
Aspect.NET — aspect-oriented toolkit for Microsoft.NET
based on Phoenix and Whidbey

Vladimir Safonov
St. Petersburg State University,

Russia

v_o_safonov@mail.ru

Mikhail Gratchev
St. Petersburg State University,

Russia

9r@mail.ru

Dmitry Grigoryev
St. Petersburg State University,

Russia

gridmer@mail.ru

Alexander Maslennikov
St. Petersburg State University,

Russia

khan@tepkom.ru

28 Universitetsky prospect
Petrodvorets, St. Petersburg

198504 Russia

ABSTRACT

Aspect-oriented programming (AOP) methodology is evolving from research projects towards commercial applications. Most of the

existing AOP tools suitable for commercial projects are intended for Java platform only which limits their applicability. Known AOP

tools for Microsoft.NET such as Aspect#, Loom.NET, etc. are still at experimental stage. Most of them lack flexibility and comfortable

user interface.

Aspect.NET, our AOP framework for Microsoft.NET, offers a new approach taking the best of Microsoft .NET specifics. Aspect.NET

allows to define aspects using any language implemented for .NET that supports the concept of attribute. For aspect specification, we

developed very simple and compact language-agnostic AOP meta-language - Aspect.NET.ML. At the source code layer, aspect

definition in Aspect.NET looks like the code of a compilation unit annotated by Aspect.NET.ML constructs. The AOP annotations are

converted into specific AOP custom attributes used by the Aspect.NET tool. Thus, an aspect assembly keeps all necessary information

for aspect weaving whose result is represented as an augmented assembly.

Aspect.NET implementation is based on Microsoft Phoenix – state-of-the-art multi-targeted optimizing infrastructure for developing

compilers and other language tools, in particular, comfortable for creating and editing .NET assemblies. The weaver uses Phoenix IR

for scanning target applications and weaving aspects.

Aspect.NET Framework (GUI and aspect editor) is implemented as add-in to Microsoft Visual Studio.NET 2005 (Whidbey) and is

seamlessly integrated into it. Important features of Aspect.NET Framework are: visualization of join points at source code layer, and

user-controlled filtering potential join points before weaving.

Keywords
Aspect-oriented programming, Microsoft.NET, AOP meta-language, join point, weaving, Phoenix, Visual Studio.NET 2005, add-in.

1. INTRODUCTION

Modern AOP approach to software development is intended to

solve a lot of issues related to increasing complexity of

architecture, development and maintenance of software products.

Aspect-oriented approach is helpful to simplify the business logic

of an application, due to explicit separation of its cross-cutting

concerns.

Well known examples of cross-cutting concerns are MT safety,

security and logging.

More complicated example close to the authors’ area of expertise

is the task of extending a compiler by implementation of a new

source language feature – e.g., generics in C#. It is clear that all

the phases of the compiler should be updated for this purpose. So

it is not enough to add new modules to the compiler but is it also

necessary to insert into its code a number of tangled fragments to

glue the new modules of the compiler to the existing ones.

Theoretical foundations of AOP are well defined by a variety of

researchers [1, 17]. However, even basic AOP concepts are still

understood and interpreted different way by different researchers

and developers. Except for widely known AOP tools for Java –

AspectJ [9] integrated into Eclipse, there are no AOP tools yet

that could be easily integrated to the existing software

development environments.

The goal of the Aspect.NET project [10, 11, 51] described in this

paper is to create an AOP tool for Microsoft.NET [40] which

would be flexible, language-agnostic and integrated to the latest

Microsoft software development environment – Visual

Studio.NET 2005.

A version of Aspect.NET for academic shared source .NET

implementation - SSCLI / Rotor is also developed.

Aspect.NET allows to visualize the result of weaving at source

code level, and to manually select or unselect potential join

points.

The paper describes Aspect.NET principles, architecture,

components, functionality, perspectives and ideas of future work

on Aspect.NET.

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on

the first page. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a

fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,

Plzen, Czech Republic.

2. RELATED WORK
The AOP methodology founded by Gregor Kiczales [1] is similar

to a number of approaches already used in software technologies

for a few years - subject-oriented programming [25], composition

filters [26], [14], adaptive programming [15], intentional

programming [27], generative programming and transformational

programming [16].

The papers [28 - 30] provide introduction to AOP and describe

pluses and minuses of different approaches to AOP.

In [31, 32] the most popular AOP tool – AspectJ is described in

detail. The Web site [22] contains a variety of information on all

AOP approaches and tools. The paper [21] describes one of

possible approaches to AOP for .NET based on interceptors.

Papers [35, 36] show the applicability of AOP approach for

implementing object communication protocols’ design patterns.

In [37], design-by-contract foundations are described, as a reliable

software development technology. In our opinion, design-by-

contract principles can be applied using AOP tools, Aspect.NET

in particular.

The paper [36] proposes an approach to handling using AOP,

provides some examples and gives some recommendations of

AOP applicability at this software lifecycle stage.

Since Java was the most advanced software development platform

in mid-1990s, the first AOP tools were developed for the Java

platform. In particular, AspectJ [9] provides the following Java

extensions

• Aspects – implementations of cross-cutting concerns;

• pointcuts – collections of patterns for join points selection

and aspect weaving;

• advices – actions to be performed on reaching the aspect’s

joinpoints;

• inter-type declarations (introduce) — definitions of aspect

members to be inserted into a target application in aspect

weaving, but visible by the aspect only, rather than by the

target application;.

• dynamic updates of control flow before, after or instead the

code of a join point.

One of the key ideas of AspectJ - to perform a given action on

reaching a given join point in the code – can be considered as an

enhancement of the concept of breakpoint used in debuggers. But

the most fundamental principle of AspectJ is to define a new kind

of modules for aspect definitions. The paper [17] provides a

systematic look at the existing AOP tools – AspectJ, HyperJ,

Demeter, DemeterJ, and AOP models – PA, TRAV, COMP-

OSITOR and OC.

Another group of problems related to AOP is aspect mining [18 –

20], or as we call it aspectizing [10] — extracting aspects from

non aspect-oriented applications. Aspectizing can be very helpful

to improve readability and maintainability of applications. There

are several research projects and tools for aspectizing

implemented for the Java platform: Aspect Mining Tool (AMT)

[18], Aspect Browser [19] and FEAT [20].

When the Microsoft.NET platform was developed, it appeared

necessary to implement multi-language aspects, in the spirit of

.NET language interoperability, rather than to limit aspects to be

only extensions of Java or any other concrete programming

language.

There are lots of examples of real cross-cutting concerns and their

implementation, both in commercial and in research software

projects, in particular for Microsoft.NET platform and its non-

commercial SSCLI implementation. When looking at the code

developed by the SSCLI team to port Rotor to MacOS, or at the

code developed by Gyro (generics for Rotor) team, it is quite clear

that both of these are actually aspects.

Currently there are a number of research projects to support AOP

for Microsoft.NET. Among them are: Aspect#, Loom.NET, R#,

Weave.NET, Wicca [53], Compose* [54]. The existing

approaches to implementation of AOP for Microsoft.NET can be

divided into four groups, according to the ways of representing

aspects [56]:

• Using XML schemes for defining AOP specifications, e.g.

SourceWeave.NET [52], Weave.NET [8], first versions of

AspectDNG [47].

• Using COM+ style interceptors for dynamic weaving and

activating AOP functionality. The configuration of the whole

AOP system is described by XML files [21], [50].

• Using Composition Filters Model (CF) as extending special

classes – Compose* [54].

• Using both custom attributes and XML - Aspect# [5]

• Using custom attributes - Aspect.NET [10], Phx.Morph [55],

AspectDNG [47].

So our Aspect.NET approach relates to the fourth group,

according to the above classification.

The most advanced of the existing AOP integrated development

environments (IDE) for the Java platform is referred to as AspectJ

Development Tools (AJDT) [45] developed by the AspectJ team

as a plug-in to the Eclipse IDE to support using AspectJ tools.

There is another tool similar to AJDT for Eclipse — AspectJ

Development Environment (AJDE) [42-44] that can be plugged

into Emacs, JDEE, Sun Studio, NetBeans and JBuilder.

Phx.Morph is another research AOP project which uses the same

weaving techniques based on MS Phoenix [12]. In this tool,

weaving is performed using attribute-based annotations. The tool

does not offer any AOP meta-language for aspect specifications.

Lack of AOP meta-language makes readability of aspects and

specification of non-trivial join points much more complicated.

Currently none of the existing AOP IDE for Microsoft .NET,

prior to our Aspect.NET tool, has comfortable GUI. We think this

is because of initial stage and research nature of the majority of

AOP implementations for Microsoft.NET.

3. ASPECT.NET BASICS
An aspect in Aspect.NET [10, 11] is defined as a source code of a

class (more generally speaking, a compilation unit) in C# or other

.NET language, annotated by our simple AOP meta-language

(referred to as Aspect.NET.ML) statements to highlight the parts

of aspect definition. They are: aspect header (with optional

parameters), (optional) aspect data; aspect modules (methods or

functions), and aspect weaving rules which, in their turn, consist

of weaving conditions and actions (to be woven into a target

assembly, according to these rules). The structure of

Aspect.NET.ML meta-language is so simple and self-explanatory

that we decided to explain it using our examples given below,

rather than provide its precise EBNF definition.

The aspect weaving rules determine the join points within a target

application where the actions of the aspect are to be woven. The

aspect actions provide the aspect’s functionality.

Speaking in terms of knowledge management, aspect weaving

rules can be considered as special kind of knowledge (a rule set)

defining how to apply the aspect to a target application.

There can also be weaving rule sets separate from concrete

aspects, similar to pointcuts in AspectJ.

Unlike AspectJ, a Java extension for AOP, in Aspect.NET, due to

use of language-agnostic AOP annotations, it becomes possible to

avoid the issue of extending each of the .NET languages by its

own AOP extensions specific of that language.

The Aspect.NET pre-processor converts the AOP annotations to

definitions of AOP custom attributes (AspectDef), specially

designed for Aspect.NET, to mark classes and methods as parts of

the aspect definition (see fig. 1). Next, an appropriate common

use .NET compiler transforms the AOP custom attributes to the

aspect assembly’s metadata stored together with the MSIL code.

Join points in Aspect.NET are determined by weaving rules which

are parts of aspect definition, or are defined in a separate rule set

module. The weaving rules contain: conditions of calling aspect

actions (before, after, or instead); context of the action call (a call

of some method, assign to a variable (field), or use of some

variable (field); wildcard to find the context of the aspect action’s

call.

The process of aspect weaving consists of two phases – scanning

(finding join points within the target application) and inserting

(weaving) the calls of the aspect actions into the join points found.

Unlike many other AOP tools, Aspect.NET allows the user to

select or unselect any of the possible join points using

Aspect.NET Framework GUI, to avoid “blind” weaving that

could make the resulting code much less understandable and

actually non-debuggable.

4. ASPECT.NET DESIGN
The Microsoft.NET platform is based on the principles of peer-to-

peer multi-language programming. For any of the .NET

languages, a very comfortable toolkit for software development

and maintenance is provided – Microsoft.NET Framework and

Visual Studio.NET.

The need to support multi-language programming makes the task

of weaving and locating aspects more complicated, as compared

to the Java platform.

For example, AspectJ [9] is actually an implementation of Java

extension by AOP constructs and concepts. AspectJ consists of

the extended Java language compiler and a set of specific utilities

that can work with this Java extension only.

To avoid developing a separate compiler for each of the .NET

languages for the purpose of implementing multi-language AOP,

Aspect.NET uses custom attributes to represent information on

aspects. Due to that, an aspect definition in Aspect.NET is a

syntactically and semantically correct source code of a

compilation unit, with AOP custom attributes added to annotate

parts of aspect. Typically, an Aspect.NET aspect is converted to a

class with its fields and methods, marked by AOP custom

attributes, intended for compilation into a .NET assembly by the

appropriate common use .NET Framework compiler. The AOP

custom attributes are usable and understandable by Aspect.NET

only. They are stored together with the rest of the aspect assembly

and don’t prevent from normal functioning of the other .NET

tools. Due to our approach, there is no need to make a special

“AOP-aware” version of the .NET Framework or Visual

Studio.NET.

Full compatibility of Aspect.NET aspects to all the .NET tools

makes it possible to use all the code refactoring, analysis,

profiling and other features of .NET tools, while working with an

aspect definition. Moreover, all the existing OOP quality criteria

and metrics are applicable to .NET aspect-oriented applications

based on Aspect.NET.

Figure 1. Aspect.NET.ML conversion to custom attributes

Aspect weaving is performed “statically” (see fig. 2), at the layer

of .NET intermediate representation language (MSIL) and

metadata, rather than at source code layer. All weaving-related

transformations are made by the Aspect.NET toolkit. There is no

need to transform in any way either source or intermediate code

of a target application before weaving Aspect.NET aspects.

Aspect Library

(DLL)

%aspect Test

public class Test

{

%modules

 public static void TestRun()

 {

 WriteLine(”test”);

 }

%rules

 %before %call Write*

 public static void TestRunAction()

 {

 Test.TestRun();

 }
}

Aspect.ML

Converter

C#

Compiler

namespace Aspect

{

 [AspectDef("Test","mainModule","","")]

 public class Test

 {

 [AspectDef("Test","module", "", "")]

 public static void TestRun()

 {

 WriteLine(”test”);

 }

 [AspectDef("Test","action","%before %call Write*", "")]

 public static void TestRunAction()

 {

 Test.TestRun();

 }

Figure 2. Static weaving in Aspect.NET

The advantages of static aspect weaving in Aspect.NET, as

compared to dynamic weaving (e.g., in LOOM.NET [2]) and

load-time weaving (e.g., in Weave.NET [8]), are higher

performance and better understandability of a target application

with the aspects woven. Dynamic weaving is usually

implemented with the help of some debugging API which makes

the operating system perform checking of each executable code

instruction to satisfy some specific conditions, and to enable

jumping to some other appropriate part of code when the

condition is satisfied. Such dynamic checks may dramatically

decrease performance. On the contrary, due to Aspect.NET

approach, when using MSIL code of the resulting assembly it is

quite possible to track the results of aspect weaving in vast detail

by .NET utilities (ilasm/ildasm, debuggers, etc.) Thus, a

developer who uses Aspect.NET is guaranteed to get a predictable

and understandable resulting application after weaving. So the

user does not need to use any kind of tricky checks of the results

of weaving aspects, any non-trivial kinds of debugging, etc.

Up to the present moment, the main reason why similar AOP

toolkits haven’t yet been developed for .NET was the lack of

adequate common use tools for analyzing and updating .NET

assemblies (whose structure is very complicated) at the layer of

MSIL intermediate code and metadata. To handle assemblies,

some of the developers had to use RAIL [50] or to reinvent a

wheel by developing their own, limited toolkit for this purpose.

Our Aspect.NET tool is based on Microsoft Phoenix [12] – a

multi-targeting optimizing compiler back-end development

environment. Phoenix provides a convenient high-level API to

create, handle and update .NET assemblies by transforming it into

high-level Phoenix IR (HIR) suitable for any program

transformations like weaving. The resulting assembly unit is

converted back to MSIL and metadata format. The latest version

of Phoenix is dated November 2005 and is available within the

framework of Phoenix Academic Program [12].

One of main shortcomings of the existing experimental AOP tools

for .NET (Aspect# [5], AOP.NET [3], etc.) is the lack of

functionality for analyzing and debugging the results of weaving

aspects.

As for Aspect.NET, all its components have the central part,

Aspect.NET Framework, implemented as an add-in to Microsoft

Visual Studio.NET 2005. Due to that, the user can, for example,

visualize the results of aspect weaving at the source code level.

Also, a version of Aspect.NET compatible to the Shared Source

Common Language Infrastructure (Rotor) is developed. Currently

it is based on command-line interface using Perl scripts. This

version also uses Phoenix and is based on the same weaver.

The main components of Aspect.NET (see fig. 4) are as follows:

• Weaver

• Meta-language converter

• Aspect.NET Framework

Figure 4. Components of Aspect.NET

Aspect.NET Framework allows the user to define aspects in

Aspect.NET.ML meta-language, by creating a new kind of project

(Aspect) and using a skeleton of the aspect source code generated

by our wizard (see fig. 3), to map potential join points into the

original target assembly’s source code, and to visualize the results

of weaving.

To collect information on the potential join points in the target

assembly, as well as to perform aspect weaving itself,

Aspect.NET Framework uses the functionality of the weaver. At

the scanning phase, the weaver matches the code of the target

assembly against the aspect (using its weaving rules), and creates

the list of the potential join points. At the weaving phase, the

actions of the aspect are woven into the target assembly. The user

can edit the list of the (potential) join points, based on visualizing

the join points within the target assembly’s source code.

5. ASPECT.NET.ML CONVERTER

Aspect.NET.ML converter transforms user-defined aspects from

AOP meta-language into source code fully written in the aspect’s

implementation language, annotated by AOP custom attributes.

Also, the converter calls the appropriate common use .NET

language compiler to compile the resulting source code into a

.NET assembly.

Implementation of the converter is based on CodeDom – a set of

.NET Framework classes for generating and handling object-style

representation of a .NET source code. The aspect definition is

transformed into a CodeDom graph which allows to modify the

source code and to use language-independent form of aspect

definition inside Aspect.NET.

Compiler

Application

Source Code

Aspect

Library

Aspect

Source Code

Aspect.NET.ML

Converter

Target
Application

Weaver

 User

Application

Aspect.NET Framework

Compiler
Aspect

Library

Application

Source code
Application

Weaver Application'

Aspect

Library

Aspect

method

invocations

Specifically for Aspect.NET, we introduced a new kind of Visual

Studio.NET project – Aspect that includes a code pattern for

aspect definition and all related resources. Thus, seamless

integration into the Visual Studio IDE is enabled, and aspect reuse

becomes easier.

On creating a correct aspect definition by the user, it is converted,

then compiled into an assembly, and automatically passed to the

aspect browser for its subsequent use within the Aspect.NET

Framework.

In the aspect example in AOP meta-language (please see

Appendix A), the keyword %aspect starts the aspect header that

contains its name (in this example - Politeness), and can also

contain parameters (lacking in this example). Then goes the

%modules part where the aspect modules (methods) are defined.

In the %rules part, the aspect actions are defined, each of them

preceded by its weaving rule. In this example, the first action is to

be inserted before calling each method of the target application,

the second one - after each of its method calls.

In the next listing (see appendix B), the source code of the

Politeness aspect generated by the converter is presented. All the

members of the aspect’s implementation class are marked by

appropriate AOP custom attributes.

6. WEAVER DESIGN APPROACH
In Aspect.NET, weaver is implemented as a separate application,

which allows to distinguish between weaving itself and its

mapping into the source code. So, access to source codes of a

project is not mandatory for subsequent weaving which is

performed at the level of binary representations of the target

assembly and the aspect assembly.

To find and analyze join points, the weaver uses high-level

intermediate representation (HIR) of the binary target assembly

generated by Phoenix [12]. Each executable module of the

assembly is represented by a graph of high-level instructions

which enable access to their source and destination arguments,

debugging information, information on the parent unit, etc. The

Phoenix API enables, on loading a MSIL assembly represented by

a PE file, to get access to control and data flow, to the list of

modules and instructions, to detailed information on types and

symbols, to information on variable dependencies, etc. This

makes possible to find a variety of the kinds of join points, and

makes the weaving independent of concrete aspect

implementation language. In scanning mode, the weaver scans

this instruction stream, finds the join points (based on the weaving

rules), and passes their coordinates in the target application to the

Aspect.NET Framework add-in which presents them to the user.

Next, on getting from the framework the list of the user-selected

join points, the weaver starts its weaving mode, scans the

instruction stream of the target application, and finds the user-

selected join points. Then, the weaver generates instructions for

calling aspect’s actions with the appropriate arguments. The

arguments of the action can be the target method name and the

pointer to the target object whose method is called. The weaver

injects the generated aspect’s action call instructions into the join

point specified by the weaving rule, - before, instead or after the

target call.

7. CASE STUDY: ASPECT.NET IN ACTION
Now let’s consider in more detail the scenario of using

Aspect.NET and the principles of its functioning.

1. The user defines an aspect in AOP meta-language and passes

the source code of the aspect (as part of the Visual Studio’s

Aspect project) and the target application’s source code (also a

Visual Studio project) into the Aspect.NET Framework (see fig.

5).

Figure 5. Creating the aspect and the application projects

2. Aspect.NET Framework initiates the compilation of the source

code of the target application by the .NET compiler from the

appropriate language, to create the target assembly with its

debugging information (.pdb file). Also, Aspect.NET Framework

passes the source code of the aspect to the AOP meta-language

converter which, in its turn, converts the source code with meta-

language annotations into a source code with AOP custom

attributes, and generates a ready-to-use aspect assembly (by

calling the .NET compiler). See fig. 6.

Figure 6. Preparing the aspect and the target application for

weaving

3. To create a list of all possible join points within the target

application, Aspect.NET Framework invokes the scanning phase

of the weaver. To map the join points to the source code of the

target application, Aspect.NET Framework provides the weaver

with its debugging information (for Microsoft .NET Framework –

represented as .pdb file, for Rotor – as .ildb file) The weaver

performs the scanning and generates the join points list as an

XML document (see fig. 7).

Figure 3. Creating a new Aspect.NET aspect project

.NET compiler

The app

project

Aspect

library

App

Aspect.NET

Framework

The Aspect

project Meta-language

converter

Debug

info

The application

project

Aspect.NET

Framework

User

The aspect

project

Figure 7. Generating the list of joinpoints

4. Based on the XML file, Aspect.NET Framework creates a GUI

representation of the join points list, so that the user could

visualize each of the join points within the editor of the code of

the target application. The user can also filter the set of the join

points by unselecting any of them. Then, Aspect.NET Framework

passes the updated list of the join points and the other relevant

working files to the weaver for the phase of weaving itself. As

the result of weaving, the user obtains the updated target

application’s assembly (see fig. 8).

Figure 8. Join points filtering and weaving

Due to such scenario, the phases of scanning and weaving are

separated. This opens great opportunities for software

maintenance and configuration. For example, instead of passing to

the client an updated version of a big monolithic application, it

will be enough to pass the list of join points (internally

represented in Aspect.NET as an XML file), the assemblies of the

aspects implementing new functionality, the weaver application

itself, and a simple script to initiate weaving on the client side.

Thus, if the user would like to create a new version of the

application with extended functionality, she just needs to

configure the weaving of the appropriate aspects.

8. ASPECT.NET FRAMEWORK:

FUNCTIONALITY OVERVIEW
Aspect.NET Framework provides user-level functionality for

examining, studying and understanding Aspect.NET aspects. It

contains:

• Aspect browser, to examine aspect DLLs, their weaving rules,

and comments to them provided at aspect design stage in

Aspect.NET.ML.

• Join points tree, displaying the hierarchy of namespaces,

classes and methods of the target assembly’s project, whose

leaves are the possible join points.

• Visualizer, to display the mapping of the join points onto the

source code of the target assembly.

8.1 Aspect browser

Figure 9. Aspect browser

Fig. 9 illustrates the Aspect.NET aspect browser functionality.

The user can take a look at any of the available aspects, their

modules and actions, and comments to them. The functionality of

the browser is similar to the Outline View in the AJDT for Eclipse

[45] (see fig. 10).

Figure 10. The aspect browser in AJDT for Eclipse.

The browser allows to change the order of the aspects, to resolve

possible conflicts related to the order of weaving aspects to an

application. So, if actions of the two aspects affect the same join

points in the application, the rules of the aspect displayed higher

will be applied before the rules of the one displayed lower.

8.2 Join points tree

On completion of scanning the target assembly by the weaver, the

Aspect.NET Framework creates a join points tree, and displays it

for the user (see fig. 11). The join points are represented by

information on their actions to be called, and on how they will be

woven according to the weaving rules – before, after or instead

the join point code. By clicking at the join point leaves of the tree,

the user can take a look at the appropriate points in the source

code of the target application.

Weaver

(phase of weaving)

App

List of join
points 2

(XML file)

User

Aspect.NET

Framework

Representation of

join points

Aspect

assembly

Updated app

Aspect

library

Aspect.NET

Framework

Weaver

(scanning)

App

Debugging

info

(.pdb file)

List of join

points

(XML file)

Figure 11. Join points tree

Due to the join points tree, the user can get full information on

possible effect of weaving, and visually check the correctness of

possible weaving into each join point before the weaving is

actually done, so that undesirable join points could be unselected.

So, as opposed to AJDT for Eclipse, in Aspect.NET the user can

visualize and control the process of join points filtering. In AJDT,

the user can affect the selection of join points only by changing

pointcut definitions in AspectJ language, which is not so

comfortable and promptly, since it requires recompilation.

“Blind” weaving on the basis of wildcards only (i.e., based on

lexical level of the source code instead of its semantic level) can

be very dangerous. For example, if the user of an AOP tool would

like to insert some actions before and after updating some

common global resource to be synchronized on, and expresses the

pattern for seeking the operation that updates the resource just by

the Set* wildcard for the name of the method, the result of

weaving could be also inserting the aspect’s actions before and

after the calls of “harmless” methods like SetColor.

So, we do think our design decision and functionality for manual

filtering join points could be beneficial, until an appropriate

semantic level approach is invented for this purpose, which

should be the matter of a further research.

8.3 Visualization of aspect weaving effect

In order to help user understand aspect weaving effect on the

target application, a specific component of Aspect.NET

Framework was developed - aspect weaving visualizer (see fig.

12).

Figure 12. Aspect weaving visualizer

Each aspect woven into the target application is indicated by its

own color that can be reselected by the user.

Visualization of each of the aspects can be turned on or off.

In Aspect.NET visualization is implemented similar to AJDT for

Eclipse (see fig. 13) which, in its turn, inherited it from Aspect

Browser [19].

Figure 13. Aspect weaving visualizer in AJDT for Eclipse.

In accordance to the Seesoft graphic notation [38], each of the

vertical columns represents one of the source files of the

application. The height of the column is proportional to the size of

the file. Colored marks inside the columns correspond to the join

points where aspects are woven. Each mark corresponds to one

action of an aspect. One horizontal line with one or more marks

corresponds to a line in the source code. When clicking at any of

the marks, a popup window is displayed with comments to the

corresponding action of an aspect. By clicking at a horizontal line,

the user can view the corresponding source code lines in the

common use editor of the source code. Filtering join points with

the help of join points tree is synchronized with the functionality

of visualizing the effect of aspect weaving.

9. FUTURE WORK

9.1 Aspect debugger

In near future, we plan to add to the common use Visual Studio

debugger an add-in for full-fledged debugging of Aspect.NET

applications in terms of aspects. Due to that, the user will be able

not only detect bugs in the aspect code, but to also trace and

watch step by step the behavior of the resulting target application

in terms of aspects.

9.2 Display changes in the source code

As our research shows, the main difficulty of applying AOP for

commercial projects is the impossibility to estimate interaction of

the woven aspects and business logic code. Aspects are woven at

compile time or dynamically, and the result is a ready-to-use

binary assembly. It is currently not possible to predict the

behavior of the target application after aspect weaving.

Aspect.NET can help to solve this task, either by aspect coloring

in terms of the source code, or by creating unit tests by Visual

Studio development environment. We also plan to provide the

user with an opportunity to “finger” how his source code has been

changed after aspect weaving, by visualizing appropriate

fragments of decompiled code of the modified target assembly.

9.3 Weaving rules analysis and

transformations

We think a prospective addition to Aspect.NET Framework could

be functionality for automated simplification of weaving rules or

converting them to more readable form. For example, a rule of the

kind:

(%after %call *) || (%after %call MyMethod)

 can surely me replaced by a simpler but equivalent rule:

 %after %call *.

If an aspect is being developed for some concrete target

application, a functionality to convert its weaving rules based on

the specifics of the target application could also be helpful. For

example, if the application contains the two methods only,

“MyMethod1” and “MyMethod2”, then the weaving rule:

 (%after %call MyMethod1) || (%after %call MyMethod2)

could be converted to a shorter one:

(%after %call MyMethod*)

or, vice versa, the latter rule could be converted to the former one.

9.4 Weaving rule reader

Similar functionality was discussed in [39]. The weaving rule

reader will provide functionality for generating an adequate

comment to a weaving rule in English. For example, the weaving

rule:

 %call %before (private *.set*(..,int))

could be commented by the following phrase: “before any call of

a private method whose name starts with “set”, defined on any

type, and whose last argument is an int.”

9.5 Interactive generator of weaving rules

Logical enhancement of the idea of weaving rules wizard could be

a functionality to support generation of weaving rules in

interactive mode, based on the existing code of the target

application, for example, by clicking at the points of the source

code of the target application to be affected by the aspect weaving

rule being designed. This task requires a separate research.

9.6 Refactoring

In Visual Studio.NET 2005, advanced code refactoring

functionality is supported - automated renaming members of an

application, extracting interfaces from classes, transforming

fragments of code into separate methods, etc.

For more enhanced support of Aspect.NET, this set of refactoring

transformations could be extended by actions like “transform a

method to an aspect’s action”, or “convert a data definition in an

application into an inter-type declaration”. Supporting these two

functions would be actually equivalent to a basic built-in

aspectizer [10].

9.7 Aspects repository and aspect knowledge

To enable enterprise or higher level reuse of aspects, an aspect

repository could be created and maintained. Aspect.NET

Framework could perform searching in this repository, based on

the problem domain and other parameters. When finding a

suitable aspect, Aspect.NET Framework could weave it into the

target project.

In longer perspective, we think a separate research could be

helpful to investigate more formal and semantic-level

representation, extraction and use of aspect knowledge, since in

our viewpoint aspects can be regarded as special kind of

knowledge on how to transform, enhance and maintain software

projects and applications.

11. CONCLUSIONS

The growth of popularity of Microsoft .NET among software

developers stimulates development of AOP tools for that

platform. But the “single language” approach to AOP, i.e.

implementing AOP features as extensions to some concrete

language, may dramatically limit their applicability, and their

integration to common use .NET software development tools and

technologies. Other shortcomings of the single-language approach

are lack of tools for visualizing the results of aspect weaving, and

low performance of the resulting target applications.

The goal of our group is further developing of Aspect.NET which

we hope is an adequate AOP tool for Microsoft.NET. Due to our

general and simple approach, it provides comfortable mechanism

for ubiquitous use of AOP as part of one of the most advanced

software development environments – Visual Studio.NET. The

proposed approach is based on AOP custom attributes, on static

aspect weaving at .NET assembly level, and on using the source

code of target projects to visualize the results of weaving. The

proposed simple, expressive and powerful AOP meta-language

enables language-agnostic AOP for the .NET platform.

Aspect.NET Framework, the user-oriented part of our system,

provides a rich set of features to analyze and understand aspects

and target applications subject to weaving.

We think the functionality of Aspect.NET Framework is

approaching to that of the most advanced AOP tool - AspectJ

Development Tools for Eclipse [45], and has no analogs for

Microsoft.NET platform.

The first working prototypes of Aspect.NET versions for Visual

Studio.NET 2005 and for Rotor, with the Aspect.NET articles and

examples, are available at [51]. The pre-requisites of using

Aspect.NET are to install Visual Studio.NET 2005 and Phoenix.

12. REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar, etc. Aspect-oriented

programming.- In: Proceedings of the European Conference

on Object-Oriented Programming (ECOOP). Finland,

Springer-Verlag LNCS 1241. June 1997

[2] The LOOM .NET Project: ttp://www.dcl.hpi.uni-

potsdam.de/research/loom/

[3] M. Blackstock.. Aspect Weaving with C# and .NET.

http://www.cs.ubc.ca/~michael/publications/AOPNET5.pdf

[4] Y. Xiong, F. Wan. CCC: An Aspect Oriented Intermediate

Language on .NET Platform

http://www.fit.ac.jp/~zhao/waosd2004/pdf/Xiong.pdf

[5] Aspect# home page: http://aspectsharp.sourceforge.net/

[6] AOP.NET home page: http://sourceforge.net/projects/aopnet/

[7] D. Lafferty, V. Cahill. Language Independent Aspect

Oriented Programming. Proceedings of OOPSLA March

2003

[8] Weave.NET: www.dsg.cs.tcd.ie/sites/Weave.NET.html

[9] The AspectJ Project, www.aspectj.org

[10] V.O.Safonov. Aspect.NET: a new approach to aspect-

oriented programming. - .NET Developer’s Journal, 2003,

#4.

[11] V. O. Safonov. Aspect.NET: concepts and architecture. -

.NET Developer’s Journal, 2004, # 10.

[12] Microsoft Phoenix home page.

http://research.microsoft.com/phoenix

[13] The R# project:

http://rsdn.ru/projects/rsharp/article/rsharp_mag.xml

[14] M. Aksit, L. Bergmans, and S. Vural. An Object-Oriented

Language-Database Integration Model: The Composition-

Filters Approach. – In: Proceedings of the ECOOP'92

Conference, LNCS 615, Springer-Verlag, 1992

[15] K.Leiberherr. Component Enhancement: An Adaptive

Reusability Mechanism for Groups of Collaborating Classes.

– In: Information Processing'92, 12th World Computer

Congress, Madrid, Spain, J. van Leeuwen (Ed.), Elsevier,

1992, pp.179-185

[16] Krzysztof Czarnecki, Ulrich Eisenecker Generative

Programming: Methods, Tools, and Applications, Addison-

Wesley, Paperback, Published June 2000.

[17] Masuhara, J., Kichales, G. Modeling Crosscutting in Aspect-

Oriented Mechanisms. Proceedings of ECOOP’2003

[18] Hannemann, J., Kichales, G. Overcoming the Prevalent

Decomposition in Legacy Code. Proceedings of Workshop

on Advanced Separation of Concerns, International

Conference on Software Engineering (May 2001, Toronto,

Canada)

[19] Aspect Browser: Bill Griswold’s Web pages (University of

California, San Diego): www.cs.ucsd.edu/users/wgg

[20] FEAT: Martin Robillard’s and Gal Murphy’s Web pages

(University of British Columbia, Canada):

www.cs.ubc.ca/~mrobilla/feat/index.html

[21] Shukla, D., Fill, S. and Sells, D. Aspect-Oriented

Programming Enables Better Code Encapsulation and Reuse.

MSDN Magazine, March 2002.

[22] Aspect-oriented software development Web site:

www.aosd.net

[23] K.Czarnecki. Generative Programming: Principles and

Techniques of Software Engineering Based on Automated

Configuration and Fragment-Based Component Models. PhD

thesis, Technische Universitat Ilmenau, Germany, 1998.

[24] Rational Software Corporation: www.rational.com

[25] Homepage of the Subject-Oriented Programming Project,

IBM Thomas J. Watson Research Center, YorktownHeights,

New York, http://www.research.ibm.com/sop/

[26] Homepage of the TRESE Project, University of Twente, The

Netherlands, http://wwwtrese.cs.utwente.nl/; also see the

online tutorial on Composition Filters at

http://wwwtrese.cs.utwente.nl/sina/cfom/

[27] Ch. Simony. The Death of Computer Languages, The Birth

of Intentional Programming, Microsoft Research, 1995,

http://research.microsoft.com/pubs/view.aspx?tr_id=4.

[28] G. Kiczales, J. Lamping, A. Mendhekar, etc. Aspect-

oriented programming. Published in proceedings of the

European Conference on Object-Oriented Programming

(ECOOP). Finland, Springer-Verlag LNCS 1241. June 1997.

[29] E. Zhuravlev, V. Kiryanchikov. On the opportunity of

dynamic aspects integration in aspect-oriented programming.

– Proc. of Electro-Technical University, Informatics, control

and computing technologies, 2002, vol, 3, pp.. 81 — 86 (in

Russian)

[30] Laddad, R. (2002). I want my AOP part 1. JavaWorld.

Avaliable at http://www.javaworld.com/javaworld/jw-01-

2002/jw-0118-aspect.html.

[31] The AspectJ Programming Guide, 1998-2002, Xerox

Corporation

[32] I. Kiselev. Aspect-Oriented Programming with AspectJ.

Indianapolis, IN, USA: SAMS Publishing, 2002.

[33] E. Gamma, R. Helm, R, Johnson, J. Vlissides, Methods of

object-oriented design. Design patterns. – Piter publishers,

St. Petersburg, 2001 (Russian translation).

[34] S. Stelting, O. Maassen. Applying Java patterns. –Williams

publishers, St. Petersburg, 2002 (Russian translation)

[35] J. Hannemann, G. Kiczales. Design pattern implementations

in Java and AspectJ. In: OOPSLA 02, New York, USA,

November 2002. P. 161 — 173.

[36] M. Lippert, C Videira Lopes. A Study on Exception

Detection and Handling Using Aspect-Oriented

Programming. Xerox PARC Technical Report P9910229

CSL-99-1, Dec. 99

[37] B. Meyer, Applying Design by Contract, Prentice Hall, 1992

[38] Eick, S.G., J.L. Steffen, and E.E. Sumner, Seesoft – A Tool

For Visualizing Line Oriented Software Statistics. IEEE

Transactions on Software Engineering, 1992. 18 (11).

[39] Aspect-Oriented Programming with AJDT, Andy Clement,

Adrian Colyer, Mik Kersten

http://www.comp.lancs.ac.uk/computing/users/chitchya/AAO

S2003/Assets/clemas_colyer_kersten.pdf

[40] Richter, J. Programming for Microsoft.NET Framework.

Microsoft Press, 2002

[41] HyperJ:

www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm

[42] AJDE for Emacs and JDEE:

http://aspectj4emacs.sourceforge.net/

[43] AJDE for SunONE/NetBeans:

http://aspectj4netbean.sourceforge.net/

[44] AJDE for JBuilder: http://aspectj4jbuildr.sourceforge.net/

[45] Eclipse AspectJ Development Tools project:

http://www.eclipse.org/ajdt

[46] Eclipse.org - Main Page: http://www.eclipse.org

[47] AspectDNG: http://sourceforge.net/projects/aspectdng/

[48] PostSharp: http://gael.fraiteur.net/postsharp.aspx

[49] EOS: http://www.cs.virginia.edu/~eos

[50] RAIL: http://rail.dei.uc.pt

[51] Aspect.NET: http://www.msdnaa.net/curriculum/?id=6219

[52] SourceWeave.NET :

http://www.dsg.cs.tcd.ie/index.php?category_id=438

[53] Wicca: http://www1.cs.columbia.edu/~eaddy/wicca/

[54] Compose*: http://composestar.sf.net/

[55] Phx.Morph: http://www.columbia.edu/~me133

[56] AOP goes .NET Community Site

http://janus.cs.utwente.nl:8000/twiki/bin/view/AOSDNET/C

haracterizationOfExistingApproaches

APPENDIX

A. ASPECT DEFINITION SAMPLE

//aspect header, contains aspect name

%aspect Politeness

using System;

using AspectDotNet;

public class Politeness

{

//aspect modules

%modules

 public static void SayHello ()

 {

 Console.WriteLine("Hello");

 }

 public static void SayBye ()

 {

 Console.WriteLine("Bye");

 }

//aspect rules and actions

%rules

 %before %call *

 %action public static void SayHelloAction() { Politeness.SayHello();}

 %after %call *

 %action public static void SayByeAction() { Politeness.SayBye();}

}

B. CONVERTED ASPECT SAMPLE

namespace Aspect {

 using System;

 using AspectDotNet;

 [AspectDef("Politeness", "MainModule", "")]

 public class Politeness {

 [AspectDef("Politeness", "module", "")]

 public static void SayHello() {

 Console.WriteLine("Hello");

 }

 [AspectDef("Politeness", "module", "")]

 public static void SayBye() {

 Console.WriteLine("Bye");

 }

 [AspectDef("Politeness", "action", "%before %call * ")]

 public static void SayHelloAction() {

 Politeness.SayHello();

 }

 [AspectDef("Politeness", "action", "%after %call * ")]

 public static void SayByeAction() {

 Politeness.SayBye();

 }

 }

}

