
Flexible Dynamic Linking for .NET

Anders Aaltonen, Alex Buckley, Susan Eisenbach
a.buckley@imperial.ac.uk

Imperial College London

Abstract

A .NET application is a set of assemblies developed or reused by programmers, and tested together for cor-
rectness and performance. Each assembly’s references to other assemblies are type-checked at compile-time and
embedded into the executable image, from where they guide the dynamic linking process.

We propose that an application can potentially consist of multiple sets of assemblies, all known to the ap-
plication’s programmers. Each set implements the application’s functionality in some special way, e.g. using
only patent-free algorithms or being optimised for 64-bit processors. Depending on the assemblies available on a
user’s machine, the dynamic linking process will select a suitable set and load assemblies from it.

We describe how, in our scheme, an application is written to use adefaultset of assemblies but carries nominal
and structural specifications about permissible sets ofalternativeassemblies. We implement the scheme on Rotor,
a .NET virtual machine, by modifying its linking infrastructure to efficiently find assemblies on the user’s machine
that satisfy the application’s specifications. Specifications can be applied to individual classes and methods, so
that only code wishing to use alternative assemblies has to undergo the modified linking process.

1 Introduction

1.1 Dynamic linking in .NET

Modern virtual machines, like the Common Language
Runtime in .NET, support dynamic linking of byte-
code obtained from local and remote sites. The key
concept in .NET linking is theassembly. An assembly
is a file that contains classes’ bytecode and serves as a
versioned, tamper-proof unit of deployment. To guide
linking, an assembly has metadata that describes its
classes’ dependencies on other assemblies andtheir
classes. Source languages typically disallow a pro-
grammer from specifying which assembly is to pro-
vide which class; the choice is made by the compiler.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

So, for a method call in C]:

System.Console.WriteLine(‘‘Hello’’)

the compiler will choose an assembly in the compile-
time environment that contains theSystem.Console
class, e.g. mscorlib 1.0.5. The compiler embeds
the name and version of the chosen assembly into the
metadata of the assembly being built, and emits byte-
code that references (in[...]) the chosen assembly’s
name:

ldstr ‘‘Hello’’
call void [mscorlib]System.Console::WriteLine(string)

.NET will (try to) link exactly the version of the
mscorlib assembly specified in the executing assem-
bly’s metadata. This helps to avoid “DLL hell” [6],
because the user’s machine can have multiple versions
of an assembly installed,e.g.mscorlib 1.0.5 for ap-
plication A andmscorlib 1.1.0 for application B, and
both application’s dependencies can be satisfied.

The problem is that while an assembly specified in
the metadata of an executing assemblywasavailable at
compile-time on the programmer’s machine, the user’s



machine maynow have alternative assemblies avail-
able at run-time. Reasons why assemblies at run-time
may differ from those at compile-time include:

• .NET’s standard libraries provide interfaces for
well-understood features like XML processing,
database access and networking, so it is straight-
forward for multiple vendors to provide differ-
ent implementations of the interfaces. Each ven-
dor’s assembly is likely to have a different name.

• Within a company’s IT department, developers
often have different implementations of a busi-
ness interface that version numbering alone can-
not reasonably differentiate. For example, two
assemblies that contain different implementation
classes for a bond trading strategy may well be
signed by different keypairs and have different
versioning conventions; and thus different names.

Unfortunately, linking in .NET cannot cope when
assemblies in the run-time environment have differ-
ent names to those in the compile-time environment.
The .NET assembly loader can only redirect a request
for oneversionof an assembly to another version of
the same assembly; it cannot redirect thenameof an
assembly. Thus, a programmer who wishes to make
his application portable between differently-named as-
semblies (that are expected to contain implementation
classes for popular interfaces) must code portability by
hand. Typically, a Factory pattern or an inversion-of-
control container [9] is used to abstract class names
from the main application code, but some reflective,
type-unsafe code is always needed to discover assem-
blies and extract implementing classes.

1.2 Flexible dynamic linking in .NET

We propose a more declarative approach to portabil-
ity. An application programmer merely enumerates as-
semblies and classes that his application can use (e.g.that
provide implementation classes of useful interfaces),
and the dynamic linker finds and instantiates them as
available. Thus, we reduce an assembly’s dependence
on a particular assembly (known to a compiler) by
addingpotentialdependencies that increase the range
of valid run-time environments.

In our scheme,any assembly or class name that
appears in bytecode can be redirected. The program-
mer writes code as usual that references classes, but
includesnominal specificationsalong the lines of “try

assembliesB andC as well asA” and “try classesP and
Q as well asR”. After a compiler has generated an as-
sembly from the programmer’s code, we have a tool
that, for the purpose of type-safety, takes the assembly
and addsstructural specificationsbased on its nominal
specifications and the classes and members that it ref-
erences. For example, given the nominal specifications
above, the generated structural specifications would be
along the lines that “any assembly used in place of as-
semblyA must provide classD” and “any class used in
place ofD must provide a fieldf of typeE”.

Our modified dynamic linker inspects an assem-
bly’s nominal and structural specifications at run-time.1

If an assembly name referenced in bytecode is not avail-
able, then the linker searches for substitute assemblies
given in the nominal specifications; any found assem-
bly must satisfy the structural specifications. Then,
when an assembly’s classloader searches for classes,
it considers the nominal and structural specifications
for classes.

Even with structural specifications providing type-
safety, it is unlikely that an assembly exists at run-time
with the “right” classes (with the “right” members)un-
less the programmer knew about it in advance. This
is because only the programmer can ensure that the
assemblies and classes named in nominal specifica-
tions are semantically compatible with (i.e.exhibit the
same observable behaviour as) assemblies and classes
known to the compiler. Thus, our policy is that only
assemblies directly referenced in bytecode or enumer-
ated in nominal specifications should be linked. To
prevent third parties making or modifying specifica-
tions, specifications are embedded in an assembly’s
metadata rather than being expressed in standalone re-
source files that anyone could edit.2

1.3 Related work

The use of type variables for abstracting over data types
is well-known in the functional [12] and object-oriented
[10] worlds. For example, rather than having byte-
code refer to specific classes, introducing type vari-
ables at bytecode at compile-time can provide true sep-

1Strictly speaking, the linker works at JIT-time, loading assem-
blies in support of member resolution. But we consider JIT-time as
“run-time”, because after bytecode is JIT-compiled, it is extremely
difficult to inspect which assemblies and classes it uses.

2We assume that assemblies will routinely be strongly-named,
thus making them tamper-proof. This is analogous to how a pub-
lisher policy is a strongly-named assembly that contains an XML
file, rather than a standalone XML file.



arate compilation for object-oriented languages [1]. In
[3], we also advocated inserting type variables into
bytecode at compile-time and substituting them to avail-
able assembly and class names at run-time. We mod-
ified the .NET dynamic linker to recognise type vari-
ables, but the end-user could specify substitute assem-
blies and classes without any guarantee that their sub-
stitutions were type-safe, so clearly the system was not
realistic.

Most work on assemblies in .NET concerns a co-
herent relationship between executing assemblies and
installed assemblies. [7] describes a management tool
that can, by respecting a model of binary compati-
bility, configure a program to safely use a different
version of an assembly.Type forwarders[11] are a
feature in .NET 2.0 that allow a class to be moved
from one assembly to another without breaking pro-
grams that reference the class in its original assembly.
Metadata is added to the class’s old assembly spec-
ifying a new assembly, and Fusion silently redirects
all requests for the old assembly to the new assem-
bly. The feature is needed by framework maintainers
because, as noted earlier, Fusion cannot redirect as-
sembly names nor does it deal with classes. Type for-
warders’ redirections are one-to-one and unknown to
the programmer, whereas our redirections are one-to-
many and intended for programmers and deployers.

As the scope of link-time activity grows, describ-
ing the behaviour of dynamic linking gains importance.
Dynamic linking for Java was formalised [8, 4] be-
cause of its perceived complexity. In fact, Java’s link-
ing for unversioned, unsigned classes is considerably
simpler than .NET’s linking for versioned, signed as-
semblies, and [2] describes the assembly resolution
and loading process for various .NET implementations.
[5] provides a simple framework for linking in both the
Java Virtual Machine and .NET.

1.4 Structure of this paper

§2 describes the high-level features available to a pro-
grammer in our system for making code more flexible
with respect to its execution environment.§3 describes
the architecture of a dynamic linker capable of choos-
ing assemblies and classes at run-time, and explains a
key abstraction, theLinkContext. §4 describes our ex-
tensions to the dynamic linker of “Rotor”, the shared-
source version of Microsoft’s .NET Framework.

2 Design

2.1 Specifying flexible linking

To let a programmer specify alternative assembly and
class names, we define two classes of custom attribute.
Custom attributes are a mechanism in .NET for speci-
fying non-functional program properties in a language-
independent way. They are attached to source lan-
guage constructs, such as classes and methods in an
object-oriented language, and have a canonical repre-
sentation in bytecode.

Our custom attributes are[LinkAssembly] and
[LinkClass]; we call themlinking attributes. In fig.
1, we assume that classC uses GUI classes - specifi-
cally System.Windows.Forms - supplied with .NET
on Windows. To helpC run on a .NET implementation
on MacOS or Linux, whereSystem.Windows.Forms
mayexist but where alternative assemblies providing
GUI classesmay be available, we attach linking at-
tributes to specify both the alternative assemblies and
their classes.

[LinkAssembly(‘‘System.Windows.Forms’’,
‘‘cocoa’’, ‘‘1.3.*’’,
‘‘macos’’, LOCAL_INTERFACE)]

[LinkAssembly(‘‘System.Windows.Forms’’,
‘‘qt’’, ‘‘*’’,
‘‘linux’’, LOCAL_INTERFACE)]

[LinkClass(‘‘System.Windows.Forms.Button’’,
‘‘GelButton’’,
‘‘macos’’)]

[LinkClass(‘‘System.Windows.Forms.Button’’,
‘‘qButton’’,
‘‘linux’’)]

class C { ... }

Fig. 1: Preparing code for flexible linking

Attributes are attached to theC class to specify that
any reference inC’s bytecode to the assembly
System.Windows.Forms can be redirected by the dy-
namic linker to either 1) an assemblycocoa of version
1.3.x that the programmer expects to be available on
MacOS, or 2) an assemblyqt of any version (“*”) that
the programmer likes to use on Linux.

If either of these redirections happens, then class
names used inC will be redirected by the dynamic
linker. TheGelButton class will be used in prefer-
ence toSystem.Windows.Forms.Button if the linker
chose assemblycocoa, whileqButton will be used if
the linker chose assemblyqt.

We say thatC’s bytecode issubject to flexible link-
ingsince it is in the scope of at least one[LinkAssembly]
attribute. Our modified .NET dynamic linker will recog-



nise where code is subject to flexible linking, while
an unmodified linker will ignore any linking attributes
and simply link bytecode to the types embedded in
metadata by the compiler.

2.2 Semantic interfaces

If the code above happens to run on a Linux machine,
then the likelihood is that only theqt assembly and not
MacOS’cocoa assembly would be found. It therefore
makes sense to only look for Linux-specific assem-
blies after findingqt. To capture the fact that different
[LinkAssembly] attributes are likely related by plat-
form, vendor or maturity (e.g.alpha, beta, production),
the penultimate parameter of[LinkAssembly] is a
semantic interface namethat characterises the relation.
If a [LinkAssembly] attribute specifies an assembly
name that is actually used by the dynamic linker, then
we support multiple policies for which linking attributes
to consider in future. The policy is determined by the
final parameter of the successful[LinkAssembly],
which is called itssemantic interface qualifierand can
take one of the following values:

LOCAL INTERFACE If an assembly has already been
chosen based on a[LinkAssembly] with this
semantic interface qualifier, then all further as-
sembly and class resolutions in the same scope
must use linking attributes with the same seman-
tic interface name as that[LinkAssembly].

LOCAL INTERFACE PREFERRED If an assem-
bly has already been chosen based on a
[LinkAssembly] with this semantic interface
qualifier, then[LinkAssembly] attributes with
the same semantic interface name are checked
first when resolving other assemblies and classes
in the same scope. If none of these attributes
successfully specify a loadable assembly, then
other[LinkAssembly] attributes are tried.

LOCAL INTERFACE EAGER A [LinkAssembly]
attribute with this semantic interface qualifier is
“eager” in the sense that all[LinkAssembly]
attributes in the same scope with the same se-
mantic interface name must be successfully re-
solved immediately.

ANY INTERFACE No restriction on later resolutions.

2.3 Attribute Scoping

Custom attributes can be attached to assemblies, mod-
ules, classes and methods. This aids expressiveness
because an attribute can be attached to the most refined
scope necessary; only methods that require flexibility
need to have attributes. We search for attributes “in-
side out” to aid performance,i.e. first at the method
level, then the class and assembly levels.

As an example of how attribute scoping works, the
following code callsList::op1 and
List::op2 on anArrayList implementation of aList
interface. But if possible, the programmer would like
to use theSinglyLinkedList implementation in the
assembly that encloses classC, becauseList::op1’s
traversal is suited to a linked list rather than an array-
based list.m2, however, callsList::op2, that can rea-
sonably expected to traverse the list backwards as well
as forwards, so aDoublyLinkedList would be help-
ful:

[assembly: LinkClass(ArrayList, SinglyLinkedList)]

class C {
void m1() {

List l = new ArrayList(); l.op1();
}

[LinkClass(ArrayList, DoublyLinkedList)]
void m2() {

List l = new ArrayList(); l.op2();
}

}

Linking attributes apply not only to member ref-
erences, but to any type within an attribute’s scope.
Thus, the following code permits an object of either
classC or D (or any of their subclasses) to be passed
to m1, and an object of either classC or E (or any sub-
class) tom2.

[LinkClass(C,D)]
class C {

void m1(C x) { ... }

[LinkClass(C,E)]
void m2(C x) { ... }

}

2.4 Type safety

Assemblies and classes specified in linking attributes
must be binary-compatible with the assemblies and
classes referenced by bytecode, or else resolution ex-
ceptions (i.e. “message not understood” errors) could
arise at run-time. We therefore need a way to en-
sure that any assembly/class specified in a linking at-
tribute chosen by the linker is type-compatible with



all references to the original assembly/class through-
out an assembly. An assembly’s metadata enumer-
ates which other assemblies and classes it depends on,
the members accessed in those classes are found only
in individual bytecode instructions. Hence, they are
only revealed at JIT-compilation when each instruc-
tion in the assembly is verified. To avoid an extra pass
over bytecode during JIT-compilation, we gather con-
straints about member accesses with a compile-time
tool, and store them as custom attributes attached to
methods. Theseconstraint attributesare similar in
style to those in [13] and [1].

A [LinkMemberConstraint] attribute describes
required fields and methods of classes,e.g.

[LinkMemberConstraint(‘‘A1’’, ‘‘C1’’, 100, ‘‘M1’’)]

states that whatever class is linked for[A1]C1 is
expected to contain a member (field or method signa-
ture) defined by token 100 in moduleM1. (A module is
a unit inside an assembly that actually holds the assem-
bly’s class definitions. The metadata for the classes’
dependencies - on other assemblies, class and mem-
bers - is stored at the module level rather than class
level, and indexed by integers known as tokens.)

A [LinkSubtypeConstraint] attribute encapsu-
lates subtype constraints,e.g.

[LinkSubtypeConstraint(‘‘A1’’, ‘‘C1’’, 100,
‘‘A1’’, ‘‘C2’’, 200, ‘‘M1’’)]

states that whatever type replaces[A1]C1 is a su-
pertype of whatever replaces[A1]C2. (100 and 200
are the tokens where[A1]C1 and[A2]C2 are defined
in metadata.)

Fig. 2 shows how source code is annotated with
linking attributes to support flexible dynamic linking.
Ideally, a .NET compiler would emit member and sub-
type constraints after successful type-checking. But,
to stay language-independent, we built a small pro-
gram,flex, that inspects an assembly’s bytecode, iden-
tifies member accesses and inserts
[LinkMemberConstraint] attributes at the appropri-
ate scope. Unfortunately, we cannot generate subtype
constraints without performing complex data-flow anal-
ysis, as the verifier does during JIT-compilation. We
currently require a programmer to specify
[LinkSubtypeConstraint] attributes manually.

3 Architecture

We now describe how flexible dynamic linking is ar-
chitected in Microsoft’s shared-source version of .NET

known as “Rotor”. There are two candidates for which
run-time subsystem should perform flexible linking for
members and types: 1) the resolver called by the JIT-
compiler, or 2) the loaders called by the resolver to
physically find assemblies on disk and extract classes
from them. The latter is an attractive place to check
linking attributes, because .NET’s assembly loader al-
ready consults user-defined policies for redirecting as-
sembly versions. But, if the redirection to load a dif-
ferent assembly/class is done at too low a level and not
exposed to the higher-level resolver, then the wrong
types may be loaded later in the resolution process.
For example, our constraint verifier needs to know ex-
actly what assemblies and classes have been loaded in
order to check member and class definitions. There-
fore, we prefer to place our implementation closer to
the JIT-compiler’s resolver. (We do not consider per-
formance, but do not believe either subsystem would
have an advantage.)

Fig. 3 summarises where our implementation (boxes
with bold text) lives in Rotor. It sits just below the the
high-level resolution algorithm, intercepting requests
to resolve members and types, and modifies requests
those before assemblies and classes are actually loaded.
By sitting just above the assembly loader, we apply
linking attributes to a member or type resolution be-
fore user-defined policies are applied. This is appro-
priate, because versioning policies,e.g.to avoid a se-
curity flaw in an old assembly, should apply even to
assemblies named in linking attributes.

Fig. 3: Overview of flexible dynamic linking in Rotor



Fig. 2: Preparing code for flexible linking

3.1 Linking contexts

A member access (field access or method call) instruc-
tion in bytecode contains an integer “token” that is
mapped, in metadata, to amember descriptorvery sim-
ilar to a field or method signature,e.g.[A]C::m(void).
Resolution is the process during JIT-compilation that
turns a token, via a member descriptor, into a first-class
object that directly represents the member’s definition
in a loaded class from a loaded assembly. Similarly,
a class declaration contains one or more tokens that
map totype descriptorsfor its superclasses,e.g.[A]C.
Also, a type-cast instruction contains a token for the
target type. Resolution turns these tokens into objects
representing loaded class definitions. Note that a to-
ken always references at least an assembly name and a
class name.

When resolving a particular token, we need to con-
sider the linking attributes and constraint attributes ap-
plicable to,i.e. in scope at, the token being resolved.
We call the set of in-scope linking attributes applica-
ble to a token itsresolving context. Each token has
its own resolving context because different linking and
constraint attributes apply to it.

We introduce aLinkContextto compute and en-
capsulate a resolving context. For a particular token, a
LinkContext finds all the[LinkAssembly] attributes
declared closest to it. If previous resolutions chose
[LinkAssembly] attributes whose semantic interface
qualifier was
LOCAL INTERFACE PREFERRED or
LOCAL INTERFACE EAGER, then a LinkContext
will find only those[LinkAssembly] attributes with
the appropriate semantic interface names. The resolv-
ing context consists of those[LinkAssembly] attributes,

plus[LinkClass] attributes (with the appropriate se-
mantic interface name, if necessary) in the same scope
as the[LinkAssembly] attributes, plus constraint at-
tributes in the same scope. A LinkContext can be queried
for the linking and constraint attributes “relevant” to a
particular token,e.g.if the token being resolved is for
a type[A]C, then only[LinkAssembly] attributes for
assemblyA are relevant.

4 Implementation

4.1 Modifying the JIT-compiler

We add a stack of LinkContexts to each module loaded
from an assembly. When a method is JIT-compiled,
we push a “master” LinkContext on to the module’s
stack for efficiency reasons. This LinkContext imme-
diately gathers all the linking and constraint attributes
(at method, class, module and assembly levels) in scope
for the method. These attributes are a superset of any
individual token’s resolving context.

Whenever the JIT-compiler reaches a token that it
needs resolved, we push a further LinkContext on to
the module’s stack (and pop it after the token has been
resolved). This LinkContext computes the token’s re-
solving context by querying the master LinkContext
for attributes in scope for the token, then selecting ap-
propriate linking and constraint attributes as described
in §3.1.

To actually push a LinkContext when the JIT-compiler
encounters an unresolved token that refers to a mem-
ber or type, we modify methods called by the JIT-
compiler that resolve a token:CEEInfo::findField,
CEEInfo::findMethod and



CEEInfo::findClass. These methods are made to
create and destroy LinkContexts as follows:

// If linking attributes present...
if (pLink->HasLinkContext() && pLink->IsScopeFlexLinked())

// Create a nested LinkContext
pLink->NewNestedLinkContext(...);

else
pLink = NULL;

// Pre-existing resolution code to
// find a field/method/class
...

if (pLink)
// Remove the LinkContext from the stack
pLink->GetParentLinkContext();

4.2 Modifying assembly loading

The pre-existing resolution code that we have elided
above calls the assembly loader to visit the filesystem.
As usual, the loader looks up the assembly name (of
the token being resolved) in the currently executing as-
sembly’s metadata. This gives various details, such as
the version number of the token’s referenced assembly,
which are stored in anAssemblySpec object. At this
point, our code intercedes, passing theAssemblySpec
to the top LinkContext on the current module’s stack.

The LinkContext uses the “master” LinkContext to
build the resolving context for the current token, then
picks just the[LinkAssembly] attribute that specifies
a redirection for the assembly mentioned by the token.
(If there is more than one possible[LinkAssembly],
we pick the first.) For example, if the token mentions
assemblyA, then having
[LinkAssembly(‘‘A’’, ‘‘B’’, ‘‘1.0’’...] in
the resolving context will cause the LinkContext to
choose assemblyB v1.0. The LinkContext then loads
this substitute assembly and performs some security
checks that will be performed by the JIT-compiler later;
we do not wish its checks to fail.

Having chosen and loaded a substitute assembly,
we update theAssemblySpec object with the substi-
tute assembly’s name and pass the object back to the
usual assembly loading logic. Since the assembly has
already been loaded by LinkContext for constraint ver-
ification, it will be found immediately in the assembly
loader’s cache.

4.3 Modifying class loading

Ordinarily, once a valid assembly is loaded, the JIT-
compiler’s pre-existing resolution code uses the assem-
bly’s classloader to load the token’s class. We inter-
cede in the classloader to ask the top LinkContext on

the current module’s stack to choose a substitute class
based on the resolving context.

The LinkContext again uses the “master” LinkCon-
text, this time to retrieve a[LinkClass] attribute in
the token’s resolving context that has the appropriate
semantic interface name and is for the token’s class.
The LinkContext tries to load the class specified in the
[LinkClass], and verify any applicable constraint at-
tributes for it.

To respect[LinkMemberConstraint] attributes,
a LinkContext first uses the ordinary method and field
resolversEEClass::FindMethod and
EEClass::FindField to check the presence of mem-
bers in the substitute class’s definition (anEEClass
object). Then, it verifies that the signatures of the
members requested in constraint attributes match ex-
actly the signature of the member found in the class.
This entails resolving and loading each type (i.e. as-
sembly+class) in the found members’ signatures, such
as method formal parameters. Since those members
are in classes thatthemselvesmay have linking attributes,
further LinkContexts are created and the whole flexi-
ble dynamic linking process recurses. A similar issue
arises when verifying subtypes to respect
[LinkSubtypeConstraint] attributes.

Having checked constraints on substituted classes,
we pre-empt a later check by the JIT-compiler, which
is that any loaded class is visible to the method be-
ing JIT-compiled. If the substitute class is visible and
its definition satisfies member and subtype constraints,
then the class’s member definition or the class defini-
tion itself (depending on whether the token is a mem-
ber descriptor or a type descriptor, respectively) is cached
by the LinkContext for that token. The substitute class’s
name is then used by the classloader to retrieve an
EEClass class definition from the assembly, as usual,
and this succeeds immediately since we already loaded
the class’s definition to check constraints.

4.4 Source language issues

When compiling a method call, Rotor’s C] compiler
statically binds to the class that defines the method, re-
lying on the runtime to dynamically dispatch the method
in a subclass if necessary. Consider the following C]

source code:

class A { virtual void m1() { ... } }
class B : A { override void m1() { ... } }

// Main program
[LinkClass(B,...)]
{ ... new B().m1(); ... }



The compiler produces bytecode that specifiesm1
in classA :

[LinkClass(B,...)]
newobj instance void [...]B::.ctor()
callvirt instance void [...]A::m1()

At runtime, the body ofB::m1 will be executed as
usual. But if the programmer wrote[LinkClass] at-
tributes with alternatives to classB, they will never be
used. LinkContext only sees a call (thecallvirt in-
struction) to a method in class A, which no[LinkClass]
attribute mentions. We could partially fix the problem
by modifying the compiler to bind to thevirtual dec-
laration ofm1 rather than the overriding declaration;
Sun made this change tojavac between JDK1.3 and
JDK1.4. Modifications to the virtual machine would
also be necessary.

5 Conclusion

Dynamic linking in .NET is over-constrained because
it must provide exactly the types known to a compiler
on a programmer’s machine. While software engi-
neering techniques can find and link alternative code
at run-time, they have to be coded into each applica-
tion and often use type-unsafe reflection. We have de-
signed a scheme that lets the programmer describe al-
ternative choices for what types can be linked, which is
the only way to ensure observational equivalence with
types named in source code. If our dynamic linker
picks a different type from that named in source code,
then any check for type-safety, security or class vis-
ibility will succeed if it would have succeeeded for
the original type. .NET’s ability to attach attributes
to code allows for precise specification of what and
where choices should be available in a program, in
a way that causes no overhead to unmodified .NET
virtual machines. Also, our specifications let the pro-
grammer reflect the fact that families of assemblies are
often grouped together logically,e.g. patent-free al-
gorithms, so that linking one assembly should restrict
later linking to the same family.

Further work is identifying when to perform flexi-
ble linking even if a compiler has “hidden” the oppor-
tunity with its static resolution, and finding real-world
applications that can benefit from our scheme. Increas-
ing portability between mobile and desktop frameworks
may be a fruitful avenue, particularly as the number
grows of .NET-enabled mobile devices with API sup-
port for differentiated capabilities (GPS, wi-fi, cam-
eras, etc).

Acknowledgements This work was partially funded by a Mi-
crosoft Research grant under the 2004 Rotor RFP II. We thank Sophia
Drossopoulou for comments.

References
[1] Davide Ancona, Ferruccio Damiani, Sophia Drossopoulou,

and Elena Zucca. Polymorphic Bytecode: Compositional
Compilation for Java-like Languages. InProceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2005), Long Beach, CA,
USA, January 2005.

[2] Alex Buckley. A Model of Dynamic Binding in .NET. In
ECOOP Workshop on Formal Techniques for Java Programs
(FTfJP 2005), Glasgow, Scotland, July 2005.

[3] Alex Buckley, Michelle Murray, Susan Eisenbach, and Sophia
Drossopoulou. Flexible Bytecode for Linking in .NET. In
First Workshop on Bytecode Semantics, Verification, Analysis
and Transformation (BYTECODE 2005), ENTCS, Edinburgh,
Scotland, March 2005. Elsevier BV.

[4] Sophia Drossopoulou. An Abstract Model of Java Dynamic
Linking and Loading. In Robert Harper, editor,Proceedings
of the Third International Workshop on Types in Compilation
(TIC 2000), volume 2071 ofLNCS, pages 53–84. Springer-
Verlag, 2000.

[5] Sophia Drossopoulou, Giovanni Lagorio, and Susan Eisen-
bach. Flexible Models for Dynamic Linking. In Pierpaolo
Degano, editor,Proceedings of the 12th European Symposium
on Programming (ESOP 2003), volume 2618 ofLNCS, pages
38–53. Springer-Verlag, April 2003.

[6] Susan Eisenbach, Vladimir Jurisic, and Chris Sadler. Feel-
ing the way through DLL Hell. InProceedings of the First
Workshop on Unanticipated Software Evolution (USE 2002),
Malaga, Spain, June 2002.http://joint.org/use2002/.

[7] Susan Eisenbach, Dilek Kayhan, and Chris Sadler. Keeping
Control of Reusable Components. InProceedings of Compo-
nent Deployment (CD 2004), Edinburgh, Scotland, May 2004.

[8] T. Jensen, D. Le Metayer, and T. Thorn. Security and Dynamic
Class Loading in Java: A Formalisation. InProceedings of
the IEEE International Conference on Computer Languages,
pages 4–15, Chicago, IL, USA, 1998.

[9] Rod Johnson. The Spring Framework.http://www.
springframework.org/, 2005.

[10] Andrew Kennedy and Don Syme. The Design and Imple-
mentation of generics for the .NET Common Language Run-
time. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
2001), Snowbird, UT, USA, June 2001.

[11] Richard Lander. The Wonders of Whidbey Factoring Features.
http://hoser.lander.ca/, 2005.

[12] Zhong Shao and Andrew W. Appel. Smartest Recompilation.
In Proceedings of the 20th ACM SIGPLAN-SIGACT Sympo-
sium on Principles Of Programming Languages (POPL’93),
pages 439–450, Charleston, SC, USA, 1993.

[13] Frank Tip, Adam Kiezun, and Dirk Baumer. Refactoring
for Generalization using Type Constraints. InProceedings
of the 18th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages & Applications (OOPSLA
2003), Anaheim, CA, USA, October 2003.


