
MVE-2 Applied in Education Process

Milan FRANK
University of West Bohemia

Univerzitní 8, BOX 314
Pilsen, Czech Republic

mfrank@kiv.zcu.cz

Libor VÁŠA
University of West Bohemia

Univerzitní 8, BOX 314
Pilsen, Czech Republic

lvasa@kiv.zcu.cz

Václav SKALA
University of West Bohemia

Univerzitní 8, BOX 314
Pilsen, Czech Republic

skala@kiv.zcu.cz

ABSTRACT
For years we have been developing a our project on MVE. MVE stands for Modular Visualization Environment.
It is a user friendly modular environment using data flow paradigm for communication between user-created
modules. The core of the system is based on pure .NET technology.
We find this environment useful in several application areas. This paper focuses on successful employment within
the education process. We believe that MVE-2 can be a good entry point for programmers to learn how to develop
plugin style software components and to cooperation between them.
This paper also discusses advantages of modern programming techniques available in .NET. We have found
several .NET features very useful during design and development of the environment.

Keywords
.NET, MVE, Visualization, Plugin, Data Flow, Pipeline

1. INTRODUCTION
MVE-2 is our grass root effort to create a general and
easy to use modular environment. It uses pipeline
approach for problem decomposition. This paradigm
is useful for both theoretical and practical purposes.
Engaging our system in education leads our students
naturally to perform clear and well defined problem
decomposition as well as to follow good programming
habits.
We have used the MVE-2 in the frame of subjects
taught at University of West Bohemia (UWB), in
separate student projects and as a tool for real
research projects. The environment proved itself
useful in all the previously mentioned application
areas.
The fact that we started the project from scratch
allowed us to choose whatever technology available.

Our choice of .NET as a core technology provided us
with numerous features, which allowed a solid and
elegant design of the system.
The rest of the paper is organized as follows: Brief
overview of the history of our visualization
environment development is given in the following
subsection. Section 2 gives basic description of the
MVE-2 architecture and its differences from similar
systems. Section 3 focuses on the ways students have
contributed to the development and expansion of the
system. Section 4 describes how MVE-2 is useful for
our scientific effort.

1.1 MVE History
The idea of developing a new modular environment at
UWB started in 1996 as a diploma thesis of Martin
Roušal. This original MVE system was based on the
Win32 API. The primary focus on visualization tasks
and the choice of development environment lead to
several drawbacks of the original design, such as
fixed set of datatypes, simple pipeline execution,
explicit memory management and problems with
components created with different programming tools.
This environment was used for several years in both
education and research applications.
In year 2004 the Center of Computer Graphics and
Data Visualization (CCGDV) has decided to

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic

Project supported by Microsoft Research 2003-178
6FP EU 3DTV No 511568

implement a new redesigned version of MVE. Based
on extensive experience with the previous version, a
new set of requirements has been set. The core of the
system was designed and implemented by Milan
Frank and his small team of MSc. students with
supervision of prof. Václav Skala. The common set of
data structures and basic modules for data
visualization and computer graphics has been
subsequently implemented by the team.
Furthermore, the MVE-2 development spreads beyond
the boundaries of the core team as the system was
used in subjects provided by the CCGDV for research
purposes and in other areas.
2. SPECIFICATION
MVE-2 offers easy-to-use, data-flow based modular
environment. Its primary users are researchers and
students together with their projects. Our environment
makes these projects compatible with each other with
minimum additional effort. API (Application Program
Interface) of a module is enforcing good programming
habits, such as clear problem decomposition, precise
comment writing and cooperation with other
programmers. Using MVE-2 leads to less routine
programming due to compatibility and reusability of
existing modules. Therefore, users can concentrate on
their particular problem and employ existing modules
for marginal tasks.
When we were designing the MVE-2 system, we have
attempted to achieve several goals. We wanted to
create a well defined and understandable module API
with following important features of the whole
system:

● general core, ready for modules and data
types from different application areas,

● module-maps with support for cycles and
sub-branches,

● intuitive and friendly API for modules and
data structures,

● automatic generation of basic GUI of a
module,

● automatic generation of documentation for
module libraries,

● built in XML export/import of all data types
and module-maps. (very efficient way to
check and modify data manually).

2.1 Core
Main part of the environment is MveCore. It provides
runtime and module management functionality.
Capabilities of the core are accessed by two front-
ends, a graphical interface that allows module map
composition and execution, Map Editor, and a
command line tool for executing existing maps stored
in XML files.
One of the main advantages of the system is very
simple implementation of a plain module. As well as
this, power and high flexibility is available if
required. This advantage is especially important for
programmers at the beginning of their career. Another
specialty of MVE-2 is execution mechanism of
module network. Possibilities of module map
topology are far beyond simple pipeline and reach
closely towards complete visual programming. Many
other advantages arise from use of pure managed
environment (.NET).

2.2 MVE Front-end
MapEditor is a GUI front end of MVE-2. It allows
intuitive module map editing, module configuration
and execution. Figure 2 shows a screenshot of the
GUI with a simple convolution application.
Located in the upper left corner is a module-map edit
window with a simple pipeline using two sources
(PictureLoader, ConvolutionMask) and two sinks
(RegGrid2DRenderer). In the upper right corner there

Figure 1: This figure illustrates a general structure of MVE-project. Each sub-block represent one .NET
assembly.

MveCore

RunMap MapEditor MMDoc

Numerics Visualization ...

Frond end (command line, GUI, doc-generator)

System core – runtime and module management

Module and data structure libraries

is a ModuleView dialog that contains list of available
modules that are ordered according to namespaces.
The standard output is redirected to the output
console, which usually displays important messages
from modules and core. In the example it displays the
running times of modules. The two green cars in the
center are the original and the filtered image rendered
by renderers. In the bottom left corner a setup dialog
of convolution source module is shown. User can
define the convolution mask via this dialog.

2.3 Module libraries
The core and the front-end only create an empty space
for modules. Without modules there is no useful
functionality. Modules can be added into the MVE-2
system very easily. It is sufficient to copy an assembly
(a .NET DLL) into a particular directory. All public
subclasses of the MveCore.Module class are
interpreted as modules.
Each assembly can also provide subclasses of
MveCore.DataObject. It allows everyone to define
their own custom data types that can be passed
between modules via connections.
The assembly can contain (or call) any other code
allowed by the .NET standard. If one has a project

already written in the .NET environment, then it is
usually very easy to provide a set of MVE-2 modules
as wrappers for functionality of the code. These
modules can serve as a “standard” interface and thus
can be easily reused by many other researchers and
developers.

2.4 Advanced pipeline examples
Execution mechanism implemented in the core can do
more than simple pipeline execution. We support
repeated execution, module driven execution and
cycles. Any map can be run N-times. Module can run
a subbranch to obtain its input data multiple times. It
is also possible to create cycles in module map graph.
See following examples:
Sinus (See Figure 3) is an example of sub-branch
construction. Execution of Sinus module is
controlled by GenerateGraph module. In this
particular case the whole module map runs only once,
while the Sinus module runs 100 times.
Counter (See Figure 4) is an example of
DelayModule usage. The DelayModule acts as a
single place memory with initialization. It returns data
form previous (N-1) step. In the first step it returns
data from initialization port. Thus it allows cycles in

Figure 2: Screenshot of MapEditor. The GUI front end of MVE2. It shows a simple convolution scheme.

module-map graph. This example counts from zero to
number of runs minus one. The DelayModules can be
chained.

2.5 Module creation
As mentioned in the begging of the text, creation of a
module is very simple. It is based on inheritance
mechanism. Every subclass of MveCore.Module is
interpreted by the MVE-2 core as a module.
There are only two methods that have to be subject to
override. The first one is the constructor, which
creates input and output ports and defines their names
and accepted data types. The second one is the
Execute method that represents the activity of the
module.

The standard .NET property mechanism allows the
module authors to easily provide configurable
parameters of their modules. Every public read/write
property of a standard datatype is automatically saved
into and restored from the module map XML file, and
it is also shown in a module GUI that is automatically
generated for each module. These features are
provided by the Module superclass, and don’t require
the user to write a single line of code.
There is also a set of advanced methods that can be
called and set of events that can be handled by a
module. These additional methods provide a
possibility to create a module with advanced features,
such as immediate reaction to incoming data,
advanced module GUI creation, execution of a
subbranch etc. This means good flexibility for a

Figure 3: Simple example of module driven subbranch execution.

Figure 4: Simple example of loop with delay module.

module. Fortunately, in the beginning there is no need
to even know about these methods.
Example of implementation of a simple module that
calculates sinus of input value follows. Please note
this is a complete C# source code one needs to create
a MVE2 module. See Figure 5.
Creation of data type is similarly easy, only
Core.DataObject is used instead Core.Module.
Documentation of a module library can be generated
automatically by the MMDoc utility that is distributed
with MVE-2 system. It uses the .NET attribute
mechanism to obtain additional information from each
module and data type, which describes the module
behavior. This information includes description of
module ports and configuration properties as well as
general description of the task that is performed by
the module. This information is also used by the GUI
front-end to provide the user basic information about
the modules in help dialogs and pop-ups.

3. MVE-2 IN EDUCATION PROCESS
There are two main ways how students get in touch
with the system. Many students were asked to create
modules to be integrated with the system and with one
another. Small group of students was also involved at
the development of the system itself and its peripheral
tools, such as GUI frond end, automated
documentation system, data structures and so on.

3.1 Student Contribution to the Core
Development
Several volunteer MSc. and Bc. students were
involved in the development of the core of the system.
They were cooperating closely with a current project

leader. Such involvement gave them feedback about
their work and made them familiar with a developing
model typical for small software companies. We
believe it is a useful experience in a career of a
programmer and will help them in seek for future
employment.
Miroslav Fuksa was the first volunteer to be involved
in the development. His contribution to the execution
mechanism was very inspiring. For one developer it is
not easy to keep in mind all the possibilities of such a
complex algorithm as the module execution
mechanism.
A huge contribution has been made by Zdeněk Češka.
He is fully responsible for development of the GUI
front end. Design of such complex subsystem gave
him good practical experience about how to apply
theoretical knowledge obtained in subjects of
software engineering and knowledge of programming
in .NET environment.
The whole of MMDoc subsystem was designed and
implemented by Petr Dvořák. He also created a useful
GUI front end of this subsystem. Such task made him
familiar with several modern technologies such as
.NET, XML, XSLT, CHM, etc. He proved himself to
be able to apply such technologies in a real world
application.
Very important task was to design and implement
common data structures for data visualization.
Miroslav Vavruška did significant contribution to this
essential part of MVE.
Přemek Zítka was responsible for adding a useful
feature. Thanks to his effort it is now possible to use
automatically generated module GUI (setup dialog).

Figure 5: Example of a simple module implementation. Note this is just a class derived from Core.Module
class. It is than interpreted by core as a module.

public class Sinus : Zcu.Mve.Core.Module
{
 ScalarNumber y = new ScalarNumber();
 public Sinus()
 {
 AddInPort("in", typeof(ScalarNumber));
 AddOutPort("out", typeof(ScalarNumber));
 }
 public override void Execute()
 {
 ScalarNumber x = (ScalarNumber) GetInput("in");
 y.Val = Math.Sin(x.Val);
 SetOutput("out", y);
 }
}

Using the standard .NET Framework PropertyGrid
component it was possible to expose public properties
of a module in a simple and elegant way.

3.2 Student Contribution to the Module
Library Development
In the frame of Computer Graphics and Data
Visualization subject taught at the UWB students
were supposed to implement several modules that
solve a particular task. These tasks included mesh
displacement, elevation coloring, triangle mesh
reduction, readers of several triangular formats, etc.
The results of their effort were interesting sets of
modules. They were also supposed to provide a
detailed documentation for their module libraries.
We believe such task give the student a basic idea
about how to write useful pieces of code that can be
integrated in some larger systems.
For example: Task chosen by student Jan Bárta was to
create a reader and writer module for several standard
geometry data files such as PLY, STL, TRI, CMX.
Result of his work is clearly very useful and reusable
by many other people.
Another nice task was to create a set of modules for
generating a displacement mesh from a 2D picture. Jiří
Skála took this work very seriously and the result of
his effort is an example of what a module library
should look like.
Mesh smooth and displace modules were designed
and implemented by a team of Ondřej Kvasnička and
Martin Pokorný. Their task was to create a set of
modules to produce a mesh distorted by the intensity
of applied texture. It was necessary to divide this task
into several modules. It was interesting to see their
feedback about how MVE helped them with the
problem decomposition (and following composition)
and programming cooperation.
Most of these modules are freely available at the
MVE-2 website.

4. MVE-2 IN RESEARCH
As MVE-2 became stable it was employed in a
number of real research projects that are carried by
CCGDV PhD. students. This lead to benefits for all
involved parties, MVE-2 has gained some useful
modules, core developers received feedback about the
performance of the core and researchers benefited
from a easy to use and powerful tool for their projects,
which allowed easier collaboration and code sharing.
So far three research topics were addressed using
MVE-2: stripification of triangular models by Petr
Vaněček, artificial hologram rendering and
reconstruction by Martin Janda and Ivo Hanák, and

space-time metric for dynamic mesh comparison by
Libor Váša.
The first project carried by Petr Vaneček showed
some performance drawbacks of the original data
structures that were fixed in subsequent versions of
MVE-2 by optimization of the visualization
structures. Thanks to the efforts of Dr. Vaneček there
is a fully functional and thoroughly tested support for
triangle stripes and fans in the visualisation library
provided with MVE-2.
The second project was the spatio-temporal metric
implementation for dynamic mesh comparison by
Libor Váša. This effort has benefited greatly from the
available range of modules, while some more common
functions were added to the visualization library. This
allowed wide testing of the proposed algorithms on
several kinds of source data, using loaders for various
data types, and also the result was visualized using
the modules provided by MVE-2. This project will
continue using MVE-2 in the future in order to allow
international cooperation with foreign universities
that participate in providing source data.
The most recent application of MVE-2 in the research
field is in the artificial holography research that is
carried by Martin Janda and Ivo Hanak. They are
developing modules for rendering scenes into
artificial holograms and computer reconstruction of
holograms. The environment allows this elementary
team to cooperate easily, as each researcher works on
his own module, while having a clearly defined
interface to each other. They have also contributed to
the core of the MVE-2 with some minor changes that
improved the usability of the system for their specific
purposes.

5. FUTURE DEVELOPMENT PLANS
Although the core of the system is not being actively
developed anymore, the project is still growing by
additions of modules and features into the MapEditor
GUI. One of CCGDV MSc. students is currently
working on a general rendering module that will
utilise the D3DUT [4] for rendering. This rendering
library developed also by CCGDV will allow
platform independent rendering, which will enable
full visualization pipelines on all platforms that allow
compilation of the system and D3DUT.
In the near future, we would like to investigate the
rewriting an area of the visualisation library so that it
will utilize the new features of .NET 2.0. The generic
data types of .NET 2.0 can be very useful and can
simplify some algorithms quite significantly.
The system will be most likely be used in the data
visualisation subject taught at the UWB, where
students will contribute, develop and test modules as

a part of their coursework. The system will also be
used as a target platform for computer graphics related
diploma theses.
The environment will be used by the holography and
dynamic mesh researchers, who will contribute
feedback and new modules to the system. This can
give the users of the system the advantage of
availability of state of the art algorithms within the
environment.
The further in the future, our development plans
include allowing parallel and distributed execution of
module maps. Module libraries for volume data
rendering and computational geometry tasks would
also greatly improve the practical usability of the
system, and we are currently looking for contributors
or student leaders to develop such functionality for
MVE-2.

6. CONCLUSION
We have described a modular system that is developed
at UWB. Students at all levels of education have
contributed to the system, which allowed them to
learn a valuable lesson about modular programming.
The system is currently used in number of student and
research projects, where the structure of the
environment helps to clearly formulate and thus easier
solve various kinds of problems.

The system uses .NET environment at its best. It
enabled the system designers to implement desirable
features, such as editable module properties, in a way
that is not matched by any similar system in its
elegance and simplicity.

7. ACKNOWLEDGMENTS
The authors of the paper would like to thank all
previously mentioned contributors for their effort to
improve MVE-2. We also thank to Angharad Savage
for her careful spell checking of this paper.

8. REFERENCES
1. Schreder, W., Avila, L., Martin, K., Hoffman,

W., Law, C.: The VTK User’s Guide.
Prentice Hall, New Jersey, 2001.

2. Váša, L., Skala, V.: A spatio-temporal
metrics for dynamic mesh comparison.
Subbmitted to AMDO 2006

3. Frank, M., Váša, L., Skala, V.: Pipeline
approach used for recognition of dynamic
meshes. Submitted to 3IA Limoges 2006

4. Home pages of D3DUT
http://herakles.zcu.cz/research/d3dut/

5. Home pages of VTK.
http://public.kitware.com/vtk/

6. Home pages of MVE-2.
http://herakles.zcu.cz/research/mve2/

http://herakles.zcu.cz/research/d3dut/
http://herakles.zcu.cz/research/mve2/
http://public.kitware.com/vtk/

	1. Introduction
	1.1 MVE History

	2. Specification
	2.1 Core
	2.2 MVE Front-end
	2.3 Module libraries
	2.4 Advanced pipeline examples
	2.5 Module creation

	3. MVE-2 in Education Process
	3.1 Student Contribution to the Core Development
	3.2 Student Contribution to the Module Library Development

	4. MVE-2 in Research
	5. Future Development Plans
	6. Conclusion
	7. Acknowledgments
	8. REFERENCES

