in-
struction numbers to invariant predicates. We would
rather like to have an ordered set of invariants:

InvsF = (P0, . . . ,Pn)

and somehow inferInvF from it by mapping consecu-
tive invariants to instructions that need invariants.

This goal can be achieved with additional scan of
the binary code which could discover instructionsI =
(i0, . . . , ik) that are targets for backward jumps.

We could then take:

InvF(i) =
{

Pj if i = i j for somej and j ≤ n
ε in other case

The second difficulty can be addressed by "virtually"
renaming consecutive local variables tov0, . . . ,vn and
using these "virtual" names in specifications by a high-
level language developer.

4.1 Common Certificate Specification
Both above technical tricks require that the high-level
language satisfies two important conditions. These con-
ditions areessentialfor the "lifting" process to work,
so we will formulate them as theCommon Certificate
Specification(by analogy to Common Language Spec-
ification and Common Type System, two fundamental
.NET paradigms). The Common Certificate Specifica-
tion is as follows:

Variable Ordering Consecutive high-level language
local variables become consecutive MSIL local
variables.

Structure of Loops High level language loops be-
come MSIL loops with as simple structure as
possible.

While the above specification does not look formal
enough, we are not going to make it formal. It is be-
cause some important existing compilers (like the C#
compiler) fulfill both these requirements, so the CCS
formulation should be treated as a set of guidelines for
new compilers.

Both requirements are crucial for proper translation
of loop invariants between a high-level language and
MSIL. In an example from section 3.6 the loop invariant
refers to variablesk and l but in MSIL they become
V0 andV1. Since there is only one loop in C# code,
only one loop invariant should be supplied. VCGen will
automatically detect instructions which invariants refer
to.

In fact, the main reason that makes the "lifting" pos-
sible is that .NET high-level language compilers fol-
low few simple and obvious patterns while producing
MSIL from high-level code. This is not a coincidence
and chances are that future compilers will also behave
in similar way because MSIL is not a platform-native
language – it is the Just-In-Time compiler which does
most of fancy optimizations while translating the MSIL
to platform-native language.

Of course this "simple translation with obvious pat-
terns" rule applies mainly to C# and VB.NET, two main
business languages for the .NET platform. Other lan-
guages with non-trivial translation schemes must find
their own way to integrate with XMS. There are three
possibleintegration strategies:

no integration or limited integration Developers are
forced to consult the compiler output to find exact
MSIL structure and then put appropriate attributes
either at language level or at MSIL level

attribute integration The language recognizes XMS
attributes and knowing its own translation schemes
puts the attributes in appropriate places inside MSIL

language integration The language syntax is aug-
mented with contract expressions which are
compiled as XMS attributes

5 XMS IN PRACTICE
A practical implementation of PCC-oriented certifica-
tion framework requires three key components: the VC-
Gen that build Verification Conditions for given code
modules, a Theorem Prover for Code Producer to build
formal proof of a Verification Condition and a Proof
Checker for Code Consumer to verify the proof.

The VCGen was exclusively developed for XMS and
runs on the .NET platform itself. It reads .NET bina-
ries, scans method bodies and builds Verification Con-

ditions. An example of a session was presented in Sec-
tion 3.6. Current implementation supports broad range
of MSIL instructions, i.a. arithmetical and control flow
instructions, instructions for addressing fields and argu-
ments and instructions for calling methods.

There are three possible approaches to theorem prov-
ing and proof checking. XMS does not favour any but
currently uses the first one.

1. A tactical theorem prover (Isabelle, Coq) can be
used for proof construction and proof validation.
Proofs are concise and in many cases can be
constructed automatically without any manual
guidance. However, the prover must be present at
Code Consumer side.

2. Proofs can be encoded in a metalogic (LF [19]).
This results in long and detailed proofs but the proof
checking procedure is cheap at the Code Consumer
side. Metalogic proof checkers are short and thus re-
liable. Additional techniques can be used to shorten
proofs ([12]).

3. A logical interpreter can be used as a proof checker
([13]). Such interpreter uses information about the
proof structure provided by the Code Producer but
instead of recreating the proof it actually checks if
the proof exists at all.

6 SECURE COMPUTATION
One of free benefits of conforming to static verifica-
tion paradigm with predicates/proofs as certificates is
the possibility of using XMS forSecure Computation.

Suppose that a partyA needs expensive computation
to be performed on some private data.A is unable to
perform the computation locally. Suppose that partyB
is able to perform the computation forA.

However,A does not want its private data to be re-
vealed toB and B does not want its algorithm to be
revealed toA.

Using XMS as a certification framework and .NET
Web Services as remote computation layer,A and B
can rely on followingXMS Secure Computation Pro-
tocol:

1. A andB ask a trusted party,C, to make a Web Ser-
vice,W, available to both of them

2. B publishes its service onW together with XMS
specification and certificates

3. A asksW for the specification ofB’s service, checks
if the specification meets his/her requirements and
asksW to verify thatB’s service is correct with re-
spect to its specification using XMS Protocol

4. W verifies theB’s service and sends the verification
result toA

5. A checks the verification status and if it is positive,
sends its data toW and collects the results

Figure 3: XMS Secure Computation Protocol

7 FUTURE WORK
Formal certificates can rely on other certification
paradigms like the Model Carrying Code ([17]) where
the certificate takes the form of an abstract model of
the code execution and model checking techniques
are involved to verify these models. The XMS will
ultimately unify various approaches. The combination
of PCC and MCC seems especially promising. Three
main directions of future XMS development are:

• support for more MSIL instructions and built-
in predicates (Static Verification): Currently the
static verification does not support all MSIL instruc-
tions. It is a short-term implementation goal to
support complete MSIL language. For user conve-
nience, some built-in predicates could be supported,
such asISNULL .

• other code instrumentation techniques (Dynamic
Verification) : Although context-bound objects are
an easy way to code instrumentation, using .NET
Profiler API could make the dynamic verification
faster and transparent.

• better integration with high-level languages: Cur-
rent handling of loop invariants require high-level
languages to cope with Standard Certificate Spec-
ification. This could be restrictive for some high-
level languages, for example functional languages
with atypical compilation schemes. A long-term
goal would be to integrate XMS with such languages
using one of proposed integration strategies.

• other Safety Policies: Contracts Safety Policy is not
the only interesting Safety Policy that can be verified
in a XMS manner. Other policies such as Tempo-
ral Specifications ([17]) or Non-Interference ([18])
could be adapted to XMS certification scheme.

8 ACKNOWLEDGMENTS
This work is partially supported by MEiN grant
3T11C04230.

REFERENCES
[1] Andrew Bernard and Peter Lee: Enforcing For-

mal Security Properties, Technical ReportCMU-
CS-01-121, 2001

[2] Andrew Bernard and Peter Lee: Temporal Logic
for Proof-Carrying Code, Technical ReportCMU-
CS-02-130, 2002

[3] Andrew D. Gordon and Don Syme: Typing a Multi-
Language Intermediate Code,Microsoft Research,
2001

[4] Andrew W. Appel: Foundational Proof Carrying
Code,LICS, 2001

[5] Amy Felty and Andrew W. Appel: Semantic Model
of Types and Machine Instructions for Proof-
Carrying Code,POPL, 2000

[6] Arnd Poetzsch-Heffter and Peter Muller: A Pro-
gramming Logic for Sequential Java,ESOP, 1999

[7] Bertrand Meyer: Applying "Design by Contract",
Computer, IEEE, Volume 25, Issue 10

[8] Bertrand Meyer: Eiffel: The Language,Prentice
Hall, 1992

[9] Christopher Colby, Peter Lee and George C. Nec-
ula: A Certifying Compiler for Java, 2000

[10] Common Language Infrastructure Specification,
ECMA-335, 2002

[11] George Ciprian Necula: Compiling with Proofs,
CMU, 1998

[12] George Ciprian Necula and Peter Lee: Efficient
Representation and Validation of Logical Proofs,
Technical ReportCMU-CS-97-172

[13] George C. Necula and S. P. Rahul: Oracle-Based
Checking of Untrusted Software,POPL, 2001

[14] Greg Morrisett and David Walker: From System
F to Typed Assembly Language, 1997

[15] K. Apt and E. Olderog: Verification of Sequential
and Concurrent Programs,Springer-Verlag, 1997

[16] Mike Gordon: Mechanizing Programming Logics
in Higher Order Logic, Springer-Verlag, 1989

[17] R. Sekar, C.R. Ramakrishnan, I.V. Ramakrishnan
and S.A. Smolka: Model Carrying Code: A New
Paradigm for Mobile-Code Security,

[18] Riccardo Focardi and Roberto Gorrieri: Classifi-
cation of Security Properties,FOSAD, 2000

[19] Robert Harper, Furio Honsell and Gordon Plotkin:
A Framework for Defining Logics,LICS, 1987

[20] Mike Barnett, K. Rustan, M. Leino and Wolfram
Schulte: The Spec# Programming System: An
Overview, CASSIS 2004

[21] Microsoft Corp.: Common Language Infrastruc-
ture Specification, ECMA-335 Specification

