
Transparent Mobility of Distributed Objects
using .NET

Cristóbal Costa, Nour Ali, Carlos Millán, José Ángel Carsí

Department of Information Systems and Computation
Polytechnic University of Valencia

Camino de Vera, s/n
46022, Valencia, Spain

 {ccosta, nourali, cmillan, pcarsi}@dsic.upv.es

ABSTRACT
Nowadays, information systems are becoming more distributed and dynamic in nature, where mobility is a
solution for run-time adaptability. However, implementing software with such characteristics is a complex task.
This is due to the fact that current middleware technologies do not provide a simple and direct way of
implementing distributed objects that can move in a transparent way. In this paper, we are going to present an
approach, implemented in .NET Remoting to allow transparent mobility of distributed objects. Our approach is
based on separating the distribution and mobility concerns from the source code that contains the application
logic in entities called attachments. Thus, attachments are high-level proxies that are responsible for creating
communication channels and are capable of managing dynamic location changes without affecting the objects in
the case of mobility. This approach has been implemented using a case study. The response time of distributed
communication provided by our approach has been tested and compared with the remote communication
provided by the primitives of .NET Remoting.

Keywords
Distributed communication, transparent mobility, autonomous mobility, .NET Remoting

1. INTRODUCTION
Currently, distributed systems are built by using
middleware services [Ber96a]. The main idea behind
middleware is to allow components at different hosts
to collaborate in such a way that users perceive the
system to be centralized. Information systems are
becoming more dynamic at run-time where mobility
plays an important role for adapting applications and
solving problems such as fault tolerance and load
balancing.

However, building mobile and distributed systems is
not a simple task. The middleware technologies that
are currently available do not provide the sufficient
primitives that allow the deployment of distributed
components which have a mobile nature at run-time.

For example, one of the steps for implementing
mobile objects in .NET is serializing the object states
using the serializable attribute. However, an object
that must be accessible remotely in .NET Remoting
cannot be serializable at the same time [Obe02a].
Therefore, .NET Remoting does not allow the direct
implementation remote objects mobility. Another
drawback found in .NET Remoting is that to
implement remote objects, the class must inherit
from the MarshalByRef class. This limits the
inheritance flexibility of remote objects because they
cannot inherit from other classes as .NET does not
offer multiple inheritance.

In this paper, we are going to present an approach for
supporting distributed communication and mobility
tolerance in a transparent way for .NET objects. The
implementation of this approach is based on a
concept called attachments offered by the PRISMA
approach. PRISMA is an aspect-oriented component-
based approach where attachments allow the
transparent communication among components. In
order to support the PRISMA approach, a
PRISMANET [Per05a] middleware has been
implemented. Based on the experience gained from
this approach, we noticed that the attachment
functionality could be extended to support

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

transparent distributed communication and mobility
for objects. Thus, the implementation presented in
this paper can adapt object-oriented applications that
were not initially designed to be distributed and
mobile in order to obtain this functionality.

Our approach is based on separating the distribution
and mobile concerns from the source code (which
contains the application logic) in entities called
attachments. Thus, the attachments are high-level
proxies that are responsible for creating
communication channels and are capable of
managing dynamic location changes without
affecting the objects in the case of mobility.

The structure of the paper is as follows: Section 2
presents some works that offer transparent
distributed communication and mobility of objects.
Section 3, explains the attachments concept and the
implementation of our approach by using a case
study of distributed mobile agents. Section 4,
evaluates the communication costs introduced by our
approach compared with the .NET Remoting
framework. Finally, conclusions are presented in
Section 5.

2. RELATED WORKS
The work in this paper is focused on providing an
approach that allows objects to be accessible
remotely and to be moved from one location to
another during run-time.

Mobility is classified by Picco [Fug98a] into weak
and strong mobility. Weak mobility involves the
migration of the code and data of an object. In weak
mobility, before interrupting the object for migration,
the developer has to make sure that the object’s
threads have finalized their tasks. Strong mobility
involves the migration of the code and the execution
state (stack, program counter …). In strong mobility,
mobile object execution is only interrupted for
migration. Once the object has been migrated to its
destination, it continues to execute from the
interrupted point. However, strong mobility is
difficult to implement as it greatly depends on the
.NET CLR internals. In order to interrupt a thread in
a transparent way, and to be able to restore it in a
new destination, the following actions must be
performed. On the one hand, we must be able to
obtain the instruction pointer and the execution
context of the threads to be moved. On the other
hand, we must also be able to restore a thread from
an instruction pointer and its thread context. In other
words, to implement strong mobility, we must be
able to serialize threads, which is not currently
available in .NET. For these reasons, our approach is
designed to provide weak mobility and not strong
mobility.

Approaches that deal with communication
transparency have been dealt mostly in Java. The
work in [Hic99a] provides a run-time system and a
compiler that generates remote references. This work
requires having a process on each physical machine.
Each of these processes has: a set of caches that
maps object IDs to instances, a cache for the local
instances, and a cache for each remote process filled
with the instance references that are needed locally.
A drawback of this approach is that the programmer
must indicate where an instance is created, since the
objects are always allocated in the same process
(physical machine), and there is no way to change
the references in the caches.

MobJeX [Rya04a] is a Java-based application
framework that allows weak mobility as well as
remote accessibility of objects. This is obtained by
precompiling the mobile objects in order to generate
two interfaces: a remote interface and a local
interface. Two classes are also generated: a proxy
class which provides a client with the reference to the
server, and a serializable class which represents the
original class that implements the two interfaces. In
our approach, no precompilation is necessary;
however, all mobile objects should be serializable
classes. Another difference between MobJeX and our
approach is that the mobility requests in MobJeX
cannot be caused by the same object; they must be
caused by a system controller. This eliminates the
possibility for mobile objects to be autonomous.
Also, if a MobJeX server object is moved a chain of
calls is produced in order to find out its new location
since the proxy object is not notified of the change
directly. However, in our approach, the proxy is
updated directly to the new location of the object.
Another limitation in MobJeX is that it does not
support the declaration of static methods in mobile
objects. This is because it only supports interfaces to
be shared between the client and the server. In our
approach, it is up to the developer to choose between
shared interfaces or classes.

Another approach that deals with mobility in Java is
the Active Container approach [Cha03a]. This
approach provides a compiler that dynamically
generates the code for storing objects in containers.
The communication among objects is made
transparent by calling the active container. However,
the mechanism of changing the proxy when the
server moves is not described. To move an object, it
is also necessary to indicate both the active container
of the stored object and the new active container.
This reduces mobility transparency and does not
allow objects to self-initiate mobility.

One of the few works performed in the context of
.NET is [Tro03a]. It provides weak mobility as our

approach. It uses Aspect-Oriented Programming
(AOP) to separate the mobility decisions from the
objects code in order to allow objects to self-initiate
the mobility decisions. Location changes that are
caused by mobility are transparent to objects because
a module is provided that forwards requests to find
out object locations. In our approach, no forwarding
requests are needed since the location references are
dynamically updated. It is also important to
comment that our approach can also use AOP. Thus,
the PRISMANET middleware [Per05a] supports
mobility and distribution of aspect-oriented
components. However, since AOP is not
standardized in the .NET framework [Per05a] the
work presented in this paper does not use AOP.

3. AN OBJECT-ORIENTED
APPROACH FOR TRANSPARENT
COMMUNICATION AND MOBILITY
In the following, we present an overview of the
background on which our approach is based. We
then explain our approach using a case study of
mobile agents.

Attachment Overview
3.1.1 The Attachments in PRISMA
PRISMA [Ali05a] is an approach that allows the
construction of complex, reusable, dynamic, and
distributed architectures by interconnecting
architectural elements. Thus, an architectural element
must only request and receive petitions through ports
of an interface. However, an architectural element
instance is unaware of with whom it is interacting,
and how the interaction is being performed. This
allows the architectural elements to communicate in a
transparent way thanks to the attachment
functionality.

Figure 1 Attachments in a distributed

 software architecture
Attachments (see Figure 1) are the artefacts that are
responsible for the connections among the ports of
the architectural elements instances. This way, the
attachments can connect architectural elements
whether they are distributed or not. In addition, if an
instance moves, it is the attachments that change the
references and not the architectural element. The
PRISMA approach has been implemented using
.NET through the PRISMANET middleware
[Per05a]. In order to offer the attachment

functionality not only to a component based
approach but also to object-oriented approaches, the
attachments implementation in [Per05a] has been
adapted to provide a middleware to connect mobile
.NET objects.

3.1.2 Design of the Attachment Approach for
.NET Objects
Our middleware permits client objects and server
objects to communicate locally or remotely in a
transparent way. In addition, the client and server
objects can be mobile. Therefore, these objects must
be serializable.

Figure 2 Attachment structure

Figure 2 shows the design of a communication
between a client object and a server object in the
attachment approach. The communication
transparency is performed because each client has a
reference to an AttachmentClient instance. An
AttachmentClient instance is always local to the
client object. The responsibility of the
AttachmentClient is to redirect the client’s requests to
an AttachmentServer object. The AttachmentServer
object is always local to a server. Therefore,
depending on whether the server object is local or
remote to the client the AttachmentClient object may
or may not make a remote call. Therefore, for the
cases where the server must be accessible remotely,
the AttachmentServer class inherits from
MarshalByRef class, as is specified by .NET
Remoting technology.

In this approach, the client object always sends
requests locally to the AttachmentClient object and
does not have to take into account the location of the
server. Thus, if the server object moves, it is the
AttachmentClient that must change its references. In
addition, as the AttachmentServer object is of
MarshalByRef type the server object does not have to
publish its services by .NET Remoting. This solves
the problem that objects cannot be both serializable
and MarshalByRef.

Distributed mobile agent case study
In order to explain the application of this approach,
we present a case study of distributed mobile agents.
The case study lies in a system composed of several
distributed databases, of which we need to collect
information. Mobile agents are sent to the databases
in order to perform local searches, and then they
return to their source host to process the search
results.

Node1
Client

Node2
Server

AttachmentServerAttachmentClient

Node2 Node1

Component1

Attachments

Component2

In many situations the search might have to be done
in large and complex systems, such as the Internet,
where it is appropiate to use as many agents as sites
to search. For this reason, we decided to use a small
number of agents that perform the search. These
agents are distributed dynamically among databases
depending on their search results. The first agent to
finish its work moves to the next database and
notifies the other agents so that they do not process
the same database twice. This solution requires each
agent to be capable of moving in an autonomous way
and also to be connected with the other distributed
agents in order to share services and information.

SearchAgent

origin: string
currentLocation: string
nonVisitedList: ArrayList
keywords: string [1..*]
results: string [0..*]

SearchAgent(keywords, origin, locationsToVisit)
Start() : void
GetResults() : ArrayList
NotifyNewLocation(currentLocation) : void

searchMates

0..*

Figure 3 SearchAgent class

The SearchAgent class is defined in Figure 3. Each
agent requires a list of keywords for the search, its
host origin, and the initial database list where the
search is to be performed. The Start() method is
invoked to search in a current database. After an
agent finishes its search, it needs to move to the next
unvisited database. Then, it notifies the other agents
of its new location by invoking the NotifyNew
Location() method. It is important to note that each
agent could be in a different location each time.
Finally, when there are no more locations to visit,
each agent returns to its host origin and all the
collected data is processed.

Applying the Attachment Approach to
.NET Remoting
Our approach provides a lightweight middleware to
build distributed applications with the following
features:

 Objects can move autonomously among
computers without having to take into account
how distributed communications with other
objects are performed.

 Objects use the middleware to:
o Register themselves in order to offer

their services to other objects,
o Request the creation of a connection to

objects to use their services,
o Ask for mobility when they need it.

 There is no need for a centralized
infrastructure to manage these mobility and

object registration services. The infrastructure
has been designed in a decentralized way.

 Neither client nor server objects need to
precompile code as in other approaches,
because reflection and code generation is
used.

The communication infrastructure is built on .NET
Remoting in a transparent way. The additional
communication cost introduced between two objects
depends on the network traffic and the derived costs
of invocation methods through delegates.

However, this approach requires a few constraints:
 Every computer must run this middleware in

order to use mobility and object-registration
services.

 A client object needs to know where the
server object is located when it establishes the
connection. However, location-awareness is
provided since connection is established.

 Due to the fact that the middleware provides
weak mobility implementation, objects must
take care of their threads before moving.
When the object is restored in the new
location, an initialization method can be
provided to initialize new threads at a specific
point.

 In order to support the mobility of the object
state, both client and server object classes
must be marked as Serializable.

In the following sections we explain the
implementation of our approach using the case study
presented in the previous subsection.
[2] a

3.2.1 The AttachmentManager class

AttachmentClient

AttachmentManager

Register(objectReference, objectID, publicInterface) : void
ConnectTo(objRef, remoteObjectID, remoteURL) : object
MoveObject(objToMove, newURL, initMethod, args) : void

AssemblyManager

AttachmentServ er

ObjectData

AttachmentClientFactory

1

1

0..*

0..*

0..1

Figure 4 AttachmentManager class

The Attachment Manager class (see Figure 4), is the
main class of our middleware, and must be running
on each computer in order to offer the following
services:

 server-behaviour registration services,
 client-behaviour connection services,
 mobility services

 transference of required assemblies when
mobility takes place

 dynamic generation of server proxies on
demand

For each object that uses the attachment concept, the
AttachmentManager maintains an ObjectData
structure that contains information about the
attachments that are used. On the one hand, if an
object provides services to other objects (that is, it
acts with server behaviour), it will have an
AttachmentServer associated to it. On the other hand,
if an object requires services from other objects (that
is, it acts with client behaviour), it will have an
AttachmentClient associated to it.

In our case study, a SearchAgent object has both
client behaviour and server behaviour. On the one
hand, it needs to notify its new location when it
arrives to a new site; i.e. it invokes NotifyNew
Location() method of other SearchAgents. On the
other hand, it must be notified about sites being
visited by other SearchAgents; i.e. it provides the
NotifyNewLocation() method to be invoked remotely.

3.2.2 Server behaviour
A SearchAgent object (from now on, the Server
object) invokes the Register() service of the
AttachmentManager class in order to be accessible
remotely. The following parameters are needed:

 object reference: reference of server object,
which will be used to create the
AttachmentServer part.

 objectID: custom ID to uniquely identify a
server object. This must be known by each
client object in order to establish a proper
connection.

 publicInterface: an optional parameter that
allows us to restrict services that would be
offered to clients. Otherwise, all services from
the server object are provided.

As a result of this invocation, an AttachmentServer
object is created and made accessible remotely (see
Figure 5). This object represents the SearchAgent
object and is responsible for offering the following
services:

 incoming request services are forwarded
towards the server object.

 mobility notification of the server object to
client objects that are connected to it.

The AttachmentServer is composed by the
AttachmentServerMediator class, who publishes the
services that can be invoked remotely and is
responsible for invoking Server methods.

AttachmentServ erMediator

methodsList: Delegate[]

RegisterClient(attClientURL) : MethodInfo[1..*]
UnRegisterClient(attClientURL) : void
RedirectService(methodID, args) : object

AttachmentServ er

objectName: string
«NonSerialized» objRef: object
objType: Type
attClientsURLs: string [0..*] (ArrayList)
serverIsMoving: bool

AttachmentServer(objRef, objectName, objType)
BeginServerMobil ity() : void
EndServerMobility(objectReference) : void

[Serializable]

MarshalByRefObject
1[NonSerialized]

Figure 5 AttachmentServer class

Due to the fact that the method signatures of the
Server are not known until runtime, direct call
invocation cannot be used. We had to use dynamic
method invocation. We decided not to do this
through reflection (using Type.InvokeMember())
because it has the worst performance [Gunn04a].
Instead of this, we have used dynamic code calling
through Delegates. When AttachmentServer is
created, a delegate is created for each method
provided by the server, following these steps:

1. Method information is obtained by means of
reflection at runtime. With this information, a
delegate type is created by emitting its MSIL
code.

2. This delegate type is instanced and stored in
an array.

3. The index of the array where the delegate is
stored is used to uniquely identify the
method to be executed. We have called it
MethodID. This index is stored together with
related method information in a structure
called MethodInfo.

Thus, clients forward methods by the invocation of
the RedirectService() method and by providing the
correct MethodID of the delegate to be executed. We
chose this alternative in order to avoid searches in the
delegate list, which can slow method invocation.
Clients get all the MethodIDs and their related
information (MethodInfo list) when they subscribe to
the AttachmentServer through the RegisterClient()
method. Moreover, client subscription to the
AttachmentServer provides a way to be notified
when the server is moving.

3.2.3 Client behaviour
A SearchAgent (the client) that wants to call methods
from another object (remote or local) needs the
reference of this object to do that. This reference is
provided by the ConnectTo() service of the
AttachmentManager class. The objectID and its
current location must be provided in order to get its
reference. The reference provided is in fact an
AttachmentClient that acts as a proxy. From now on,
the client object will not have to take care of
distributed communications nor location changes of
the remote object (the server).

«generated-code»
Serv er-AttClient

IDeserializationCallback

AttachmentClient

methodInformation: MethodInfo [1..*]
parentType: string
serverURL: string
serviceIsConsuming: bool[]

Process(methodID, args) : object
BeginClientMobility() : void
EndClientMobility() : void
StopProcessingServices() : void

AttachmentClientMediator

ServerMobilityBegan() : void
ServerMobilityEnded(newURL) : void

MarshalByRefObject

[Serializable]

[Serial izable]

1
[NonSerialized]

1

Figure 6 AttachmentClient classes

The creation of the AttachmentClient is done in
several steps:

 If the client computer does not have the
assemblies of the server object, it downloads
them from the computer where the server is
located at this point in time.

 An AttachmentClient object is created. It
registers itself in the AttachmentServer
Mediator of the server object. Thus, it obtains
method information about available remote
services.

 With this information, a proxy of the server is
generated at runtime. The purpose of this
proxy is to forward called methods through
the infrastructure of attachments in a
transparent way. We call it Server-AttClient,
although its real name will depend on the
server type that it represents.

 An instance of the generated Server-AttClient
is returned to the client object.

The Server-AttClient class is generated by emitting
MSIL code. It can be created in two ways: by
implementing a specified server interface or by

inheriting the server type. When it is instanced, a
reference to an AttachmentClient object is provided,
to which methods are forwarded. For each method,
the generated code looks like this:
void NotifyNewLocation(string currentLocation) {
 object[] args =
 new object[1] {currentlocation};
 MethodID = 2;
 attClient.Process(MethodID, args); }

Each method has its related MethodID defined at
generation time in order to provide it correctly to the
AttachmentServerMediator. In .NET Remoting, by
creating a derived class from the RealProxy class,
proxies can be built in an easy way instead of
emitting MSIL code. However, we cannot use this
feature because this infrastructure only accepts
objects that inherit from the MarshalByRef class. To
support mobility, our generated proxy must be
serializable, as discussed in section 3.2.4.

In order to minimize generated MSIL code, the
Server-AttClient class is composed of an
AttachmentClient class that defines all the
functionality of method forwarding and mobility.
The Process() method is responsible for forwarding
the services to be executed to the AttachmentServer
Mediator. Finally, the AttachmentClientMediator
class contains the services that AttachmentServer is
going to invoke in order to notify its mobility, which
will be discussed below.

To illustrate, we describe how SearchAgents are
created and connected with each other following our
approach. First, SearchAgents are created in the host
origin and registered in the AttachmentManager by
providing a different objectID for each one. Next,
they are connected to each other through the
ConnectTo service and by providing the objectIDs
obtained in the previous step. Finally, the Start()
method of the SearchAgents are invoked, so they will
begin to move to remote databases to collect
information.

3.2.4 Object mobility
In order to move an entire object (code + state) to a
new host, the AttachmentManager class provides the
MoveObject() service. As mentioned above, there
must be an AttachmentManager object running at the
target host in order to be able to receive the object
and restore its state properly. The MoveObject
service moves the specified object to the new
specified computer taking into account the current
communication processes. Communication processes
are "frozen" while mobility takes place, and they are
restored properly when mobility ends. Thus, the
other objects to which the moved object was
connected to are not aware of the mobility process.
Moreover, an object can request to move itself
autonomously. In this case, the object thread that

requested the mobility is aborted when the mobility
begins.

It is important to note that, in order to provide the
objects with a high level of mobility transparency,
we considered the objects as black boxes which we
do not know anything about (i.e., their threads or the
location where remote object references are stored)
For this reason, the object to be moved is responsible
for finishing all of its executing threads before
starting mobility. In other words, the object must
reach a secure state before requesting mobility. This
cannot be done transparently by the middleware for
two reasons. On the one hand, it is difficult to obtain
all the running threads of a particular object. On the
other hand, it is not possible in .NET (without
modifying the CLR) to get the thread execution state
(stack and instruction pointer) and to restore it in a
new computer. In order to do that, we would need
thread serialization capabilities. However, to
overcome these limitations, an initialization method
and its arguments can be provided to restore the
execution state of the object when the mobility
process ends.

Mobility is carried out in several steps. First, both the
object to be moved and its communication processes
(the attachments) are packaged by creating a
MobilityPackage object (see Figure 7). Second, this
object is serialized and transferred to the target host.
Then, before deserializing the transferred object, the
middleware checks whether the required assemblies
are available at the current host. If not, they are
downloaded from the host where the object comes
from. Finally, the Unpack() method is invoked to
restore the object and the attachments. If anything
fails, the service UndoMovement() restores the object
to its initial location.

ClientBehav iourMobilityServ erBehav iourMobility

MobilityPackage

Mobil ityPackage(objectData, initial izationMethod, args)
UnPack() : ObjectData
UndoMovement() : ObjectData

[Serializable][Serializable]

[Serializable]

0..1 0..*

Figure 7 MobilityPackage classes

The mobility process depends on the role of the
object to be moved: client or server behaviour. In the
case of client behaviour, the
ClientBehaviourMobility class obtains the
AttachmentClient data (server location, server type
and its unique ID) in order to rebuild it at the target
host. This is because MarshalByRef objects cannot
be serialized, as we stated above. Then, it invokes the
BeginClient Mobility service of AttachmentClient to

wait for pending requests to finish properly. Both the
Server-AttClient and the object are serialized
together, so on deserialization the object preserves
the Server-AttClient reference without forcing the
object to provide a setter property to update remote
object references. However, as Server-AttClient is a
dynamic assembly, it must be regenerated at the
target host if this was not done before. Finally, at the
target host, EndClientMobility service is invoked and
the connection is restored to the AttachmentServer by
notifying the new location of the client object.

In the case of server behaviour, each client object
must be notified of the server mobility process so
that services are not requested during this process.
Similar to the ClientBehaviourMobility object, the
data of the AttachmentServer (objectID, objectType
and locations of connected AttachmentClients) is
stored on a ServerBehaviourMobility object in order
to rebuild it at the target computer. Then, the
ServerBehaviourMobility object invokes the
BeginServerMobility service of the AttachmentServer
to notify the AttachmentClients of server mobility.
Thus, each AttachmentClient blocks the arrival of
new requests (by suspending incoming threads) and
waits until current processing requests finish. When
there are no more requests being processed by the
server object, the mobility process can continue.
Finally at destination, EndServerMobility service is
invoked and connection is restored to the
AttachmentClients by notifying its new location. In
such the case that an object has both server and client
behaviour, its mobility process will be the union of
the above.

Simultaneous mobility is also supported. In other
words, an object can move to another host while
other objects, that are connected to it, are moved at
the same time. Let's suppose that two SearchAgents
'Agnt1' and 'Agnt2' are connected, and 'Agnt1' is
being moved. Then, 'Agnt2' also wants to be moved,
but if it moves, 'Agnt1' will not be able to connect to
it when 'Agnt1' ends its move. In order to do this, a
message is left in the host where 'Agnt2' was. When
'Agnt1' ends its move and tries to connect to the last
location of 'Agnt2', it will be notified with the new
'Agnt2' location.

In the SearchAgents case study, mobility takes place
when an agent finishes collecting data at a certain
database. Then, it invokes the MoveObject() service
by specifying the next unvisited database where it
wants to move and the service to be called when the
mobility process ends (the Start method). When it
arrives to the new database, the Start method is
executed, and the SearchAgent continues its data
collecting process.

4. EVALUATION AND RESULTS
Our approach has been implemented to compare the
communication costs added by the attachments. We
have measured these costs from when a client object
requests a service until the results are returned.
Without attachments, the average communication
costs on a 100Mbit LAN are 0.9030ms. With the
attachments (in the same conditions), the average
communication costs are 1.0144ms (10.98%). The
additional costs introduced, are due to 3 direct calls +
1 delegate dynamic invocation. Therefore, costs are
increased because of dynamic invocation costs. For
this reason, we also evaluated the performance by
using a dynamically generated custom class
[Gunn04a] instead of using delegates. This class was
invoked by the AttachmentServerMediator in order
to make direct method calls to the server object.
Thus, the average costs have been reduced:
1.0010ms (9.79%). In the case of mobility, the costs
are higher: there are communication and processing
costs. The object, its related attachments, and the
required assemblies are transferred. There are also
several notification messages. The most important
processing costs are due to the deserialization of
transferred data and to the dynamic generation of
Server-AttClient types.

5. CONCLUSIONS
In this paper, we have presented a lightweight
middleware that can be easily included in other
middlewares to provide mobility capabilities to its
objects. Our approach supports weak mobility by
using the attachments concept. Autonomous mobility
for distributed objects is provided transparently and
simultaneously, so the objects are not aware of the
mobility process or the connection process of other
objects to which they are linked. Moreover, the
communication costs introduced are not very high, so
an application can be mobility-adapted easily without
slowing its performance. However, there are a few
constraints. First, mobile objects must be
Serializable, and they must manage their own threads
before moving. Also, in order to establish the initial
connection to a remote object, its current location
must be known in advance. Nevertheless, our
approach provides location-awareness after
establishing a connection. The most common
solution to obtain current locations of mobile objects
is by having a centralized object that is updated with
location changes from which clients can request
these locations. However, this is not a decentralized
approach and more work has to be done.

Furthermore, attachments add an abstraction layer
over the communication infrastructure, so objects do
not have to take into account what technology is
used. Therefore, even though we implemented our

approach in .NET Remoting, in the future we can
adapt it to a Service-Oriented infrastructure such as
Indigo, so that current running objects do not have to
be aware of the underlying technology.

6. ACKNOWLEDGMENTS
This work has been funded by the Department of
Science and Technology (Spain) under the National
Program for Research, Development and Innovation,
DYNAMICA project TIC2003-07776-C02-02.

7. REFERENCES
[Ali05a] Ali, N., Ramos, I., Carsí, J.A. A Conceptual
Model for Distributed Aspect-Oriented Software
Architectures. In International conf. on Information
Technology Coding and Computing, (ITCC 2005),
IEEE Computer Society, Las Vegas, USA 2005.
[Ber96a] Bernstein, P.A. Middleware: a model for
distributed system services. Communications of the
ACM, Volume 39, Issue 2, ISSN: 0001-0782, 86-98,
1996.
[Cha03a] Chaumette, S. and Vignéras, P. A
Framework for Seamlesly Making Object Oriented
Applications Distributed. In International conf. on
Parallel Computing (PARCO 2003): 305-312, 2003.
[Fug98a] Fuggetta, A., Picco, G.P., and Vigna, G.
Understanding Code Mobility. In IEEE Transactions
on Software Engineering, 24(5): 342-361, 1998.
[Gunn04a] Gunnerson, E. Calling Code
Dynamically. MSDN Library,
http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/dncscol/html/csharp02172004.asp, 2004
[Hic99a] Hicks, M., Jagannathan, S., Kesley, R.,
Moore, J.T. and Ungureanu, C. Transparent
Communication for Distributed Objects in Java. In
ACM Java Grande Conference, 160-170, June 1999.
[Obe02a] Obermeyer, P. and Hawkins, J. Object
Serialization in the .NET Framework. MSDNLib.:
http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/dndotnet/html/objserializ.asp, 2002.
[Per05a] Pérez, J., Ali, N., Costa C., Carsí J.A.,
Ramos I. Executing Aspect-Oriented Component-
Based Software Architectures on .NET Technology.
International Conference on .NET Technologies,
Plzen, Pilsen, Czech Republic, 2005.
[Rya04a] Ryan, C. and Westhorpe, C. Application
Adaptation through Transparent and Portable
Object Mobility in Java. In proc. of 2004
International Symposium on Distributed Objects and
Applications (DOA 2004), Agia Napa, Cyprus, 2004,
Springer-Verlag LNCS3291
[Tro03a] Troger, P. and Polze, A. Object and
Process Migration in .NET. The 8th IEEE Intern.
Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2003), Mexico,
January 2003.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncscol/html/csharp02172004.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncscol/html/csharp02172004.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/objserializ.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/objserializ.asp

	INTRODUCTION
	RELATED WORKS
	AN OBJECT-ORIENTED APPROACH FOR TRANSPARENT COMMUNICATION AN
	Attachment Overview
	The Attachments in PRISMA
	Design of the Attachment Approach for .NET Objects

	Distributed mobile agent case study
	Applying the Attachment Approach to .NET Remoting
	The AttachmentManager class
	Server behaviour
	Client behaviour
	Object mobility

	EVALUATION AND RESULTS
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

