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Abstract 
Interfaces bind components at dedicated points. Usually, despite their central role, interfaces are packed either 
with functionality-implementing components (call interfaces) or with functionality-using components (callback 
interfaces). Components that reference other components in order to implement or to use interfaces are directly 
coupled. This kind of coupling affects component implementations: integration of component services leads to 
implementations that are dependent on the component container or to a multiplication of implementation efforts. 

We propose connectors as a mechanism to completely decouple components from each other and from their 
underlying component container. Connectors are special-purpose components that isolate component interfaces. 
Connectors optionally provide services to communicating components, e.g., checking bidirectional communica-
tion protocols (operation call sequences and data flows), exchanging components during run time, and parallel-
izing or synchronizing service requests in a non-intrusive manner. This frees components to focus on their core 
business. Connectors foster the standardization of interfaces, accelerate the development of components, im-
prove the testability, portability and maintainability of component-based programs, and hence promote compo-
nent markets. .NET provides an almost ideal implementation basis. 
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1. INTRODUCTION 
Mainstream component systems facilitate compo-
nent-based programming but do not enforce it. This 
can partly be ascribed to the sensible wish for 
downward compatibility with object-oriented pro-
gramming techniques and a white-box reuse style. 
This holds for .NET as well as for the Java. 

In practice, object-oriented programs are usually or-
ganized in complex class graphs. More often than 
not, class libraries and frameworks expose many 
details at unwieldy, complex interfaces that are 
intended to cover various broad application scopes. 
This negatively impacts component architectures 
when classes are blurred with components, as in 
.NET. A component-based architecture calls for a 
different programming style that employs black-box 
reuse, interfaces (types) and contracts. Component 

services (such as controlling access rights, monitor-
ing/profiling, object pooling, controlling concurrent 
access, and controlling transactions) are attached to 
components via a mix of marker classes (such as Sys-
tem.ContextBoundObject and System.EnterpriseServices.Ser-
vicedComponent) and attributes (such as ObjectPoolingAttri-
bute and SynchronizationAttribute, both defined in name-
space System.EnterpriseServices). Thus component ser-
vices are applied intrusively and serviced compo-
nents are directly coupled to the component 
container. Implementation of component services 
along a message sink chain with call interception, 
program reflection and container-dependent base 
classes in a robust and efficient way proves a major 
challenge [Löw05]. Although not directly refer-
encing constructs of the component container, clients 
that reference serviced components (classes) become 
dependent not only on these components but also on 
the underlying component container. 

It is fundamentally clear that components should be 
designed with high cohesion and low coupling. This 
leads to advantages well-known from proper class 
and method design. Functional diversity unfolded at 
component interfaces as lengthy or deeply structured 
public classes packed into large assemblies compli-
cate the application and implementation of compo-
nents. The resulting problems are best documented 
by complicated test procedures – most evidently for 
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components wired into intrusive application servers. 
These components are loaded with operations that 
are foreign to their core business. To overcome these 
difficulties, lightweight component containers with 
minimal impact on applications have been emerging. 
Spring [Har05] serves as a prototypical example in 
the Java world; although Spring achieves decoupling 
through interfaces interposed between beans (compo-
nents), interfaces are not treated as independent con-
tracts. 

Interfaces connect communicating components (or 
classes) and thus should be independent pivotal ele-
ments. In practice, however, interfaces are attached 
either to service-providing components or to service-
requiring components. This asymmetry impairs spe-
cification, development and testing of independently 
installable components; this, in the long run, hampers 
the wide adoption of component technology. To 
overcome this obstacle, we propose an architectural 
style where every pair of interacting components is 
fully separated with independent, special-purpose 
components that isolate component interfaces and 
optionally implement nonfunctional component ser-
vices. 

The paper is organized as follows: Section 2 details 
the goals of the proposed architectural style. Section 
3 presents basic concepts of the connector/compo-
nent architecture style. Section 4 sketches the appli-
cation of connectors. Section 5 presents basic con-
nector variants on which extended variants in Section 
6 build. Related work and consequences conclude the 
paper. 

We back the presentation with code snippets in 
.NET/C# and semantically rich system diagrams 
documenting real implementations by abstracting 
away unnecessary coding details rather than de-
scribing the design of prospective systems. The 
whole work is based on experience gathered with ex-
perimental implementations and with several variants 
of a generic program for analyzing data streams 
[Edl05], [Frö05], [Frö06]. 

2. GOALS 
We seek an architectural style that enables compo-
nents to focus on their business without being dis-
tracted by intrusive component containers. Such a 
style must enable economically feasible structuring 
of general-purpose programs as well as domain- or 
application-specific programs. Thereby a program is 
either self-contained or embedded in a component 
container (application server). The architectural style 
must facilitate separate specification, implementa-
tion, testing, guarding, installation, substitution and 
monitoring of components and their interactions. 
Component services must be transparent as far as 

possible. The architectural style must enable inde-
pendent component evolution in in-house and open-
market situations. For practicability, existing con-
tainer technologies, if needed at all, should be sup-
plemented rather than be replaced. The mechanisms 
enabling this architectural style must be configurable 
and thereby provide only as much flexibility and cost 
only as much in resources as needed in various stages 
of a project, such as development, test, launch or pro-
duction stages.  

3. CONNECTOR BASICS 
Interfaces rather than components carry software ar-
chitectures. This contrasts with the usual view where 
software architectures focus on components and their 
interactions but tend to overlook the importance of 
component interfaces. We view software architec-
tures as systems of component interfaces that service 
components. Like components, component interfaces 
are physical (i.e., binary) and identifiable concepts 
that we call connectors. Technically, a connector 
contains at least one interface in the sense of the pro-
gramming language construct of the same name. All 
operations declared in interfaces of a connector form 
a functional closure; i.e., operations of connector in-
terfaces use only parameters of basic data types, in-
terfaces contained in the same connector or, in spe-
cial cases, interfaces of neutral parts of .NET’s 
framework class library, like System.Collection and Sys-
tem.Configuration. Logically, a connector specifies func-
tional and nonfunctional properties of components 
using or implementing interfaces. Additionally, con-
nectors may monitor, guard or change operation 
invocations and data transmissions across component 
boundaries as long as they conform to the contracted 
communication protocol without distracting adjacent 
components. Connectors do not execute any 
business- or application-specific functions. 

Connectors define the points of variation at which 
components can be plugged in. At least two indepen-
dent components communicate across the boundary 
that a connector establishes. We call them functional 
components (components for short where it is unam-
biguous) because they directly or indirectly imple-
ment functions that comprise the core business of a 
program. We speak of a symmetric connector when a 
functional component on the client side of connector 
uses the same interface(s) as the functional compo-
nent on the provider side for communicating with 
each other. We speak of an asymmetric connector 
when a client component and a provider component 
use different interfaces and the connector maps inter-
face concepts during communication. This article fo-
cuses on symmetric connectors. 

Clutches serve as a metaphor for connectors. 
Clutches couple functional components, i.e., 



(driving) client components to (driven) provider 
components where these components might change 
their roles during communication. Thereby clutches 
transfer physical forces (data) in both directions, 
from clients to providers and vice versa. Real 
clutches optionally contain springs that dampen the 
transmission of exceptional forces. Connectors as de-
fined above offer similar convenience. For example, 
they can log unspecified exceptions and map them 
onto exceptions specified in the connector because 
exceptions crossing component boundaries are part 
of the communication protocol. Another example is a 
connector that prohibits inadmissible input data or 
erroneous operation call sequences, e.g., faulty com-
munication protocols. 

Figure 1 illustrates a program that is minimal in 
terms of components and connectors.  
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Figure 1. Connector and functional components 

The connector in Figure 1 completely channels the 
communication between the sole service client and 
the sole service provider which includes the creation 
of service-providing objects. The connector module1 
processes data from the configuration file in order to 
relieve service clients as well as the connector itself 
from specifying concrete classes in the program co-
de. The resulting constellation is characterized as fol-
lows: 

 Components do not depend on each other. 
 Components depend on connectors. 
 Connectors do not depend on components. 

The compilation procedure reflects this constellation: 

csc /out:Connector.dll /t:library ...  
csc /out:Provider.dll /t:library /r:Connector.dll ... 
csc /out:Client.exe /t:exe /r:Connector.dll ... 

Thus the architecture of a program can be modeled as 
a system of connectors that embed functional com-
ponents (see Figure 2). 

                                                           
1 Only classes with (static) class members are modules. 
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Figure 2. A connector / component architecture 

Figure 2 depicts components that follow the architec-
tural style (Ai, B, Ci) and those that do not (Zi). Func-
tional components (Ci) are connected to a central 
connector manager (B). The connector manager pro-
vides for a communication interface by which ex-
ternal clients can monitor and control connectors 
(Ai). In order to control a connector, interfaces must 
be wrapped in proxy objects that pre- or post-process 
operation calls crossing component borders as indi-
cated in Figure 2 for connectors A3 and A4. We call 
connectors heavy connectors if they wrap interfaces 
in order to transparently hook component services 
like logging, profiling, security checks and protocol 
checks. We call connectors light connectors if they 
contain only interface declarations. The run-time 
overhead of light connectors is negligible. Light con-
nectors can be exchanged for type (interface) com-
patible heavy connectors just by program reconfigu-
ration before run time. 

Another type of connectors not sketched so far are 
multiple-part connectors (see Figure 3). 
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Figure 3. Multiple-part connector 



Upon exceeding a certain breadth, the functional in-
terface of a connector (I1 … In in Figure 3) can be 
implemented via several components (C2 and C3 in 
Figure 3) instead of just one component. These com-
ponents build a group. A component group is defined 
by a common connector and one or more partitioning 
attributes. Each component of a group must publish a 
value for each partitioning attribute. The combination 
of attribute values characterizes a component within 
a component group. Thus partitioning attributes are 
used to diversify components. Diversification nar-
rows the application scope of a single functional 
component, which eases its implementation while 
raising the domain-specific service level. A multiple-
part connector is a connector that can bind (load) 
more than one interface-implementing component 
and uses a strategy (S in Figure 3) to choose a com-
ponent whose attribute values best fit the client re-
quirements. The strategy is provided either by the 
connector as part of the contract or by a client 
component. In contrast, single-part connectors bind 
(load) at most one interface-implementing compo-
nent. Table 1 provides examples of multiple-part 
connectors and partitioning attributes. 

Mp connector Attributes 

String matchers automaton, e.g., NFA, DFA 

Report generators file format, e.g., PDF, HTML 

Memory systems access time, durability 

Numeric systems accuracy, precision, run time 
Table 1. Some attributes of multiple-part connectors 

4. A CONNECTOR IN TEST USE 
Before delving into various extensions of connectors, 
let us examine a typical application scenario as seen 
from a service using (client) side. You can find the 
complete C# code of an almost identical implementa-
tion elsewhere [Frö06]. Figure 4 sketches the archi-
tecture of the program. 
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 Figure 4. Architecture of a simplistic bankapp 

The program implements a simplistic bank with se-
veral branches, accounts and customers. These con-
cepts are directly reflected in the connector, whose 
interface operations build a functional closure, i.e., 
do only involve interfaces declared in this connector 
and basic data types: 

namespace BankInterface { // Connector 
  public interface IBank { 
    void Provide(out IBankBranch branch); 
    void Provide(out IAmount money, double val, string cy); 
    … 
  } 
  public interface IBankBranch { 
    IAccount SetupAccount(IAmount initialValue); 
    IAccount SetupAccount(); // initialValue= 0.00 EUR 
    bool Transfer(IAmount money, 
      IAccount source, IAccount target); 
    … 
  } 
  public interface IAccount { 
    string Owner { get; set; } 
    bool Deposit(IAmount money); 
    … 
  } 
  … 
} 

The program applies a light, single-part connector 
(BankInterface.dll); i.e, the connector provides no 
services other then automatically loading one bank 
implementation (Bank.dll) at a time during first 
access by a bank client (BankApplication.exe). The 
concrete bank implementation is configured before 
run time, e.g., in the standard configuration file of a 
.NET application: 

<configuration><appsettings> 
  <add key="Provider" value="Bank.dll"/> 
  ... 
</appsettings></configuration> 

An application scenario taken from the client illustra-
tes the coding style, which resembles that prevailing 
for clients of COM components. Several amounts of 
money are transferred from different source accounts 
to a common target account: 

namespace BankApplication { // Client 
  // Set up bank branch, target account 
  IBank bank= CBank.Get(); 
  IBankBranch branch; bank.Provide(out branch); 
  IAccount target= branch.SetupAccount(); // 0.00 Euro 
  IAmount amount1, amount2, …; 
 
  // Setup accounts 
  bank.Provide(out amount1, 1000.00, "EUR"); 
  IAccount source1= branch.SetupAccount(amount1); 
  bank.Provide(out amount2, 1500.00, "EUR"); 
  IAccount source2= branch.SetupAccount(amount2); 
  … 
  // Transfer money 
  bank.Provide(out amount1, 500.00, "EUR"); 



  bank.Provide(out amount2, 800.00, "EUR"); 
  … 
  branch.Transfer(amount1, source1, target); 
  branch.Transfer(amount2, source2, target); 
  … 
} 

The service provider (Bank.dll) can be exchanged 
without changing the client’s implementation. For 
instance, a test stub that is applied during develop-
ment and component test of a bank client can be re-
placed with a production version for integration tests. 
Moreover, the light connector can be replaced with a 
type (interface) compatible heavy connector. For 
example, from a technical point of view the heavy 
connector checks whether the client component 
passes to the provider component objects that the 
same provider has created before. From a business 
point of view this check is necessary, e.g., when a 
bank branch charges an account.  The account must 
be set up by the same bank branch or by one of the 
other branches of the bank. We assume this integrity 
check to be necessary for every bank; hence it is part 
of the bank contract. 

5. BASIC CONNECTORS 

5.1 The Lightest Connector  
An application scenario as simple as the sketched 
bank program is typical of tests of functional compo-
nents. Although light connectors are by no means re-
stricted to test scenarios, they obviously demand easy 
connector implementations. This directly leads to the 
question of how to design the lightest connector (see 
Figure 5). 
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Figure 5. The lightest connector 

Besides combining logically coherent interfaces into 
a separate component, every connector must imple-
ment just one nonfunctional task: the establishment 
of the first connection between a service-using and a 

service-providing component while preserving their 
independence as well as its own independence. For 
this purpose a connector contains what we call a pro-
vider-independent connector class (CPiC in Figure 
5). On the one hand this class is a module with 
(static) class methods and variables for loading and 
anchoring a provider; on the other side it is a type de-
claring factory methods [Gam95] for letting pro-
viders decide which objects to deliver as roots of 
business process chains (sessions). Thus each pro-
vider must subclass exactly one provider-dependent 
connector class (CPdC in Figure 5) per supported 
connector. 

The provider-independent connector class uses re-
flection techniques to create the sole object of this 
class (a singleton [Gam95]), the connector object. 
This object is created automatically in the back-
ground during the first access to a provider (triggered 
by, e.g., bank= CBank.Get() in the bank application and 
executed by the class constructor of the provider-
independent connector class) immediately after the 
provider component specified in the configuration 
file is loaded. Once the connector has supplied the 
connector object, a client queries it for the first 
business object by means of a factory method (via, 
e.g., bank.Provide(out IBankBranch) in the bank applica-
tion) declared in the provider-independent connector 
class and implemented in the provider-dependent 
connector subclass. 

The implementation of the managing stuff of a light 
connector is delightfully cheap. It costs about 10 
lines of code executed only once per provider com-
ponent upon first access (compare with the CPiC 
CBank in CBank.cs, directory Bank.src\BankInterface 
[Frö06]). All other operation calls across a light con-
nector, i.e. across interfaces in the sense of the pro-
gramming language, do only cost as much as invoca-
tions of instance function members [Hej04]. Thus 
light connectors completely separate communicating 
functional components with no run-time overhead. 

5.2 The Lightest Heavy Connector  
Heavy connectors factor out nonfunctional services 
from functional components. For this purpose, heavy 
connectors wrap interfaces in proxy classes [Gam95]. 
They provide hooks for affixing component services 
like profiling and protocol checks to both call inter-
faces and callback interfaces. Connectors wrap both 
interface types with the same procedure but at diffe-
rent moments: call interfaces on the way out of an in-
terface function and callback interfaces on the way 
into an interface function. Figure 6 sketches the 
structure of a heavy connector. 



#CPiC()
CPiC()
+Get():CPiC
+Provide(out I1)
#_Provide(out I1)

+CPiC

c

p

p

+I1

c -CProxy

1 _provider

0..1
 impl

Variable of
type I1 refers
to a CProxy

u d

-CClient 

u

#_Provide(out I1)

-CPdC
-CProvider

u
co

nf
ig

ur
at

io
n 

<<
fil

e>
>

 
Figure 6. The lightest heavy connector 

The decisive difference compared to a light connec-
tor is that all function calls of a client component 
first activate a wrapping function implemented in the 
heavy connector before they activate a function in a 
provider component. The prerequisite for wrapping 
all operation calls crossing a connector is template 
methods [Gam95] in the provider-independent con-
nector class, as the following code excerpt demons-
trates by wrapping the root object of a business pro-
cess chain (implementing a call interface): 

namespace Connector { 
  public abstract class CPiC { // connector module 
    public void Provide(out I1 p) { // the template method 
      I1 provider; // the service provider 
      this._Provide(out provider); 
      p= new CProxy(provider); // wrap call interfaces on the 
        // way out from a provider to a client 
    } 
    protected abstract void _Provide(out I1 provider); 
      // the primitive operation of the template method 
    ... 
  } 
  public interface I1 { ... } 
  internal class CProxy : I1 { 
    internal CProxy(I1 provider) { this._provider= provider; } 
    ... // methods wrapping I1 functions 
    private I1 _provider; // the wrapped service provider 
  } 
  … 
} 

Syntactically, proxy objects and connected compo-
nent services are completely hidden in the connector 
and therefore invisible to functional components. 

5.3 The Lightest Multiple-Part Connector  
Multiple-part connectors allow the differentiation 
and installation of several provider components that 
offer alternative or variant services. Moreover, heavy 
multiple-part connectors enable a different class of 
component services, like multiplexing (or pa-
rallelizing) of service request among several provider 
components and graceful failover from one service 

provider to another. Figure 7 sketches the structure 
of a light multiple-part connector. 
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Figure 7. The lightest multiple-part connector 

Provider components to hook into a multiple-part 
connector are specified in the configuration file with 
multiple-value entries such as 

<configuration><appsettings> 
  <add key="Provider" value="Bank1.dll;Bank2.dll"/>2 
  ... 
</appsettings></configuration> 

All these provider components share one (structured) 
interface, i.e., one connector, and usually vary in 
their implementation with regard to at least one com-
ponent attribute. A multiple-part connector offers 
clients the chance to dynamically select one of the 
configured providers. To make this work, the pro-
vider-independent connector class forces provider-
dependent subclasses to return values that character-
ize their business with regard to a differentiating 
business attribute. The strategy pattern [Gam95] 
lends itself for a flexible implementation of the 
selection algorithm. In the context of the bank ex-
ample, clients can now choose among several banks 
applying different interest and portfolio strategies. 

6. EXTENDED CONNECTORS 
Connectors can be extended at four sides (see Figure 
8): 

(a) Client side: several functional components use 
one connector. 

(b) Provider side: several functional components 
provide alternative or supplementing services. 

                                                           
2 Of course, the type-safe way for specifying an arbitrary 

number of provider components would be an xsd:element 
with a multiplicity range of minOccurs="1" maxOc-
curs="unbounded". 



(c) Connector service side: several special-purpose 
components register component services for 
communicating functional components. 

(d) Connector managing side: the behavior of a 
running program is monitored and controlled in 
terms of connectors and components. 
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Figure 8. Connector extensions 

6.1 Extending the Connector Service Side  
Component services can be implemented in proxy 
classes directly in a heavy connector (see 6.1.1) or 
sourced out into separate classes in separate compo-
nents (see 6.1.2). 

6.1.1 Implementing Services Directly 
Component services can be implemented with mini-
mal effort directly in a connector. This implementa-
tion style well suits special component services like 
checks of highly specialized communication proto-
cols while obviously compromising reusability of 
rather general applicable component services like 
logging3. To give an impression of a component ser-
vice, we sketch a part of the life cycle management. 
The heavy connector checks objects that client com-
ponents pass as operation parameters to a provider 
component for creation by the same provider.4 
Again, we demonstrate this for the sample bank 
application introduced in Section 4: A bank can only 
service its own bank accounts. We assume that this 
constraint is part of the contract holding for all 
banks. If this is true, then the connector is the place 
to implement the constraint. On violation of this 
constraint the connector throws a protocol exception: 

namespace BankInterface { // Connector 
  internal class CBBProxy  // Class Bank Branch Proxy 
      : IBankBranch { 
                                                           
3 During development and test phases of the generic data 

stream analyzer (mentioned in the Introduction) a heavy 
connector tests the communication protocol between the 
component providing the business logic (data stream pat-
tern matcher) and various user interface components 
[Frö05]. The connector applies the state pattern [Gam05].  

4 This service is indeed rather generally applicable. It 
checks an integrity constraint for components that cast 
types of parameter objects to component-specific type 
implementations (classes).  

    public IAccount SetupAccount() { // public protocol 
      IAccount provider= this._provider.SetupAccount(); 
      CAProxy accountProxy= new CAProxy(provider, this); 
      this._issuedObjs.Add(accountProxy); 
    } 
    … // more methods wrapping IBankBranch operations 
    internal CBBProxy(IBankBranch bankBranch) { 
      this._provider= bankBranch; 
    } 
    internal bool HasIssued(CAProxy proxy) { 
      return this._ issuedObjs.Contains(proxy); 
    } 
    private IBankBranch _provider; 
    private Utilities.ISet _issuedObjs= new Utilities.CSet(); 
  } 
  internal class CAProxy // Class Account Proxy 
      : IAccount { 
    public void Withdraw(IAmount money) { // public protocol 
      if (!this._creator.HasIssued(this)) 
        throw new CProtocolException(“unknown account”); 
      this._provider.Withdraw(money); 
    } 
    … // more methods wrapping IAccount operations 
    internal CAProxy(IAccount provider, CBBProxy creator) { 
      this._provider= provider; 
      this._creator= creator; 
    } 
    private IAccount _provider; 
    private CBBProxy _creator; 
  } 
  … 
} 

6.1.2 Implementing Services Indirectly 
Proxies that delegate requests for component services 
lead to service implementations that are extensible 
and reusable in the context of several connectors. 
Such proxies signal changes of relevant program 
states (method calls and returns across component 
boundaries) and delegate the provision of services to 
observers [Gam95] implemented in separate compo-
nents. This raises the question of the sequence in 
which component service should be applied. 

In general, component services can be applied in any 
sequence because they have no side effects. From a 
practical point of view, of course, it is useful to 
check, e.g., whether a client is allowed to use a 
provider before checking the communication pro-
tocol in case the two component services are im-
plemented separately. Likewise, the communication 
protocol should be checked before a client is allowed 
to ask for exclusive usage of a provider. Thus ideally 
component services, their order of application and 
the associated connectors are specified in a program 
configuration file and set up with reflective program-
ming techniques. 



6.2 Extending the Connector Managing 
Side  
All connectors of a program may be connected at a 
central point which we call the connector manager. 
The connector manager is the place for querying and 
changing the state of a program in terms of compo-
nents and connectors either from inside the program 
through API calls or from outside the program, e.g., 
through a web service. In particular the connector 
manager enables 

 loading of functional components 
 unloading of functional components 
 switching component services on or off 
 querying for current components and connectors 
 querying for interaction states and histories 
 coordinating several connectors 

From a technical point of view, the most interesting 
feature of a connector manager is the coordination of 
connectors with regard to unloading stateful functio-
nal components. This requires life-cycle management 
of components.5 A connector attached to a stateful 
functional component must check the communication 
protocols for each usage scenario (per business pro-
cess chain) and indicate the functional component as 
being in a state allowing the component to be un-
loaded, as it is usually in initial states, end states, or 
error states (0-states for short). This requirement 
holds for all connectors directly attached to a compo-
nent as well as for all dependent connectors.6 Con-
sider the program sketched in Figure 9. 

A1

A2 A3

C1 C2

C3

C4 C5
C6

B

A1, A2:
  single-part connector,
  heavy (protocol checking)
A3:
  multiple-part connector,
  heavy (protocol checking)
B:
  connector manager
C1 ... C6:
  functional components
 

YX
  reference at compile time

  components x and y refer to  
Figure 9. Managing connector systems 

Provided that it is useful to unload C3, all dependent 
connectors (A1, A2 and A3) have to confirm depen-
dent functional components to be in 0-states. These 
connectors contain at least 4 state machines that 

                                                           
5 Strictly speaking, only component instances can have 

state in a running program because components are just 
binary deployment units. As this should be clear from the 
context, we speak of stateful components. 

6 A functional component that implements (interfaces de-
clared in) several connectors might indicate low binding 
or hint incomplete connector interfaces and so disobey 
the requirement for functional closure. 

check the communication protocols between compo-
nents 

 C1/C2 and C3, 
 C3 and C4, 
 C3 and C5, and 
 C3 and C6. 

Note that thereby we assume C1 and C2 to take part 
in a common usage scenario (session); i.e., they share 
one business process chain and therefore one pro-
tocol-checking state machine. Inversely, one compo-
nent could take part in several usage scenarios of a 
connector so that, e.g., two or more state machines 
could be active in A2 checking two or more applica-
tions of C4 by C3. Technically, unloading a compo-
nent requires it to be installed in separate application 
domain (System.AppDomain) [Gun02], i.e., in a separate 
.NET process, which of course increases communi-
cation costs due to marshalling all calls between 
application domains. 

Besides, the connector manager factors out code 
common to all connectors, such as that for loading 
and unloading functional components and standard 
component services such as logging operation call 
sequences. 

7. RELATED WORK 
This article focuses on physically separate connec-
tors as a means to connect and at the same time to de-
couple components in the context of coherent pro-
grams or program parts. 

Some of the presented concepts suggest concepts 
prevailing in the context of distributed programs. 
Here connectors are manifested as parts of the under-
lying infrastructure, e.g., in the form of networking 
protocols, pipes, SQL links between a database 
server and a database application program, event 
buses, and message brokers [Clem03], [Meh00], 
[Sha96]. Service–oriented architectures (SOA) pro-
vide the plumbing for the integration of components 
running on different technological foundations 
[Sko05]. Component interfaces are published, 
queried and translated into executable code for 
calling services across the Internet.  

Connectors as separate compilation and deployment 
units of coherent programs are scarcely discussed 
elsewhere. In a coherent program, connectors usually 
occur at the abstraction level of a programming lang-
uage as shared variables, buffers and procedure calls 
[Meh00], [Sha96]. This strongly contrasts with con-
nectors at the architectural level of a program as dis-
cussed in this paper. At the architectural level a con-
nector must not to be confused with a façade 
[Gam95] or a mediator [Gam95]. A façade provides 
a unified interface to a set of interfaces in a sub-



system. This is usually done when a class applies 
business logic to orchestrate (instances of) other clas-
ses. Thus a façade is coupled to the covered subsys-
tem. A mediator coordinates interactions of a group 
of objects. Thus a mediator executes application-spe-
cific functions. A connector with its distinct orien-
tation on improving nonfunctional system properties, 
such as reliability, adaptability, and testability, is in-
dependent of adjacent functional components and 
does not execute any application-specific functions. 

However, the idea of including related interfaces in 
separate components is not new. Szyperski et al. 
[Szy02] emphasize the importance of viewing inter-
faces in isolation from any specific component that 
might implement or use such interfaces. Further-
reaching concepts or implementation techniques are 
not discussed. In the context of .NET, Löwy 
[Löw05] suggests assemblies with interfaces to 
parallelize the development of adjacent components. 
Wienholt [Wie03] proposes a similar technique to 
shorten load time of assemblies and to save memory. 
He puts frequently and occasionally used types of an 
assembly into different netmodules7 and separates 
them by netmodules that consist only of interfaces, 
which leads to multiple-module assemblies. This can 
also be achieved with the connector/component ar-
chitectural style. 

Interfaces play an important role in the realm of 
lightweight component containers; Spring [Har05] is 
a good example. Spring decouples components 
(beans) in the form of classes by externalizing the 
creation of instances of collaborating classes and in-
jecting them at dedicated points of the class to be 
configured (dependency injection). Collaborating 
classes are expected to implement well-defined inter-
faces. Although the work on connectors presented in 
this article shares many of the goals of Spring, such 
as isolated component tests, externalization of com-
ponent dependencies (in configuration files), and 
design in terms of the application domain (rather 
than in terms of the implementation domain or a mix 
of both), the solutions move in different directions. 
Spring abandons subclassing for Spring-conform 
components due to reflective programming tech-
niques. In contrast, a functional component in the 
role of a service provider has to implement a pro-
vider-dependent subclass per connector, even though 
this subclass contains only domain-specific methods 
(in a special syntax). Spring does not support the 
transparent injection of non-functional services bet-
ween communicating components. Spring has no no-

                                                           
7 A netmodule is a raw module that must be associated 

with a full-fledged component (assembly) prior to de-
ployment. 

tion of multiple-part components and provides no 
special means for coordinating semantic operations 
attached to related interfaces either in the form of 
protocol checking services or in the form of a con-
nector manager for monitoring and controlling 
running programs. 

8. SUMMARY AND CONSEQUENCES 
Connectors as discussed in this article are special 
purpose components that embody boundaries of 
functional components in the form of binary con-
tracts. This allows functional components to focus on 
their core business. Moreover, functional compo-
nents can be 

 developed in several alternate or supplementary 
variants 

 specified and tested separately 
 relieved of intermingled nonfunctional services 

like logging, caching and checking communic-
ation protocols 

 dynamically monitored and controlled if a con-
nector manager supervises the connector system 

Connectors may interpose nonfunctional services 
between functional components in a completely non-
intrusive manner. This is achieved by means of a pat-
tern language [Cun87] that combines several design 
patterns [Gam95], such as Factory Method, Template 
Method, Proxy, Strategy, State and Observer, and by 
encapsulating these patterns in special components 
(connectors). Classes of functional components shed 
any special base types (such as System.ContextBound-
Object) or attributes (System.Attribute) for profiting 
from component services. Certainly these techniques 
can be used for implementing component services 
within connectors. Proxy classes in connectors ex-
pose suitable method call joint points to implement 
component services as aspects in the sense of AOP 
(aspect-oriented programming). Services that have 
well-defined effects on particular operations support 
the use of AOP [Mur01]. This is the case, e.g., for 
synchronization and accounting services but not for 
checks of complex, application-specific communica-
tion protocols. Due to the localization of services in 
connectors, functional components remain un-
changed regardless of how services are intercepted, 
such as with context bound objects, code generation, 
modification of IL (intermediate language) code or 
.NET’s profiling API. 

If a program does not depend on a nonfunctional 
service, a heavy connector can simply be replaced 
with an interface-compatible light connector without 
changing the implementation of adjacent compo-
nents. The implementation of the skeletal structure of 
a light connector is almost for free with regard to 
both development time and run-time efficiency while 



still providing the fundamental advantages of con-
nectors, i.e., separate specification, testing and de-
velopment of functional components. The call of an 
operation across a light connector costs only as much 
as a call of an instance function member. The one-
time loading of a component immediately before the 
first operation call does not impair performance in 
the long run. Even heavy connectors can boost the 
overall performance of a program. For instance, 
checks of communication protocols (pre- and post-
conditions, invariants, operation call sequences) at 
clear-cut, contracted and rather stable component 
boundaries concentrate on essential and coherent sys-
tem parts (components) while abstaining from checks 
of rather quickly changing implementation-specific 
(i.e. component-specific) objects scattered around the 
program. 

Even demanding services like parallelizing service 
requests in a blocking or non-blocking manner 
among several service-providing components can be 
included in a heavy, multiple-part connector without 
distracting adjacent components. However, this holds 
only for unidirectional data flow where service 
clients just trigger service providers concurrently 
without needing any calculated value from them. Bi-
directional data flow demands connectors that buffer 
data returned by providers and a special interface 
enabling clients to fetch this data for each provider. 
This exceeds the capabilities of symmetric connec-
tors and moves towards asymmetric connectors that 
map deviating client and provider languages in terms 
of deviating interfaces.  

In any case, separate connectors in different exten-
sion stages supply effective, non-intrusive mechan-
isms to solve challenges and issues in developing, 
testing and quality assurance of software compo-
nents. Both isolated connectors and connector sys-
tems promote architecture-centric development of 
programs with variants. Connectors lend themselves 
for gluing common components and varying compo-
nents with predictable capabilities even in order to 
build high-quality product families (product lines) 
[Wei99]. At the same time, connectors raise the pro-
ductivity of component developers, testers and ar-
chitects. Variants of a generic data stream analyzer 
[Frö05] and several experiments prove the practical 
feasibility of the connector/component architecture 
style. Coordinated life-cycle management (protocol 
checking) of several components is a key issue of 
further work. 
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