
Using the .NET Profiler API to Collect Object
Instances for Constraint Evaluation

Dave Arnold
School of Computer Science

Carleton University
1125 Colonel By Drive

Canada K1S 5B6, Ottawa, ON

darnold@scs.carleton.ca

Jean-Pierre Corriveau
School of Computer Science

Carleton University
1125 Colonel By Drive

Canada K1S 5B6, Ottawa, ON

jeanpier@scs.carleton.ca

ABSTRACT
Evaluating software based constraints at runtime is an important task for both the validation and verification of
software. It is not uncommon to encounter constraints that require obtaining the set of all active object instances
for a given classifier. When the application under test is being executed on a virtual machine or a managed
runtime, it is often difficult, if not impossible, to obtain such a set. We will examine Microsoft's .NET common
language runtime, and through the use of the profiler API, provide a concrete mechanism for obtaining the set of
live object instances for a given classifier. We will then leverage this set to provide an extension to an existing
C# and Object Constraint Language compiler to support the OclAny::allInstances operation.

Keywords
C#, Constraints, Profiler, OCL

1. INTRODUCTION
Software based constraints provide a mechanism for
testing software. Such constraints can be expressed
using a formal language such as the Object
Management Group's Object Constraint Language
(OCL) [Omg03a]. Constraints are expressed at the
model level in the form of preconditions,
postconditions and class invariants [Fra03a, War03a].
In our work, when a model is used to generate source
code, the constraints are translated from the model
level to the code level. The source code is then
compiled through the use of a specialized compiler
[Arn04a] to generate executable code. In the case of
the C# programming language [Hew02a], this code is
executed by Microsoft's Common Language Runtime
(CLR) [Hew02b]. The CLR is not a virtual machine,
but rather an execution engine. The CLR provides
memory management for both allocation and garbage
collection. As the CLR abstracts memory
management away from the programmer, it is

difficult to determine which object instances are
allocated and active. The CLR does not provide any
feedback to the application being executed about the
state of the application's memory. That is, there is no
way to determine the object instance information for
a given classifier within the containing application.

Context
Our paper will present an approach for accessing
memory management information from the CLR via
the .NET Profiler API [Mic02a]. Our approach will
track each object instance of a given classifier from
allocation through to garbage collection. We will
demonstrate that our profiler, on request from the
application being executed, can return the set of all
object instances for a given classifier. The object
instance set can then be used for various activities
including the evaluation of software based
constraints.

Organization
The remainder of this paper is organized as follows:
Section 2 provides a brief background on the CLR’s
memory management and garbage collection
algorithms. Section 3 presents an unmanaged
Component Object Model (COM) component that
implements the .NET Profiler API to interface with
the CLR and respond to memory allocation events.
Section 4 examines how the unmanaged COM
component can exchange information with the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

managed application being profiled. Section 5
provides a concrete use of our method by
implementing the previously missing
OclAny::allInstances operation in an existing
C#/OCL compiler [Arn04a]. Finally, Section 6
presents concluding remarks and areas for future
work.

2. CLR MEMORY MANAGEMENT
Instances of classifiers in .NET are allocated from a
section of memory known as the managed heap
[Stu03a]. The heap is managed because after an
application requests memory, the garbage collector
takes care of the cleanup. Object instances can be
small, containing a few integers, or larger, for
example holding a database connection with an
extensive amount of state information. Object
instances can be self-contained or reference other
object instances. The role of the garbage collector is
to determine when objects should be collected to free
memory for other allocations. The garbage collector
fills its role by selecting the object instances that can
be deleted. Garbage collection is performed when an
application attempts to allocate memory from the
managed heap, and the managed heap is too full to
complete the request. Managed heaps in the CLR are
periodically renewed by identifying dead objects and
then fusing contiguous runs of dead objects into
blocks of memory to be reallocated. The method used
for discovering dead objects is called tracing. Tracing
is accomplished by following live references to
objects in the managed heap. Once a live reference is
encountered it is marked. The garbage collector can
then easily determine that any object instance that is
not marked can be reclaimed. Live objects are located
by looking for heap pointers on all the stacks, in all
statically allocated memory, within all object
instances, and in a few other CLR data structures
[Stu03a]. When a live object is located, the memory
that the object points to is examined for additional
references (pointers). If more are found they are
likewise followed until the entire set of live objects is
known. The action of determining the live object set
is called "tracing the roots", and results in the
transitive closure of the set of live objects.

The approach to garbage collection described in the
previous paragraph is known as "mark and sweep"
collection [Stu03a]. The problem with pure mark and
sweep collection is that over time the managed heap
becomes fragmented. To avoid heap fragmentation,
"compacting collection" is used. Compacting
collection removes dead objects and pockets of
unallocated memory by sliding live objects down
towards the low-address end of each heap segment,
and then repairing any dangling pointers with updated
values. Such compaction also has the positive side

effect of maintaining object creation order, which
improves locality of reference.

The expenses of all the object movement can be
reduced drastically via an enhancement used by the
CLR's garbage collector known as "generational
collection" [Stu03a]. When a generational approach
is used, object instances are initially allocated in the
youngest generation. If they survive past a garbage
collection cycle, they are promoted to an elder
generation by copying. The refinement of this method
over compacting collection is that object instances
that are located in the younger generation generally
have a shorter survival rate, while objects in the elder
generation have a higher survival rate. As object
instances are split into different managed heaps,
different techniques are used to reclaim memory. The
CLR uses a non-copying, non-compacting collector
for the elder generations. In the youngest generation,
a copying approach is used. The CLR garbage
collector is triggered by allocation volume or memory
scarcity; when heap resources run low, the roots are
traced, and either one or both generations are
scavenged for memory. For details on how the CLR
garbage collector is implemented see [Stu03a].

Garbage collection is well worth the complexity and
the effort [Hil03a]. Garbage collection provides
additional application reliability and programmer
productivity. However, since garbage collection can
be triggered without notice and because the managed
application is not notified when garbage collection
takes place, it is hard to determine which object
instances are active at a given point during execution.
We will now examine a method for accessing the
managed heaps directly to extract the necessary
object instance information.

3. THE PROFILER API
In order to obtain the set of all live object instances, it
is obvious that we require a way to get inside the
CLR and examine the managed heaps. Unfortunately,
the only way to implement such functionality would
require modifying the CLR itself. But, modifying the
CLR is not a practical solution. Fortunately, for our
purposes Microsoft has provided a back door into the
inner workings of the CLR. This back door is the
profiler API [Hil03a]. The profiler API allows for an
external COM component to monitor the execution
and memory usage of an application running under
the CLR. Normally, the profiler monitors the running
application and does not interfere with it. In our
approach, we will leverage the profiler API to
monitor object instance allocation and garbage
collection, and we will return this information to the
managed application.

The profiling APIs are implemented via two COM
interfaces. One of the interfaces is implemented by
the CLR (ICorProfilerInfo), and the other is
implemented by the profiler itself
(ICorProfilerCallback). The ICoreProfilerCallback
interface receives notification from the CLR
regarding various events that occur during a managed
application's execution. The ICorProfilerInfo
interface extracts additional information from the
CLR itself.

Initialization
The CLR connects with one profiler at most during
its initialization phase [Hil03a]. The profiler must use
the Initialize method defined in the
ICorProfilerCallback interface to save the
ICorProfilerInfo interface pointer so that it can be
used to retrieve additional information from the CLR
during actual profiling activities. The Initialize
method must also register for CLR events that the
profiler is interested in. The ICorProfilerCallback
interface supports approximately sixty CLR events.
To reduce the amount of overhead introduced by the
profiler, the profiler specifies which events it is
interested in. For our task, we wish to be notified
when a new object instance is allocated, when the
garbage collector is invoked, and finally we need to
be notified when an object reference (pointer) is
moved. The last event is required because we will be
maintaining a set of pointers to the actual object
instance memory locations. Table 1 illustrates the
profiler event bit masks we are using. For our
purposes of object instance collection and tracking,
we only need to implement four of the sixty
ICorProfilerCallback events. The following sections
will describe each of the methods, and their
corresponding implementation details.

Event Mask Meaning
COR_PRF_MONITOR_

SUSPENDS
GC

Notification

COR_PRF_MONITOR_GC GC Calls

COR_PRF_ENABLE_OBJECT_
ALLOCATED

Object
Allocation

COR_PRF_MONITOR_OBJECT_
ALLOCATED

Object
Allocation

Table 1. Select Profiling Events

ObjectAllocated
The ObjectAllocated method is invoked by the CLR
each and every time memory in the managed heap has
been allocated for an object [Hil03a]. The method
provides two parameters; the first parameter is a
pointer to the managed heap location where the newly
allocated object instance is being stored: objectId.
The second parameter is a pointer to the class
descriptor for the objectId: classId.

Our implementation is fairly straightforward: the
class descriptor is used along with the previously
saved ICorProfilerInfo interface pointer to determine
the classifier name. The classifier name is then
compared against the set of given classifier names
that we are "interested" in. A classifier becomes
interesting when the application being profiled
notifies us that we will be asked for the classifier's
object instance set. Details of how this notification
works will be provided in Section 4; for now it
suffices that we are only interested in a subset of the
list of classifiers. In an effort to reduce the resources
needed by the profiler, rather than store all of the
object instance information, only instance
information for classifiers that are deemed to be
interesting is stored.

MovedReferences
The MovedReferences method is invoked by the CLR
to notify the profiler that the garbage collector has
moved one or more object instance locations
[Hil03a]. When this occurs, the objectIds provided by
the ObjectAllocated method are no longer valid, as
they may no longer point to the correct location
within the managed heap. It should be noted, that the
object's internal state does not change, just its
location within the managed heap. In the context of
our profiler, all we are doing is updating our internal
arrays to reflect the movements.

ObjectReferences
The ObjectReferences method is called by the CLR
once for each object instance that remains in the
managed heap after a garbage collection operation
has completed [Hil03a]. We use the
ObjectReferences method to mark the object
instances as un-collected, and the object instances are
still kept inside our array of objectIds.

RuntimeSuspendFinished
The CLR calls RuntimeSuspendFinished to notify the
profiler that the CLR has suspended all of the threads
needed for execution suspension [Hil03a]. One of the
reasons for runtime suspension is garbage collection.
As the ObjectReferences method will be called for
each object instance that survives when the runtime is
suspended, we will mark each of the tracked object
instances as collected. When the ObjectReferences
method calls are complete, the object instances that
have survived the garbage collection will be un-
collected. Our array will then only contain the
objectIds of object instances that are still live.

Intuitively, this may seem like a bad idea because
there will be a delay between when we mark all the
object instances as collected, and when we realize
that a given object instance is live, and needs to be
un-collected. The delay is not a problem because the

CLR guarantees all of the ObjectReferences calls will
be performed before the CLR's execution threads are
restarted.

Summary
By providing a specialized implementation for the
preceding four ICorProfilerCallback methods our
profiler is able to maintain an internal array of
pointers for each instance of the interesting
classifiers. Each pointer is a reference to a live object
instance on the managed heap. During garbage
collection, the runtime is suspended and each object
instance we are tracking is marked as collected.
Before the runtime is restarted, the CLR provides
notification for each object instance that has survived
garbage collection. We are then able to un-collect the
object instance pointers stored in the array. Finally,
should the garbage collector compact the managed
heap, our profiler will receive notification so that the
heap pointers can be updated accordingly.

We have now explained a COM component that
interfaces with the CLR. The component registers for
object allocation and garbage collection events. The
events are used to maintain an array of currently live
object instances for interesting classifiers. The next
task, presented in Section 4, is to provide a managed
interface into the COM component so that the
managed application, which is being profiled, can
register its classifiers as being interesting and access
the object instance pointer array.

4. GETTING OBJECT INSTANCES
As our COM component is loaded and initialized by
the CLR running in an unmanaged memory space, the
COM component is unable to call methods that are
located inside the managed application. However,
managed applications can invoke methods that are
exported by a COM component. To allow a managed
application to query the array of live object instances
for a given classifier, this COM component will have
to be able to register a given classifier, request the
number of live object instances allocated, and finally
be able to move the allocated object instances from
the unmanaged COM component into the managed
application for inspection. These tasks are
implemented via the provision of five methods
exported by our COM component. The following
sections will discuss each of the five exported
methods in detail.

IsOCLProfilerAttached
The first exported method determines if the CLR
running the managed application has loaded our
profiler. The method name contains the abbreviation
OCL, for the Object Constraint Language as our
implementation of the described profiler is for use

with the OCL. More details of our implementation
will be provided in Section 5.

Implementation of this method consists of
determining if a global reference to the
ICorProfilerCallback interface contains a valid
pointer. If a valid pointer is located then the profiler
has been loaded correctly, otherwise the profiler is
not running. The IsOCLProfilerAttached method is
not required, but is used as a safety mechanism to
determine if the required profiler functionality exists
before the managed application calls the remaining
four exported methods.

RegisterObject
RegisterObject is used to inform the attached profiler
that the managed application would like to keep track
of object instances for the given classifier. Classifiers
are provided via the single string parameter to the
RegisterObject method. The string should contain a
fully qualified classifier name. For example, suppose
the class Customer existed in the DaveArnold.Data
namespace. The call to RegisterObject would take the
following form: RegisterObject ("DaveArnold.
Data.Customer").

Each call to the RegisterObject method adds the
given classifier name to the list of interesting
classifiers. Profiling only begins following the
RegisterObject call. In order to achieve accurate
object instance information, the RegisterObject calls
should be made immediately after the managed
application starts.

GetInstanceCount
The GetInstanceCount method takes a single string
parameter, and returns an integer value. The
parameter is the fully qualified name of the classifier
for which the number of live object instances is
requested. GetInstanceCount will invoke the garbage
collector to determine which object instances are live
at the current time. GetInstanceCount will also wait
until the thread processing the queue of finalizers has
finished. A finalization method can be viewed as a
destructor. The finalization queue is the set of
instances that have been marked for deletion, but the
runtime has yet to execute the finalization method.
Depending on the number and complexity of the
finalizers to be executed, GetInstanceCount may be
computationally intensive. However, the strategy of
forcing garbage collection and waiting for finalizer
execution, ensures that the return value is always
accurate.

StartInstanceCopy & StopInstanceCopy
StartInstanceCopy is used to inform the profiler that
the managed application has requested the list of all
object instances for a given classifier.
StopInstanceCopy informs the profiler that the

managed application has received the requested
object instance list. The process of transferring the
list of object instances from our COM component to
a managed application is a non-trivial operation. The
following sections will provide rationale for the
operation's complexity, and present the technical
details of how the transfer process is accomplished.

4.1.1 Direct Access via the Array Pointer
Intuitively, the easiest implementation would have
been to pass the fully qualified classifier name to an
exported method, and have the method return a
pointer to the corresponding array. The managed
application could access the array of pointers and de-
reference each one for evaluation. The experienced
.NET programmer will quickly realize that a managed
application cannot take the address or size of a
managed type. The reason for this is if the garbage
collector is executed and moves the managed object
instance, the object instance array and all pointers to
the array will become invalid. As we cannot prevent
the garbage collector from executing, nor keep a
reference to a managed object, another method is
required to get the object instance pointers out of the
profiler and into the managed application.

4.1.2 Memory Copy
As each array element in the profiler stores a pointer
to the managed heap location where the object
instance is being stored, the actual bits can be copied
to a new location, which is accessible from the
managed application. To allow the managed
application access to the memory, we will use the
managed application to create a new object instance
for the given classifier. We will then use the profiler
to copy the memory from the existing live object
instance to the newly created object instance. The
result is that the managed application will create a
new object instance for each element in the array
stored in the profiler, and then upon creation, the
profiler copies the original element's state
information to the new object instance. The new
object instances can then be used as needed in the
managed application. If the new object instances are
modified in the managed application, the original
instances are not modified. The following code listing
presents a C# method that returns an ArrayList of live
object instances for the given classifier type, using
the previously described operation.

1) public static ArrayList GetInstancesFor(string value,
 Type t) {
2) VerifyProfiler();
3) lock(typeof(OCLProfilerControl)) {
4) int count = GetInstanceCount(value);
5) ArrayList result = new ArrayList();
6) StartInstanceCopy();
7) for(int i=0;i<count;i++) {

8) Object obj = t.InvokeMember(null,
 BindingFlags.DeclaredOnly | BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.Instance |
 BindingFlags.CreateInstance, null, null, null);
9) result.Add(obj); }
10) StopInstanceCopy();
11) return result; } }

Line 2 begins by ensuring that the profiler has been
loaded and attached. If the profiler is not available an
exception will be thrown. Line 3 creates a mutual-
exclusion lock on the remainder of the method. Such
a lock is required along with various critical sections
in the profiler to prevent new object instances from
being allocated during the copy process. In addition,
a critical section in the profiler prevents the garbage
collector from executing until the copy process has
completed. For implementation details regarding
threading see [Arn04a]. Line 4 uses the previously
defined GetInstanceCount method to determine how
many object instances will need to be copied.
GetInstanceCount also triggers the garbage collector
and finalization process so that the object instance
array contains accurate information. Line 6 informs
the profiler that the next object instances that we
create will be copies of existing ones, and not regular
object instances. Lines 7 through 9 create a new
object instance for each existing instance. The
creation process invokes the ObjectAllocated method
in the profiler. Instead of executing the normal
behaviour of adding another object instance to the
given classifier’s array as previously described, the
following behaviour is executed. Based on the
number of instances copied since the call to
StartInstanceCopy, the profiler is able to determine
which element of the array to copy. The profiler then
uses the saved ICorProfilerInfo interface pointer to
determine the size of the object instance via the
GetObjectSize method. Finally, the profiler copies
the bits used to store the object instance located at the
previously determined array index to the location
where the newly created objectId has been located in
the managed heap. Once the copy process is
completed, the profiler increments an internal counter
so that the next array index is used on subsequent
calls to ObjectAllocated. Line 9 adds the newly
created object instance, which is now a copy of the
original one, to the result list. Finally, line 10 informs
the profiler that any newly created objects are no
longer copies of existing ones.

Summary
Calling the GetInstancesFor method shown above
will return an ArrayList that contains a copy of every
live object instance matching the fully qualified
classifier name provided to the method call. The

object instance copies can be used for any activity
without affecting the original live object instances.

We have now defined a CLR profiler to track object
instance allocation and garbage collection, and have
created a connection to the managed application
being profiled so that the live object instance set can
be accessed. The following section will examine a
concrete example of how the profiler and
corresponding connection can be used to aid in the
execution of software based contracts.

5. EVALUATING THE OCL IN C#
The Object Constraint Language (OCL) [Omg03a] is
a constraint specification language with precise
semantics [War03a]. More specifically, OCL
expressions evaluate without side effects. This means,
the state of a system can never change due to the
evaluation of an OCL expression. The OCL is not a
programming language. It is not possible to write
logic or flow control statements in the OCL. A
process or thread cannot be created, and only query
operations may be called. A query operation is an
operation that does not produce side effects. As the
OCL is a modeling language by definition, its
expressions are not directly executable. The OCL is a
strongly typed language. Each OCL expression has a
type. To be well formed: every OCL expression must
conform to the OCL type rules [Omg03a].

We have integrated OCL version 2.0 assertions into
the C# programming language. To support this
addition, a specialized compiler has been developed
that compiles C# source code along with OCL
assertions to provide software based constraint
evaluation [Arn04a].

OCL Integration
Keeping with C#'s design goal of simplicity [Tru02a],
we used a straightforward notation that allows for
maximum flexibility. Our experience has indicated
that some developers prefer to inline the OCL in
close proximity to the corresponding C# element.
Other developers prefer to keep the OCL in a
separate repository that is linked to the corresponding
C# elements at compile-time. We support both
approaches.

OCL blocks are denoted by the "OCL" keyword. The
keyword is immediately followed by an opening
square bracket. Following the opening bracket, a
series of C# style literal strings specify the OCL
constraint. A closing square bracket is required to
denote the end of the OCL block.

Class invariants can be assigned to any C# structure
or class. Preconditions and postconditions can be
applied to any C# method, constructor, destructor,
delegate, property, or indexer. Our specialized

compiler can be configured to enforce, use, or ignore
the OCL contracts.

Compilation
Our specialized OCL/C# compiler is based on the
Mono C# compiler [Xim04a]. The Mono C#
compiler is an open source C# compiler, which
allowed us to directly integrate OCL constraints into
the core of the compiler. In order to allow for the
OCL blocks as defined in the previous section to be
processed by the C# compiler, we need to augment
the C# grammar accordingly. The grammar
modification is straightforward. C# defines the notion
of attributes [Hew02a]. Attributes can be placed on
any programming element in any order and represent
additional metadata for the given programming
element. Grammatically, our OCL blocks behave like
C# attributes. Our C# grammar modification consists
of adding a rule that states that wherever attributes
can be specified, zero or more OCL blocks can be
specified immediately before the attributes. OCL
blocks are defined separately from attributes to allow
enforcement of their usage by our compiler.

We run the C# compiler until mid-way through the
semantic pass. The C# compiler is then stopped so
that each of the OCL constraints can be processed.
We now need to convert each OCL constraint into a
C# assertion. To accomplish this, we go through each
operation attached to each structure or class. When a
method, delegate, property, or indexer is encountered
the following steps are executed1.

1. Create a C# parse tree for each of the invariants
assigned to the class that contains the operation.

2. Create a C# parse tree for each of the
preconditions and postconditions assigned to the
operation.

3. If a postcondition uses an element that contains the
@pre modifier, a local variable is added to the
beginning of the operation and is assigned the value
of the requested element. The local variable is then
used in the postcondition to represent the requested
element's value before the operation is executed. The
mini C# parse tree for the postcondition is modified
to use the local variable, instead of the actual
element.

4. If the operation contains either invariants or
postconditions, a local variable (result) is added to
the beginning of the operation to represent the return
value of the operation. If the return type is void, no
variable is added. The C# parse tree for the operation
is modified so that all return statements are replaced

1 The following steps do not take into consideration

inheritance in order to preserve understandability in the
context of this paper.

by an assignment to the local variable and then a
jump to the end of the operation. As we need to check
invariants and postconditions at the end of the
operation, we change the structure of the method to
include an area for making the checks, and enforce
that all code paths travel through our new area.

5. The OCL specification dictates that the end result
of each of the mini C# parse trees is a Boolean
constraint. The Boolean constraints are added to the
method's parse tree as follows:

(a) Each invariant constraint is placed into the
condition section of an if statement and negated. If
the if statement evaluates to true, then the invariant
has failed. The body of the if statement will generate
an assertion. The invariant statements are placed at
both the beginning and the end of the operation.

(b) Step (a) is repeated for the preconditions and the
if statements are placed immediately after the
beginning invariant if statement.

(c) A Boolean constraint is generated to yield the
result of the postconditions.

(d) An if statement is created to determine if the
postconditions have failed. The body of the if
statement will generate an assertion.

6. After the final if statement in the operation, a new
return statement is added to return the result variable.
If the result variable does not exist, no return
statement is added.

Once each operation's C# parse tree has been updated
to include the OCL constraints, the C# compiler is
restarted. The rest of the semantic analysis is
completed on the main C# parse tree, which includes
the additions made by the OCL integration. Upon
successful completion of the semantic pass, the C#
code generator completes the compilation.

allInstances
The OCL defines an allInstances operation on each
classifier. The allInstances operation is defined to
return a collection of all the object instances defined
using the classifier [Omg03a]. The original version of
our C#/OCL compiler did not support allInstances
because, as already discussed, C# maintains an
automatic garbage collector, so it was difficult to
determine when an object instance had actually gone
out of scope. In addition, there was no mechanism in
C# to get the live object instance list.

With our previously discussed method, we can
modify the compiler to support the allInstances
operation and allow the user more flexibility when
defining software contracts. We will discuss the
modifications made to the compiler in order to
provide this functionality. As the implementation of
the allInstances method will require invoking the

profiler and incur additional overhead during
application execution, we have created a compiler
option to enable allInstances support. If an
application that uses the allInstances operation is
compiled, and the corresponding option is turned off
the compiler will issue an error. If the allInstances
compiler operation is enabled, but the application
being compiled does not make use of the allInstances
operation, the compiler will not add profiling code to
the application.

The original compiler already has the allInstances
operation defined in the lexical analysis and parsing
phases. The semantic analyzer has a skeleton method
that emits a compiler error, stating that the
allInstances operation is not supported. We have
replaced the existing method in the semantic analyzer
with one that performs the following tasks. The first
step is to ensure that the required compiler option has
been enabled, if not the compiler issues an error
message. Once it has been determined that the
allInstances operation is supported, the compiler uses
the OCL expression resolution method [Arn05a] to
resolve the front part of the expression. Consider the
following allInstances expression.

Customer.allInstances()->forAll(c : Customer | c.age >= 18)

The compiler resolves the front part of the
expression, which should result in a classifier. Once
the classifier is resolved, the compiler ensures that the
classifier is not a primitive type. According to the
OCL specification [Omg03a], the allInstances
operation is not defined on primitive types. This
makes sense because some primitive types are stored
as literals or on the stack, and not in the managed
heap. In addition, the set of all integers is not really
useful from the software constraint point of view. If
the classifier is in fact a primitive type, the compiler
will issue an error.

Once the previously defined classifier resolution and
primitive type check are complete, the compiler
begins to generate C# code to implement the
allInstances operation. The first step is to register the
classifier with the profiler upon application startup.
This is accomplished by inserting a call to the
RegisterObject method at the beginning of the
application’s entry point. With classifier registration
complete, the compiler then generates code to
implement actual retrieval of object instances. The
OCL expression is translated into the following C#
code.

bool result = true;
foreach(Customer c in
 (Set)OCLProfilerControl.GetInstancesFor(“Customer”,
 System.Type.GetType(“Customer”))) {
 result = result & (c.age >= 18);
}

The expression above, results in a Boolean value
specifying if the OCL constraint is valid or not. The
GetInstancesFor method is used to return an
ArrayList containing the active object instances of
type Customer. The first parameter to the method call
is a string literal representing the classifier name, the
second parameter is a System.Type object
representing our Customer. The type object will be
used to dynamically create the Customer copies as
previously discussed. The GetInstancesFor method
returns an ArrayList, the OCL specification indicates
that the allInstances operation returns a Set. The Set
type does not exist in the .NET Framework Class
Library (FCL). The compiler includes an OCL type
library [Arn04a], which defines the OCL Set type
[Omg03a]. The Set type contains a conversion
operator to convert an ArrayList to a Set. Finally, the
foreach C# primitive is used to iterate through each
Customer in the Set and determine if the age
constraint holds. With the OCL allInstances
expression converted to a C# Boolean expression, the
C# code can be inserted into the application being
compiled as discussed in the previous section.

6. CONCLUDING REMARKS
The following section will look at some areas for
future work and recapitulate our approach by
discussing how the addition to our existing C#/OCL
compiler provides the constraint developer with
additional resources for writing accurate and detailed
constraints.

Future Work
We have only illustrated how this method can be used
to implement software based constraints via the
OclAny::allInstances method. It would be interesting
to explore other uses for the complete set of live
object instances. We are currently exploring how our
method can be used in the verification and validation
of non-functional requirements.

Conclusion
We have seen how a specialized COM component
can be written using the Microsoft .NET Profiler
API. The profiler API provides our component with
notifications when object instances are being
allocated on the managed heap, when the object
instances are being moved, and finally when they are
collected. Using these notifications we are able to
maintain a list of live object instances sorted by the
creating classifier. As the COM component runs
outside of the managed runtime provided by the CLR,
a series of exported methods are required to provide
an interface for accessing the live object instance list
under the CLR. Using the COM component together

with the connecting bridge we are able to extend our
existing C#/OCL compiler to provide support for the
OclAny::allInstances operation. Such support
empowers the software constraint designer with
additional resources form which more detailed and
accurate software constraints can be devised.
Ultimately, allowing the constraint designer to create
constraints that are not limited by technical aspects,
leads to a more complete and accurate software
verification and validation process.

7. ACKNOWLEDGEMENTS
Funding for this work has been generously provided
by the Natural Sciences and Engineering Research
Council of Canada.

8. REFERENCES
[Arn05a] Arnold, D. Constraints in C# using the OCL

2.0. In proceedings of the 23rd IASTED
International Conference on Software
Engineering, Innsbruck, February, 2005.

[Arn04a] Arnold, D. C#/OCL Compiler at
http://www.ewebsimplex.ca/csocl.

[Fra03a] Frankel, D. Model Driven Architecture:
Applying MDA to Enterprise Computing. Wiley,
New York, 2003.

[Hew02a] Hewlett-Packard, Intel, Microsoft, C#
Language Specification. Technical report, ECMA,
2002.

[Hew02b] Hewlett-Packard, Intel, Microsoft,
Common Language Infrastructure (CLI).
Technical report, ECMA, 2002.

[Hil03a] Hilyard, J. Inspect and Optimize Your
Program’s Memory Usage with the .NET Profiler
API. MSDN Magazine, January, 2003.

[Mic02a] Microsoft, .NET Framework Tool
Developer’s Guide: Profiling Specification.
Technical report, Microsoft, 2002.

[Omg03a] OMG: Response to the UML 2.0 RfP.
Technical report, OMG document ad2003-01-16,
2003.

[Stu03a] Stutz, D., Neward, T., and Shilling, G.
Shared Source CLI Essentials. O’Reilly &
Associates, Sebastopol, 2003.

[Tru02a] Trupin, J. Sharp New Language: C# Offers
the Power of C++ and Simplicity of Visual Basic.
MSDN Magazine, September, 2002.

[War03a] Warmer, J., Kleppe, A. The Object
Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley, Boston, MA,
2003.

[Xim04a] Ximian Mono Project at
http://developer.ximian.com/projects/mono

