
Servicing Components with Connector Systems

Joachim H. Fröhlich
Software Engineering Department
Johannes Kepler University of Linz

Altenbergerstr. 69, A-4040 Linz, Austria
+43 70 2468 9432

joachim.froehlich@acm.org

Manuel Schwarzinger
Racon Software GmbH Linz

Goethestr. 80, A-4021 Linz, Austria
+43 70 6929 1732

schwarzinger@racon-linz.at

Abstract
Interfaces bind components at dedicated points. Usually, despite their central role, interfaces are packed either
with functionality-implementing components (call interfaces) or with functionality-using components (callback
interfaces). Components that reference other components in order to implement or to use interfaces are directly
coupled. This kind of coupling affects component implementations: integration of component services leads to
implementations that are dependent on the component container or to a multiplication of implementation efforts.

We propose connectors as a mechanism to completely decouple components from each other and from their
underlying component container. Connectors are special-purpose components that isolate component interfaces.
Connectors optionally provide services to communicating components, e.g., checking bidirectional communica-
tion protocols (operation call sequences and data flows), exchanging components during run time, and parallel-
izing or synchronizing service requests in a non-intrusive manner. This frees components to focus on their core
business. Connectors foster the standardization of interfaces, accelerate the development of components, im-
prove the testability, portability and maintainability of component-based programs, and hence promote compo-
nent markets. .NET provides an almost ideal implementation basis.

Keywords
interfaces, connectors, components, configuration, software architecture

1. INTRODUCTION
Mainstream component systems facilitate compo-
nent-based programming but do not enforce it. This
can partly be ascribed to the sensible wish for
downward compatibility with object-oriented pro-
gramming techniques and a white-box reuse style.
This holds for .NET as well as for the Java.

In practice, object-oriented programs are usually or-
ganized in complex class graphs. More often than
not, class libraries and frameworks expose many
details at unwieldy, complex interfaces that are
intended to cover various broad application scopes.
This negatively impacts component architectures
when classes are blurred with components, as in
.NET. A component-based architecture calls for a
different programming style that employs black-box
reuse, interfaces (types) and contracts. Component

services (such as controlling access rights, monitor-
ing/profiling, object pooling, controlling concurrent
access, and controlling transactions) are attached to
components via a mix of marker classes (such as Sys-
tem.ContextBoundObject and System.EnterpriseServices.Ser-
vicedComponent) and attributes (such as ObjectPoolingAttri-
bute and SynchronizationAttribute, both defined in name-
space System.EnterpriseServices). Thus component ser-
vices are applied intrusively and serviced compo-
nents are directly coupled to the component
container. Implementation of component services
along a message sink chain with call interception,
program reflection and container-dependent base
classes in a robust and efficient way proves a major
challenge [Löw05]. Although not directly refer-
encing constructs of the component container, clients
that reference serviced components (classes) become
dependent not only on these components but also on
the underlying component container.

It is fundamentally clear that components should be
designed with high cohesion and low coupling. This
leads to advantages well-known from proper class
and method design. Functional diversity unfolded at
component interfaces as lengthy or deeply structured
public classes packed into large assemblies compli-
cate the application and implementation of compo-
nents. The resulting problems are best documented
by complicated test procedures – most evidently for

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

components wired into intrusive application servers.
These components are loaded with operations that
are foreign to their core business. To overcome these
difficulties, lightweight component containers with
minimal impact on applications have been emerging.
Spring [Har05] serves as a prototypical example in
the Java world; although Spring achieves decoupling
through interfaces interposed between beans (compo-
nents), interfaces are not treated as independent con-
tracts.

Interfaces connect communicating components (or
classes) and thus should be independent pivotal ele-
ments. In practice, however, interfaces are attached
either to service-providing components or to service-
requiring components. This asymmetry impairs spe-
cification, development and testing of independently
installable components; this, in the long run, hampers
the wide adoption of component technology. To
overcome this obstacle, we propose an architectural
style where every pair of interacting components is
fully separated with independent, special-purpose
components that isolate component interfaces and
optionally implement nonfunctional component ser-
vices.

The paper is organized as follows: Section 2 details
the goals of the proposed architectural style. Section
3 presents basic concepts of the connector/compo-
nent architecture style. Section 4 sketches the appli-
cation of connectors. Section 5 presents basic con-
nector variants on which extended variants in Section
6 build. Related work and consequences conclude the
paper.

We back the presentation with code snippets in
.NET/C# and semantically rich system diagrams
documenting real implementations by abstracting
away unnecessary coding details rather than de-
scribing the design of prospective systems. The
whole work is based on experience gathered with ex-
perimental implementations and with several variants
of a generic program for analyzing data streams
[Edl05], [Frö05], [Frö06].

2. GOALS
We seek an architectural style that enables compo-
nents to focus on their business without being dis-
tracted by intrusive component containers. Such a
style must enable economically feasible structuring
of general-purpose programs as well as domain- or
application-specific programs. Thereby a program is
either self-contained or embedded in a component
container (application server). The architectural style
must facilitate separate specification, implementa-
tion, testing, guarding, installation, substitution and
monitoring of components and their interactions.
Component services must be transparent as far as

possible. The architectural style must enable inde-
pendent component evolution in in-house and open-
market situations. For practicability, existing con-
tainer technologies, if needed at all, should be sup-
plemented rather than be replaced. The mechanisms
enabling this architectural style must be configurable
and thereby provide only as much flexibility and cost
only as much in resources as needed in various stages
of a project, such as development, test, launch or pro-
duction stages.

3. CONNECTOR BASICS
Interfaces rather than components carry software ar-
chitectures. This contrasts with the usual view where
software architectures focus on components and their
interactions but tend to overlook the importance of
component interfaces. We view software architec-
tures as systems of component interfaces that service
components. Like components, component interfaces
are physical (i.e., binary) and identifiable concepts
that we call connectors. Technically, a connector
contains at least one interface in the sense of the pro-
gramming language construct of the same name. All
operations declared in interfaces of a connector form
a functional closure; i.e., operations of connector in-
terfaces use only parameters of basic data types, in-
terfaces contained in the same connector or, in spe-
cial cases, interfaces of neutral parts of .NET’s
framework class library, like System.Collection and Sys-
tem.Configuration. Logically, a connector specifies func-
tional and nonfunctional properties of components
using or implementing interfaces. Additionally, con-
nectors may monitor, guard or change operation
invocations and data transmissions across component
boundaries as long as they conform to the contracted
communication protocol without distracting adjacent
components. Connectors do not execute any
business- or application-specific functions.

Connectors define the points of variation at which
components can be plugged in. At least two indepen-
dent components communicate across the boundary
that a connector establishes. We call them functional
components (components for short where it is unam-
biguous) because they directly or indirectly imple-
ment functions that comprise the core business of a
program. We speak of a symmetric connector when a
functional component on the client side of connector
uses the same interface(s) as the functional compo-
nent on the provider side for communicating with
each other. We speak of an asymmetric connector
when a client component and a provider component
use different interfaces and the connector maps inter-
face concepts during communication. This article fo-
cuses on symmetric connectors.

Clutches serve as a metaphor for connectors.
Clutches couple functional components, i.e.,

(driving) client components to (driven) provider
components where these components might change
their roles during communication. Thereby clutches
transfer physical forces (data) in both directions,
from clients to providers and vice versa. Real
clutches optionally contain springs that dampen the
transmission of exceptional forces. Connectors as de-
fined above offer similar convenience. For example,
they can log unspecified exceptions and map them
onto exceptions specified in the connector because
exceptions crossing component boundaries are part
of the communication protocol. Another example is a
connector that prohibits inadmissible input data or
erroneous operation call sequences, e.g., faulty com-
munication protocols.

Figure 1 illustrates a program that is minimal in
terms of components and connectors.

I1

I2 I3

{C}(a)

(b)

I X uses interface I implemented by Y

X loads Y through (a) CLR, (b) connector
X provides Y

X Y

X Y

X Y

X Y X references Y at compile time

{P} {P}

{C}

{C}

{P}

{C}, {P} Roles: Service-{C}lient, -{P}rovider

<<connector>>

p

p

p

p

co
nf

ig
ur

at
io

n
<<

fil
e>

>

u Connector
<<module>>

X uses YX Yu

<<provider component>>

<<client component>>

Figure 1. Connector and functional components

The connector in Figure 1 completely channels the
communication between the sole service client and
the sole service provider which includes the creation
of service-providing objects. The connector module1
processes data from the configuration file in order to
relieve service clients as well as the connector itself
from specifying concrete classes in the program co-
de. The resulting constellation is characterized as fol-
lows:

 Components do not depend on each other.
 Components depend on connectors.
 Connectors do not depend on components.

The compilation procedure reflects this constellation:

csc /out:Connector.dll /t:library ...
csc /out:Provider.dll /t:library /r:Connector.dll ...
csc /out:Client.exe /t:exe /r:Connector.dll ...

Thus the architecture of a program can be modeled as
a system of connectors that embed functional com-
ponents (see Figure 2).

1 Only classes with (static) class members are modules.

C1

C3

C2

C4

B
A1

A2

A3

A4

X loads Y (if not done already)X Y
X Y X references Y at compile time

Connect. class, interfaces: not serviced, serviced

Zi Parts not compliant to the connect./comp. style
Ai, B, Ci Parts compliant to the connect./comp. style

Z1 Z2 Z3

Figure 2. A connector / component architecture

Figure 2 depicts components that follow the architec-
tural style (Ai, B, Ci) and those that do not (Zi). Func-
tional components (Ci) are connected to a central
connector manager (B). The connector manager pro-
vides for a communication interface by which ex-
ternal clients can monitor and control connectors
(Ai). In order to control a connector, interfaces must
be wrapped in proxy objects that pre- or post-process
operation calls crossing component borders as indi-
cated in Figure 2 for connectors A3 and A4. We call
connectors heavy connectors if they wrap interfaces
in order to transparently hook component services
like logging, profiling, security checks and protocol
checks. We call connectors light connectors if they
contain only interface declarations. The run-time
overhead of light connectors is negligible. Light con-
nectors can be exchanged for type (interface) com-
patible heavy connectors just by program reconfigu-
ration before run time.

Another type of connectors not sketched so far are
multiple-part connectors (see Figure 3).

...S I1 In

S Service selection strategy
I1…In Service interfaces

C2

C3

C1

A

co
nf

ig
ur

at
io

n
<<

fil
e>

>

Connector
<<module>>

Figure 3. Multiple-part connector

Upon exceeding a certain breadth, the functional in-
terface of a connector (I1 … In in Figure 3) can be
implemented via several components (C2 and C3 in
Figure 3) instead of just one component. These com-
ponents build a group. A component group is defined
by a common connector and one or more partitioning
attributes. Each component of a group must publish a
value for each partitioning attribute. The combination
of attribute values characterizes a component within
a component group. Thus partitioning attributes are
used to diversify components. Diversification nar-
rows the application scope of a single functional
component, which eases its implementation while
raising the domain-specific service level. A multiple-
part connector is a connector that can bind (load)
more than one interface-implementing component
and uses a strategy (S in Figure 3) to choose a com-
ponent whose attribute values best fit the client re-
quirements. The strategy is provided either by the
connector as part of the contract or by a client
component. In contrast, single-part connectors bind
(load) at most one interface-implementing compo-
nent. Table 1 provides examples of multiple-part
connectors and partitioning attributes.

Mp connector Attributes

String matchers automaton, e.g., NFA, DFA

Report generators file format, e.g., PDF, HTML

Memory systems access time, durability

Numeric systems accuracy, precision, run time
Table 1. Some attributes of multiple-part connectors

4. A CONNECTOR IN TEST USE
Before delving into various extensions of connectors,
let us examine a typical application scenario as seen
from a service using (client) side. You can find the
complete C# code of an almost identical implementa-
tion elsewhere [Frö06]. Figure 4 sketches the archi-
tecture of the program.

S
ys

te
m

.
co

nf
ig

ur
at

io
n

Sy
st

em

IAmount

C
B

an
k

<<
m

od
ul

e>
>

BankInterface.dll

Ba
nk

Ap
pl

ic
at

io
n

.e
xe

.c
on

fig
 <

<f
ile

>>

u

p

u

p

p

p

p
u

u

X provides Y
X uses Y

X Y
X Y

IAccount

ICurrency-
Calculator

p
IBank-
Branch

u

IExchange-
Office

IBank

BankApplication.exe {Client}

Bank.dll {Provider}

 Figure 4. Architecture of a simplistic bankapp

The program implements a simplistic bank with se-
veral branches, accounts and customers. These con-
cepts are directly reflected in the connector, whose
interface operations build a functional closure, i.e.,
do only involve interfaces declared in this connector
and basic data types:

namespace BankInterface { // Connector
 public interface IBank {
 void Provide(out IBankBranch branch);
 void Provide(out IAmount money, double val, string cy);
 …
 }
 public interface IBankBranch {
 IAccount SetupAccount(IAmount initialValue);
 IAccount SetupAccount(); // initialValue= 0.00 EUR
 bool Transfer(IAmount money,
 IAccount source, IAccount target);
 …
 }
 public interface IAccount {
 string Owner { get; set; }
 bool Deposit(IAmount money);
 …
 }
 …
}

The program applies a light, single-part connector
(BankInterface.dll); i.e, the connector provides no
services other then automatically loading one bank
implementation (Bank.dll) at a time during first
access by a bank client (BankApplication.exe). The
concrete bank implementation is configured before
run time, e.g., in the standard configuration file of a
.NET application:

<configuration><appsettings>
 <add key="Provider" value="Bank.dll"/>
 ...
</appsettings></configuration>

An application scenario taken from the client illustra-
tes the coding style, which resembles that prevailing
for clients of COM components. Several amounts of
money are transferred from different source accounts
to a common target account:

namespace BankApplication { // Client
 // Set up bank branch, target account
 IBank bank= CBank.Get();
 IBankBranch branch; bank.Provide(out branch);
 IAccount target= branch.SetupAccount(); // 0.00 Euro
 IAmount amount1, amount2, …;

 // Setup accounts
 bank.Provide(out amount1, 1000.00, "EUR");
 IAccount source1= branch.SetupAccount(amount1);
 bank.Provide(out amount2, 1500.00, "EUR");
 IAccount source2= branch.SetupAccount(amount2);
 …
 // Transfer money
 bank.Provide(out amount1, 500.00, "EUR");

 bank.Provide(out amount2, 800.00, "EUR");
 …
 branch.Transfer(amount1, source1, target);
 branch.Transfer(amount2, source2, target);
 …
}

The service provider (Bank.dll) can be exchanged
without changing the client’s implementation. For
instance, a test stub that is applied during develop-
ment and component test of a bank client can be re-
placed with a production version for integration tests.
Moreover, the light connector can be replaced with a
type (interface) compatible heavy connector. For
example, from a technical point of view the heavy
connector checks whether the client component
passes to the provider component objects that the
same provider has created before. From a business
point of view this check is necessary, e.g., when a
bank branch charges an account. The account must
be set up by the same bank branch or by one of the
other branches of the bank. We assume this integrity
check to be necessary for every bank; hence it is part
of the bank contract.

5. BASIC CONNECTORS

5.1 The Lightest Connector
An application scenario as simple as the sketched
bank program is typical of tests of functional compo-
nents. Although light connectors are by no means re-
stricted to test scenarios, they obviously demand easy
connector implementations. This directly leads to the
question of how to design the lightest connector (see
Figure 5).

#CPiC()
CPiC()
+Get():CPiC
+Provide(out I1)

+CPiC

+Provide(out I1)

-CPdC

0..1
 impl

-CProvider

u

u

c

p

p

p
u

X provides Y
X uses Y

X Y
X Y

c X instantiates Y reflectivelyX Y

+
-

public
internal

protected

Provider-independent connector classCPiC
Provider-dependent connector classCPdC

+I1

du

Variable of
type I1 refers
to a CProvider

d X declares Y, e.g., namespace X { Y obj; ...}X Y

u

-CClient

co
nf

ig
ur

at
io

n
<<

fil
e>

>

Figure 5. The lightest connector

Besides combining logically coherent interfaces into
a separate component, every connector must imple-
ment just one nonfunctional task: the establishment
of the first connection between a service-using and a

service-providing component while preserving their
independence as well as its own independence. For
this purpose a connector contains what we call a pro-
vider-independent connector class (CPiC in Figure
5). On the one hand this class is a module with
(static) class methods and variables for loading and
anchoring a provider; on the other side it is a type de-
claring factory methods [Gam95] for letting pro-
viders decide which objects to deliver as roots of
business process chains (sessions). Thus each pro-
vider must subclass exactly one provider-dependent
connector class (CPdC in Figure 5) per supported
connector.

The provider-independent connector class uses re-
flection techniques to create the sole object of this
class (a singleton [Gam95]), the connector object.
This object is created automatically in the back-
ground during the first access to a provider (triggered
by, e.g., bank= CBank.Get() in the bank application and
executed by the class constructor of the provider-
independent connector class) immediately after the
provider component specified in the configuration
file is loaded. Once the connector has supplied the
connector object, a client queries it for the first
business object by means of a factory method (via,
e.g., bank.Provide(out IBankBranch) in the bank applica-
tion) declared in the provider-independent connector
class and implemented in the provider-dependent
connector subclass.

The implementation of the managing stuff of a light
connector is delightfully cheap. It costs about 10
lines of code executed only once per provider com-
ponent upon first access (compare with the CPiC
CBank in CBank.cs, directory Bank.src\BankInterface
[Frö06]). All other operation calls across a light con-
nector, i.e. across interfaces in the sense of the pro-
gramming language, do only cost as much as invoca-
tions of instance function members [Hej04]. Thus
light connectors completely separate communicating
functional components with no run-time overhead.

5.2 The Lightest Heavy Connector
Heavy connectors factor out nonfunctional services
from functional components. For this purpose, heavy
connectors wrap interfaces in proxy classes [Gam95].
They provide hooks for affixing component services
like profiling and protocol checks to both call inter-
faces and callback interfaces. Connectors wrap both
interface types with the same procedure but at diffe-
rent moments: call interfaces on the way out of an in-
terface function and callback interfaces on the way
into an interface function. Figure 6 sketches the
structure of a heavy connector.

#CPiC()
CPiC()
+Get():CPiC
+Provide(out I1)
#_Provide(out I1)

+CPiC

c

p

p

+I1

c -CProxy

1 _provider

0..1
 impl

Variable of
type I1 refers
to a CProxy

u d

-CClient

u

#_Provide(out I1)

-CPdC
-CProvider

u
co

nf
ig

ur
at

io
n

<<
fil

e>
>

Figure 6. The lightest heavy connector

The decisive difference compared to a light connec-
tor is that all function calls of a client component
first activate a wrapping function implemented in the
heavy connector before they activate a function in a
provider component. The prerequisite for wrapping
all operation calls crossing a connector is template
methods [Gam95] in the provider-independent con-
nector class, as the following code excerpt demons-
trates by wrapping the root object of a business pro-
cess chain (implementing a call interface):

namespace Connector {
 public abstract class CPiC { // connector module
 public void Provide(out I1 p) { // the template method
 I1 provider; // the service provider
 this._Provide(out provider);
 p= new CProxy(provider); // wrap call interfaces on the
 // way out from a provider to a client
 }
 protected abstract void _Provide(out I1 provider);
 // the primitive operation of the template method
 ...
 }
 public interface I1 { ... }
 internal class CProxy : I1 {
 internal CProxy(I1 provider) { this._provider= provider; }
 ... // methods wrapping I1 functions
 private I1 _provider; // the wrapped service provider
 }
 …
}

Syntactically, proxy objects and connected compo-
nent services are completely hidden in the connector
and therefore invisible to functional components.

5.3 The Lightest Multiple-Part Connector
Multiple-part connectors allow the differentiation
and installation of several provider components that
offer alternative or variant services. Moreover, heavy
multiple-part connectors enable a different class of
component services, like multiplexing (or pa-
rallelizing) of service request among several provider
components and graceful failover from one service

provider to another. Figure 7 sketches the structure
of a light multiple-part connector.

#CPiC()
CPiC()
+Get(IStrategy*):CPiC
+Provide(out I1)
+Attribute

+CPiC

+Provide(out I1)
+Attribute

-CPdC

1..n
 impl

-CProvider

-CClient

u

u

c
p

p

+I1

duu

+IStrategy

c

u

-CStrategy

 strat1

u 1..n

class method with optional
parameter of type IStrategy

+Get(IStrategy*):CPiC

co
nf

ig
ur

at
io

n
<<

fil
e>

>

Figure 7. The lightest multiple-part connector

Provider components to hook into a multiple-part
connector are specified in the configuration file with
multiple-value entries such as

<configuration><appsettings>
 <add key="Provider" value="Bank1.dll;Bank2.dll"/>2
 ...
</appsettings></configuration>

All these provider components share one (structured)
interface, i.e., one connector, and usually vary in
their implementation with regard to at least one com-
ponent attribute. A multiple-part connector offers
clients the chance to dynamically select one of the
configured providers. To make this work, the pro-
vider-independent connector class forces provider-
dependent subclasses to return values that character-
ize their business with regard to a differentiating
business attribute. The strategy pattern [Gam95]
lends itself for a flexible implementation of the
selection algorithm. In the context of the bank ex-
ample, clients can now choose among several banks
applying different interest and portfolio strategies.

6. EXTENDED CONNECTORS
Connectors can be extended at four sides (see Figure
8):

(a) Client side: several functional components use
one connector.

(b) Provider side: several functional components
provide alternative or supplementing services.

2 Of course, the type-safe way for specifying an arbitrary

number of provider components would be an xsd:element
with a multiplicity range of minOccurs="1" maxOc-
curs="unbounded".

(c) Connector service side: several special-purpose
components register component services for
communicating functional components.

(d) Connector managing side: the behavior of a
running program is monitored and controlled in
terms of connectors and components.

co
nf

ig
ur

at
io

n
<<

fil
e>

>

Figure 8. Connector extensions

6.1 Extending the Connector Service Side
Component services can be implemented in proxy
classes directly in a heavy connector (see 6.1.1) or
sourced out into separate classes in separate compo-
nents (see 6.1.2).

6.1.1 Implementing Services Directly
Component services can be implemented with mini-
mal effort directly in a connector. This implementa-
tion style well suits special component services like
checks of highly specialized communication proto-
cols while obviously compromising reusability of
rather general applicable component services like
logging3. To give an impression of a component ser-
vice, we sketch a part of the life cycle management.
The heavy connector checks objects that client com-
ponents pass as operation parameters to a provider
component for creation by the same provider.4
Again, we demonstrate this for the sample bank
application introduced in Section 4: A bank can only
service its own bank accounts. We assume that this
constraint is part of the contract holding for all
banks. If this is true, then the connector is the place
to implement the constraint. On violation of this
constraint the connector throws a protocol exception:

namespace BankInterface { // Connector
 internal class CBBProxy // Class Bank Branch Proxy
 : IBankBranch {

3 During development and test phases of the generic data

stream analyzer (mentioned in the Introduction) a heavy
connector tests the communication protocol between the
component providing the business logic (data stream pat-
tern matcher) and various user interface components
[Frö05]. The connector applies the state pattern [Gam05].

4 This service is indeed rather generally applicable. It
checks an integrity constraint for components that cast
types of parameter objects to component-specific type
implementations (classes).

 public IAccount SetupAccount() { // public protocol
 IAccount provider= this._provider.SetupAccount();
 CAProxy accountProxy= new CAProxy(provider, this);
 this._issuedObjs.Add(accountProxy);
 }
 … // more methods wrapping IBankBranch operations
 internal CBBProxy(IBankBranch bankBranch) {
 this._provider= bankBranch;
 }
 internal bool HasIssued(CAProxy proxy) {
 return this._ issuedObjs.Contains(proxy);
 }
 private IBankBranch _provider;
 private Utilities.ISet _issuedObjs= new Utilities.CSet();
 }
 internal class CAProxy // Class Account Proxy
 : IAccount {
 public void Withdraw(IAmount money) { // public protocol
 if (!this._creator.HasIssued(this))
 throw new CProtocolException(“unknown account”);
 this._provider.Withdraw(money);
 }
 … // more methods wrapping IAccount operations
 internal CAProxy(IAccount provider, CBBProxy creator) {
 this._provider= provider;
 this._creator= creator;
 }
 private IAccount _provider;
 private CBBProxy _creator;
 }
 …
}

6.1.2 Implementing Services Indirectly
Proxies that delegate requests for component services
lead to service implementations that are extensible
and reusable in the context of several connectors.
Such proxies signal changes of relevant program
states (method calls and returns across component
boundaries) and delegate the provision of services to
observers [Gam95] implemented in separate compo-
nents. This raises the question of the sequence in
which component service should be applied.

In general, component services can be applied in any
sequence because they have no side effects. From a
practical point of view, of course, it is useful to
check, e.g., whether a client is allowed to use a
provider before checking the communication pro-
tocol in case the two component services are im-
plemented separately. Likewise, the communication
protocol should be checked before a client is allowed
to ask for exclusive usage of a provider. Thus ideally
component services, their order of application and
the associated connectors are specified in a program
configuration file and set up with reflective program-
ming techniques.

6.2 Extending the Connector Managing
Side
All connectors of a program may be connected at a
central point which we call the connector manager.
The connector manager is the place for querying and
changing the state of a program in terms of compo-
nents and connectors either from inside the program
through API calls or from outside the program, e.g.,
through a web service. In particular the connector
manager enables

 loading of functional components
 unloading of functional components
 switching component services on or off
 querying for current components and connectors
 querying for interaction states and histories
 coordinating several connectors

From a technical point of view, the most interesting
feature of a connector manager is the coordination of
connectors with regard to unloading stateful functio-
nal components. This requires life-cycle management
of components.5 A connector attached to a stateful
functional component must check the communication
protocols for each usage scenario (per business pro-
cess chain) and indicate the functional component as
being in a state allowing the component to be un-
loaded, as it is usually in initial states, end states, or
error states (0-states for short). This requirement
holds for all connectors directly attached to a compo-
nent as well as for all dependent connectors.6 Con-
sider the program sketched in Figure 9.

A1

A2 A3

C1 C2

C3

C4 C5
C6

B

A1, A2:
 single-part connector,
 heavy (protocol checking)
A3:
 multiple-part connector,
 heavy (protocol checking)
B:
 connector manager
C1 ... C6:
 functional components

YX
 reference at compile time

 components x and y refer to
Figure 9. Managing connector systems

Provided that it is useful to unload C3, all dependent
connectors (A1, A2 and A3) have to confirm depen-
dent functional components to be in 0-states. These
connectors contain at least 4 state machines that

5 Strictly speaking, only component instances can have

state in a running program because components are just
binary deployment units. As this should be clear from the
context, we speak of stateful components.

6 A functional component that implements (interfaces de-
clared in) several connectors might indicate low binding
or hint incomplete connector interfaces and so disobey
the requirement for functional closure.

check the communication protocols between compo-
nents

 C1/C2 and C3,
 C3 and C4,
 C3 and C5, and
 C3 and C6.

Note that thereby we assume C1 and C2 to take part
in a common usage scenario (session); i.e., they share
one business process chain and therefore one pro-
tocol-checking state machine. Inversely, one compo-
nent could take part in several usage scenarios of a
connector so that, e.g., two or more state machines
could be active in A2 checking two or more applica-
tions of C4 by C3. Technically, unloading a compo-
nent requires it to be installed in separate application
domain (System.AppDomain) [Gun02], i.e., in a separate
.NET process, which of course increases communi-
cation costs due to marshalling all calls between
application domains.

Besides, the connector manager factors out code
common to all connectors, such as that for loading
and unloading functional components and standard
component services such as logging operation call
sequences.

7. RELATED WORK
This article focuses on physically separate connec-
tors as a means to connect and at the same time to de-
couple components in the context of coherent pro-
grams or program parts.

Some of the presented concepts suggest concepts
prevailing in the context of distributed programs.
Here connectors are manifested as parts of the under-
lying infrastructure, e.g., in the form of networking
protocols, pipes, SQL links between a database
server and a database application program, event
buses, and message brokers [Clem03], [Meh00],
[Sha96]. Service–oriented architectures (SOA) pro-
vide the plumbing for the integration of components
running on different technological foundations
[Sko05]. Component interfaces are published,
queried and translated into executable code for
calling services across the Internet.

Connectors as separate compilation and deployment
units of coherent programs are scarcely discussed
elsewhere. In a coherent program, connectors usually
occur at the abstraction level of a programming lang-
uage as shared variables, buffers and procedure calls
[Meh00], [Sha96]. This strongly contrasts with con-
nectors at the architectural level of a program as dis-
cussed in this paper. At the architectural level a con-
nector must not to be confused with a façade
[Gam95] or a mediator [Gam95]. A façade provides
a unified interface to a set of interfaces in a sub-

system. This is usually done when a class applies
business logic to orchestrate (instances of) other clas-
ses. Thus a façade is coupled to the covered subsys-
tem. A mediator coordinates interactions of a group
of objects. Thus a mediator executes application-spe-
cific functions. A connector with its distinct orien-
tation on improving nonfunctional system properties,
such as reliability, adaptability, and testability, is in-
dependent of adjacent functional components and
does not execute any application-specific functions.

However, the idea of including related interfaces in
separate components is not new. Szyperski et al.
[Szy02] emphasize the importance of viewing inter-
faces in isolation from any specific component that
might implement or use such interfaces. Further-
reaching concepts or implementation techniques are
not discussed. In the context of .NET, Löwy
[Löw05] suggests assemblies with interfaces to
parallelize the development of adjacent components.
Wienholt [Wie03] proposes a similar technique to
shorten load time of assemblies and to save memory.
He puts frequently and occasionally used types of an
assembly into different netmodules7 and separates
them by netmodules that consist only of interfaces,
which leads to multiple-module assemblies. This can
also be achieved with the connector/component ar-
chitectural style.

Interfaces play an important role in the realm of
lightweight component containers; Spring [Har05] is
a good example. Spring decouples components
(beans) in the form of classes by externalizing the
creation of instances of collaborating classes and in-
jecting them at dedicated points of the class to be
configured (dependency injection). Collaborating
classes are expected to implement well-defined inter-
faces. Although the work on connectors presented in
this article shares many of the goals of Spring, such
as isolated component tests, externalization of com-
ponent dependencies (in configuration files), and
design in terms of the application domain (rather
than in terms of the implementation domain or a mix
of both), the solutions move in different directions.
Spring abandons subclassing for Spring-conform
components due to reflective programming tech-
niques. In contrast, a functional component in the
role of a service provider has to implement a pro-
vider-dependent subclass per connector, even though
this subclass contains only domain-specific methods
(in a special syntax). Spring does not support the
transparent injection of non-functional services bet-
ween communicating components. Spring has no no-

7 A netmodule is a raw module that must be associated

with a full-fledged component (assembly) prior to de-
ployment.

tion of multiple-part components and provides no
special means for coordinating semantic operations
attached to related interfaces either in the form of
protocol checking services or in the form of a con-
nector manager for monitoring and controlling
running programs.

8. SUMMARY AND CONSEQUENCES
Connectors as discussed in this article are special
purpose components that embody boundaries of
functional components in the form of binary con-
tracts. This allows functional components to focus on
their core business. Moreover, functional compo-
nents can be

 developed in several alternate or supplementary
variants

 specified and tested separately
 relieved of intermingled nonfunctional services

like logging, caching and checking communic-
ation protocols

 dynamically monitored and controlled if a con-
nector manager supervises the connector system

Connectors may interpose nonfunctional services
between functional components in a completely non-
intrusive manner. This is achieved by means of a pat-
tern language [Cun87] that combines several design
patterns [Gam95], such as Factory Method, Template
Method, Proxy, Strategy, State and Observer, and by
encapsulating these patterns in special components
(connectors). Classes of functional components shed
any special base types (such as System.ContextBound-
Object) or attributes (System.Attribute) for profiting
from component services. Certainly these techniques
can be used for implementing component services
within connectors. Proxy classes in connectors ex-
pose suitable method call joint points to implement
component services as aspects in the sense of AOP
(aspect-oriented programming). Services that have
well-defined effects on particular operations support
the use of AOP [Mur01]. This is the case, e.g., for
synchronization and accounting services but not for
checks of complex, application-specific communica-
tion protocols. Due to the localization of services in
connectors, functional components remain un-
changed regardless of how services are intercepted,
such as with context bound objects, code generation,
modification of IL (intermediate language) code or
.NET’s profiling API.

If a program does not depend on a nonfunctional
service, a heavy connector can simply be replaced
with an interface-compatible light connector without
changing the implementation of adjacent compo-
nents. The implementation of the skeletal structure of
a light connector is almost for free with regard to
both development time and run-time efficiency while

still providing the fundamental advantages of con-
nectors, i.e., separate specification, testing and de-
velopment of functional components. The call of an
operation across a light connector costs only as much
as a call of an instance function member. The one-
time loading of a component immediately before the
first operation call does not impair performance in
the long run. Even heavy connectors can boost the
overall performance of a program. For instance,
checks of communication protocols (pre- and post-
conditions, invariants, operation call sequences) at
clear-cut, contracted and rather stable component
boundaries concentrate on essential and coherent sys-
tem parts (components) while abstaining from checks
of rather quickly changing implementation-specific
(i.e. component-specific) objects scattered around the
program.

Even demanding services like parallelizing service
requests in a blocking or non-blocking manner
among several service-providing components can be
included in a heavy, multiple-part connector without
distracting adjacent components. However, this holds
only for unidirectional data flow where service
clients just trigger service providers concurrently
without needing any calculated value from them. Bi-
directional data flow demands connectors that buffer
data returned by providers and a special interface
enabling clients to fetch this data for each provider.
This exceeds the capabilities of symmetric connec-
tors and moves towards asymmetric connectors that
map deviating client and provider languages in terms
of deviating interfaces.

In any case, separate connectors in different exten-
sion stages supply effective, non-intrusive mechan-
isms to solve challenges and issues in developing,
testing and quality assurance of software compo-
nents. Both isolated connectors and connector sys-
tems promote architecture-centric development of
programs with variants. Connectors lend themselves
for gluing common components and varying compo-
nents with predictable capabilities even in order to
build high-quality product families (product lines)
[Wei99]. At the same time, connectors raise the pro-
ductivity of component developers, testers and ar-
chitects. Variants of a generic data stream analyzer
[Frö05] and several experiments prove the practical
feasibility of the connector/component architecture
style. Coordinated life-cycle management (protocol
checking) of several components is a key issue of
further work.

9. REFERENCES
[Clem03] Clements, P., Bachmann, F., Bass, L.,

Garlan, D., Ivers, J., Little, R., Nord, R., and
Stafford J.: Documenting Software Architectures
– Views and Beyond. Addison-Wesley, 2003

[Cun87] Cunnigham, W.: Design Methodology for
Object-Oriented Programming. OOPSLA'87,
ACM SIGPLAN Notices 23 (5), 1987

[Edl05] Edlmayr, J., Fröhlich, J.H., Schwarzinger,
M., and Stranzinger T.: Components for All
Cases. (in German) SIGS Datacom OBJEKT-
spektrum 1/2005 (part 1), 2/2005 (part 2)

[Frö05] Fröhlich, J.H., and Schwarzinger, M.:
Treating Interfaces as Components. In IVNET’05
ISBN 972-8688-31-8, 2005

[Frö06] Fröhlich, J.H., and Wolfinger, R.: .NET Pro-
filing: Write Profilers with Ease Using High-
Level Wrapper Classes. MSDN Magazine 21 (5),
2006

[Gam95] Gamma, E., Helm, R., Johnson, R., and
Vlissides, J.: Design Patterns: Elements of Re-
usable Object-Oriented Software. Addison-
Wesley. 1995

[Gun02] Gunnerson, E.: AppDomains and Dynamic
Loading. http://msdn.microsoft.com/library/en-
us/dncscol/html/csharp05162002.asp, 2002

[Har05] Harrop, R., and Machacek, J.: Pro Spring.
Apress, 2005

[Hej04] Hejlsberg, A., Wiltamuth, S., Golde, P.:
The C# Programming Language. Addison-
Wesley, 2004

[Löw05] Löwy, J.: Programming .NET Components.
O'Reilly, 2005

[Meh00] Mehta, M.R., Medvidovic, N., and Phadke
S.: Towards a Taxonomy of Connectors.
ICSE’00, conf.proc., Limerick Ireland, 2000

[Mur01] Murphy, G.C., Walker, R.J., Baniassad,
E.L.A., Robillard, M.P., Lai, A., and Kersten,
M.A.: Does Aspect-Oriented Programming
Work? CACM 44 (10), 2001

[Sha96] Shaw, M., and Garlan, D.: Software Archi-
tecture-Perspectives on an Emerging Discipline.
Prentice-Hall, 1996

[Sko05] Skonnard, A.: SOA: More Integration, Less
Renovation. MSDN Magazine 20 (2), 2005

[Szy02] Szyperski, C., Gruntz, D., and Murer, S.:
Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 2002

[Wei99] Weiss, D.M., and Lai, C.T.R.: Software
Product Line Engineering. Addison-Wesley, 1999

[Wie03] Wienholt, N.: Maximizing .NET Performan-
ce. Apress, 2003

