
Building a framework for the consistency
management of distributed applications

Vilmos Bilicki
University of Szeged

Department of Software Engineering
Hungary, 6720, Szeged

bilickiv@inf.u-szeged.hu

József Dániel Dombi
University of Szeged

Department of Software Engineering
Hungary, 6720, Szeged

dombijd@inf.u-szeged.hu

ABSTRACT
Distributed computing is leaving the laboratory and research lab environment and is now playing a significant
role in the infrastructure of different companies and institutions. The requirements of running 7x24 without any
noticeable failure can be effectively achieved only with a distributed architecture. The computing power and
storage capacity of desktop machines have also become attractive as the basic building blocks of a distributed
resource-sharing network.
Along with the useful properties of a distributed environment we get some challenges as well. A crucial question
is that of consistent global knowledge among the distributed components. During the building and testing phases
of our distributed software package called LanStore it turned out that currently there is no framework for .NET
that offers group communication and consistency maintenance. There is the Peer-to-Peer API for unmanaged
code that can be used in managed code, but this API was intended to be used in a WAN environment and it does
not provide strong guarantees for consistency.
Hence we decided to design and build a framework that supports consistency management. One design criterion
we applied was to support a highly changeable environment like that in a student computer laboratory. Our
framework does not depend on any underlying communication infrastructure. It can provide the same set of
services regardless of whether it is a peer-to-peer network or an IP level multicast network is used as the
platform.

Keywords
Keywords: distributed system, consistency, group communication, peer-to-peer

1. INTRODUCTION
The number of the users with broadband Internet
access is skyrocketing. According to estimates the
number of users with broadband access in the U.S.
increased by 36% in 2004. Now almost 70% of all
U.S. home users have broadband connections. On a
global scale, the number of the users in the world
with Internet access grew by 182% during the
period 2000-2005. 15.7% of the total world
population now has Internet access. This
penetration means that more than one billion users
(one-sixth of the planet’s human population) are
connected to the Internet, which is probably the
largest community on earth. The value of this
community from the business perspective is

constantly growing as well. The total Internet
spending hit $143.2 billion in 2005[Eni05]. Yet the
demands of this market differ from the
conventional ones in several respects. The most
important difference arises from the fact that, on the
Internet, bank holidays and the different parts of the
day lose their meaning. Business life should be run
in a 7x24 way. But when this point is combined
with the fact that the number of users who use a
service is rather unpredictable, it is becomes clear
that it is no easy task to develop such a system, one
that is efficient, reliable and cost effective.
With the current high speed LAN and WAN
network infrastructures the distributed paradigm is
a reasonable solution for these problems. Such a
service is provided by a group of processes that are
operating and distributed throughout the network.
The user should, however, see this system as a
monolithic service and not notice its distributed
nature. But using the network as a communication
medium among processes introduces new problems.
Current data networks - like IP networks - do not
give guarantees for the correct delivery of the sent
data. A developer has to take into account the
variable aspects of the communication channel.

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not made
or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior
specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

One solution that has become more attractive is to
use desktop machines as the basic building blocks
of a distributed system. These PCs are less reliable
than dedicated servers or they may run in
environments where continuous operation is not
guaranteed (as in a student laboratory for instance).
Therefore a reliable distributed system should be
able to tolerate the failing of one or more of its
serving nodes. Depending on the type of tolerated
failure, the system can become quite complex and
costly to implement.
To overcome this complexity a common method is
to use a framework that hides the failures of the
system from the higher layers. Probably the biggest
question for a distributed system is that of
consistency. To be able to act as one virtual service
the distributed system should have a consistent
knowledge base. The message-oriented Group
Communication Service (GCS) [Vit99] may
provide the consistency for a distributed system.
There are well-known frameworks for providing the
above-mentioned services, but we found just the
Peer-to-Peer API [Win03] was available for the
.NET environment. Our experience showed during
the building and testing of the LanStore [Bil05]
system that a well-tested, general, easily extendable
consistency framework removes most of the
burdens associated with testing and developing.
Hence we decided to build the DCon framework to
provide this functionality.
First we will introduce our new contribution, then
we will outline the most common services available
for group communication. One interesting approach
is the Paxos algorithm, which will be evaluated in
the next section, followed by a discussion of several
well-know frameworks. As one of our goals was to
build a framework for a student lab environment, in
the next section we present the results of
measurements that were conducted in our
laboratories. Based on our measurements we
designed a framework that is described in the
implementation section. In the final section we
draw some conclusions and suggest several possible
directions for future study.

2. Our contribution
We carried out a set of a measurement to test the
reliability of a typical campus computer laboratory.
In the literature we found only the [Bol00] study
about the reliability of the desktop machines, but
this measurement was conducted on desktop
machines used mainly by dedicated persons. In
contrast, our measurements were conducted in a
public student laboratory.
We decided to implement a distributed consistency
management framework, we know this is the only
distributed consistency management framework for
the .NET environment. Our system can use the

services of a peer-to-peer network and native IP
level multicast too. We implemented the Paxos
algorithm [Lam00, Lam01] in a way that is optimal
for frequently changing networks (see
measurements). Our Paxos implementation is able
to handle the membership changes. We ported the
Paxos algorithm to a Peer-to-Peer environment
where the group members are not on a central list.

3. Distributed systems
A general distributed system may have an arbitrary
number of components and each of these
components may have a different task and a
different state space but to the service user it
behaves like a centralized monolithic system. These
components may communicate in an arbitrary way.
The fault tolerance of these components is usually
solved by replication. The replicated components
execute the same algorithm and each of them
should have the same state. One popular approach
is to model this system with state machines
[Sch90]. A metric of a distributed system is the
safety it provides. Here safety means the number
and types of failures it survives without losing
consistency. Another important metric is called
liveness. This means that with different types and
numbers of failures the distributed system can still
progress. A widely used solution for the above
mentioned issues is the view-oriented group
communication service (GCS). Here service
reliability is provided at the message level. The
following basic services are defined:

1. Membership service
2. Reliable multicast

A view is a state of the system consisting of a set of
active nodes. If this set changes, the view changes
as well. The most important property provided by a
GCS is called “Virtual Synchrony”. If two
processes participate in the same two consecutive
views the same set of message will be delivered.
For further details the interested reader may peruse
the article [Vit99].

4. Paxos
The “Virtual Synchrony” property provides the
global ordering of the messages and a reliable
message delivery in a distributed system. The price
we pay for this solution is that it is not scalable. As
was shown in the Spinglass article [Ken01], the
systems providing “Virtual Synchrony” can scale
effectively only up to several tens of nodes.
The classic Paxos [Lam00, Lam01] protocol solves
the consensus problem for an asynchronous
replicated system. It guarantees consistency in the
case of benign failures. Hence this algorithm has
better scalability properties than systems with the
“Virtual Synchrony” property. The drawback is that
the progress of the system is not guaranteed, and

the total order of messages is not fully controlled by
the clients.
The algorithm solves the following problem. Let P
be a set of processes and let V be the set of values.
Every process in P can choose one value from the
set V, the goal of the Paxos algorithm being to
guarantee that only one from these selected values
is accepted. The network can delay and multiply the
messages arbitrarily; the participating nodes can
crash and restart randomly but the Byzantine
failures [Lam82] are not tolerated. In other cases
system consistency is guaranteed. The progress of
the system is guaranteed only in stable periods.
The functionality of Paxos is provided by two basic
primitives: the quorum and a global order provider.
The task of the quorum is to select at most one
value from the available values. There are
distributed solutions for preserving the global order
of the messages (e.g. GCS), but sometimes a single
decider can handle it more effectively. Paxos may
be regarded as a special case of the view
membership protocols [Lamps01]

5. Recent solutions
For handling the issues of a distributed system in
the .NET environment one can use the P2P API
[Win03] and the System.Transactions [Win06]
namespace. P2P API provides a basic IP overlay
infrastructure. As the consistency of the given
reliable storage is based on timestamps and serials,
and it does not give appropriate feedback about the
success or failure of a transaction, it cannot be used
in several critical services. The
System.Transactions namespace in .Net 2.0 offers
only classical transaction services. It is unsuitable
for a consensus-based data consistency.
Group Communication Systems-based frameworks
have a long history, and they are now in their fourth
generation. Here we mention only the most well
known frameworks.
Isis [Bir94] was the first and best-known primary
component membership service. Among other
services it defined and provided the “Virtual
Synchrony” property for the first time.
Transis [Dal96] was the first GCS that utilised the
native IP level multicast services. It was the first
partitionable membership service. The system
contains multicast clusters that are interconnected.
It has a multicast flow control mechanism that
controls the traffic at the network level. It also
supports group communication. The messages can
be unordered, causally ordered, and totally ordered
and safely delivered.
Totem [Mos96] utilises the native IP multicast
capabilities of the underlying network too. It
provides a system-wide total ordering of the
messages even in the case of network partition and
remerge (“Extended Virtual Synchrony”). This goal

is achieved with a logical ring where only the token
holder may speak. In larger networks there are
hierarchical ring topologies.
The goal of the Ensemble [Ken00] project was to
improve the quality of the software used in the Isis
project. Instead of the monolithic approach the
system was implemented using modules and well-
defined interfaces. The micro-protocol stack further
improves the flexibility of the system. The code
was implemented in the ML language, which is an
O’Calm variant language. With this approach they
were able to define and perform transformations on
the code in a mathematically proven way.
Spinglass [Ken01] uses a revolutionary new
approach. The currently used GCS’s cannot be
scaled up to a really large number of nodes. The
Spinglass project addresses this problem and it uses
“gossip-based” protocols to provide a highly
scalable, secure and reliable Group Communication
System. The gossip protocols emulate the spread of
an infection in a crowded population. It employs a
NNTP like protocol [Kan86] (Bimodal multicast) as
the basic infrastructure provider. This protocol
gives a steady data delivery rate with predictable,
low variability in throughput. It provides only
probabilistic guarantees of virtual synchrony.

6. Feasibility study
Our university has a computer science laboratory
with 204 PCs. Students can either use the Windows
or Linux operating systems from 8 am. to 8 pm.,
and they can switch between the operating systems
whenever they want. We measured machine
availability by pinging these machines every minute
for 3 weeks between February 6 and February 25 in
2006. Based on the TTL value of the response we
were able to detect not only the failures but the type
of the operating system too.
We measured that a week the mean number of the
online Windows workstations was always above the
critical 50%.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

7 9 11 13 15 17 19

Windows Linux Timeout

Figure 1: Operating system percentage / hours

(2006.02.20)
The first figure shows the same statistics but now
for a particular day. We notice that during the day
except for a short period the number of online
windows machines was above the critical level. The
difference was about 10%. In the next figure the
number of restarts is shown for another day. We

notice that there are situations where more than
10% of the machines are restarted. In such cases it
may happen that during a transaction more than
50% of the windows machines are online but the
ones that are running may vary.

0

20

40

60

80

100

120

7 12 17

Restart

Figure 2: Number of restarts every 10 minutes

(2006.02.14)
From these measurements we may conclude that for
a reliable and liveness system we have to take into
consideration these special time periods.

7. The DCon framework
The goal of the framework is to provide a
distributed replicated data storage service with
strong safety guarantees and weaker liveness
properties. It can tolerate any arbitrary number of
non-Byzantine failures. The liveness property is
guaranteed only when more than the half of the
nodes are active, but these nodes can change from
time to time.

Figure 3.

We could have followed the approach of the above-
mentioned frameworks and implemented a
message-level GCS. But as our framework will
provide only consistency services and not group
communication services, we constructed it so that it
would handle the issue of consistency more
effectively. We selected the famous Paxos
algorithm, which is ideally suited for these
purposes. The reliability of this algorithm is
mathematically proven. It can tolerate an arbitrary
number of non-Byzantine failures without losing
consistency. To be able to use it in a WAN
environment and to be effective in a LAN
environment we implemented it on the top of the
Windows Peer-to-Peer API and the native IP level
multicast services.
The DCon framework has three layers. These layers
are shown in Figure 3. The first layer hides the

distributed nature of the system from the user. It
provides basic data manipulation and configuration
services for the user. A data item can be added to
the system, and existing data items can retrieved by
a slow or fast query (see the next section). There
are several methods available for reconfiguring the
system.
The second layer implements the Paxos algorithm
in a network independent way. At the bottom are
the network dependent modules. Currently there are
two modules: the native IP level multicast module
and the module based on the services provided by
the Windows Peer-to-Peer API.
In the following section we will describe our
implementation of the Paxos algorithm in native
multicast and P2P environments.

8. Our Paxos implementation
Functionality is provided by three abstractions:
Leader, Consensus algorithm, Learner.
From a higher point of view the system works as
follows. The clients send instructions to a leader.
This leader carries out a three-phase transaction on
the participating nodes and sends the results to the
client.
Now we will describe the algorithm and a detailed
description of our implementation (please consult
Figure 4 for details).
Firstly, during the implementation phase of the
classic Paxos algorithm we had to solve the
following problems:
Message ordering: The purpose of the leader
abstraction is to serialise the incoming requests. As
we have seen this task can be done in a distributed
manner (with logical timestamps and so on), but
these solutions are more costly and are less reliable
than the single leader solution. One could argue that
the single leader incorporates a single point of
failure into system. This is true, but as the leader
does not have persistent data it can be easily
replaced by a live substitute.
Leader election: As a communication medium
between the Leader and the participating nodes, the
Instructions multicast channel is used. During idle
periods, the Leader periodically multicasts a beacon
packet that contains the number label of the latest
instruction. Based on our experience in other fields
we chose to set this period to 10 seconds. During
active periods these packets contain Paxos
instructions (Propose, Accept, Decide). Failure
detection is achieved by timeouts. If there is no
traffic on this channel for three times the beacon
period (30 seconds), the clients will submit a
LeaderSelect frame that contains their stability
properties (the greatest message serial known by
this node, the number of restarts, the duration of the
longest stable period). Each node compares the
received values with its values and if it discovers

that its values were better (in the case of equal
values the greater IP number is chosen) it will wait
for a random period between 0 and 15 seconds and
start sending beacon packets. If a node thinks that it
has the best values but receives beacon packets it
will accept the new leader. With these settings a
Leader change will last at most 45 seconds.
Learning the actual leader: There is a Leader
channel where the leader submits the beacon every
30 seconds. This channel is intended for clients for
them to determine the actual leader. The clients
send the data items to be stored to the leader using a
TCP connection.
Monotony maintenance: The leader node
retransmits the messages from the clients to the
Instructions multicast channel and these values
assigns a global number G and local number N to
the messages. Local numbers are interesting only
when there are two or more leaders. These numbers
should be unique among the leaders so it is
constructed as follows: IP address+ N*2

32. For
every submitted message G is increased and N is
reset to 0. G and N are included in the beacon
packets as well.
Every node in the distributed system is subscribed
to the Instructions multicast channel. For every
different global number there will be a separate
“Synod” protocol that guarantees consistency
among the nodes. It works as follows:
Phase 1. The leader selects a global G and a local
number N for the instruction and sends it as a
proposal for the nodes subscribed to the
Instructions channel. This is the so-called Prepare
request. If a receiving node receives a Prepare
request it checks whether it is able to accept it. If
the last accepted request has a global number which
equals the received global number and the local
number is less than that of the current request then
it responds with a reject answer, otherwise it will
send a prepare accept response. Both of the
responses contain the last accepted request and the
also the number of this request.
Phase 2. If the leader receives a response for its
propose request from the majority of the nodes,
then it selects the latest accepted request, or if there
was no request previously then it uses its own
request and sends an accept request to the
Instructions channel. In the case of insufficient
responses or a reject answer it will increase the
local number and submit the prepare request again.
If there are insufficient responses after the fifth
unsuccessful round it will stop the process and send
an unsuccessful message to the clients. If it gets one
or more reject answers it will increase the N value
and send the message again. After five unsuccessful
turns it will increase the value of G to the maximal
value reported by the clients plus one received in
the reject messages. If it is unsuccessful then it will

report this to the client. This situation can happen
only when there are several leaders and all are
functioning for a longer period of time. But this
may happen only in very special circumstances. It
is quite rare.
The node receiving an accept request checks the
local number of the request, and if it is greater than
the last accepted one or there was no such G then it
accepts the request and sends an accepted message
to the leader. Otherwise a reject response is sent
with the N value and maximal known G value.
Phase 3. After receiving sufficient accepted
messages the Leader sends a Decided message to
the Instructions multicast channel. The node that
receives the Decided message will insert the
Decided values into its Decided values storage. The
timeout for each phase is 20 seconds. If the number
of received accept messages was less than the
previously defined majority value it will try sending
the accept request again. If it fails five times it will
send this result to the client and stop the process. In
the case of a reject message it will follow the
process described in Phase 2 and restart Phase 1. If
the chosen value was not the value originally sent
by client, then the Leader will repeat the whole
process until the decided value and the accepted
value coincide. This situation may occur if the G
known by the leader is less than the greatest G in
the whole system.
A detailed description of this algorithm can be
found in [Lam00, Lam01]. We implemented the
Paxos algorithm using several optimisations to
achieve better response times:
For the system to progress we need the majority of
nodes to be live. It may happen that in a fluctuating
system, the majority of nodes are always present
but are constantly changing. For example the
prepare request is received by node A, then node A
restarts and node B finishes its restarting process.
So node B will only receive an accept request. The
classic Paxos algorithm recommends rejecting this
message. But with this solution it can happen that
we have to replay the whole propose/accept
procedure. Instead of this we suggest the following.
If a node receives an accept request without
previously receiving a propose request it shall
answer this request. If it disagrees with the value
suggested by the accept request it shall handle the
accept request as a propose request; if it agrees with
the received value then it shall handle the accept
request as a propose and accept request. With this
modification we did not change the durability of the
algorithm, but in some cases we reduced the
required number of message exchange from six to
two. This algorithm is described in [Lam01].
Phase1:
Server:
 Var ReceivedRequest([G[N,V]], Iteration=0
 SendPropose(Nx232,G)

Node:
 Var ReceivedProposes [G[S,V]]
 ReceivePropose(S,G){
 IF(G not known)
 SendAcceptPropose()
 ELSE IF (Smax <S)
 SendAcceptPropose(Sloc,Svalue)
 ELSE
 SendRejectPropose(G,Smax,Gmax)
 }
Phase2:
Server:
 IF (ReceivedAcceptPropose > Memb/2)
 IF(MAX(S) != 0)
 SendAcceptReq(G,Sloc,Svalue)
 ELSE
 SendAcceptReq(G,Sloc,V)
 ELSE
 IF(N<5)
 N=N+1
 GOTO Phase1.
 ELSE
 REPORT ERROR
Node:
 IF(G not known)
 SendAcceptReq()
 ELSE IF (Smax <S)
 SendAcceptReq ()
 ELSE
 SendRejectReq(G,Smax,Gmax)
Phase3:
Server:
 IF NUM(ReceivedAcceptReq > Memb/2)
 SendDecide(G,V)
 ELSE
 IF(N<5)
 N = N+1
 GOTO Phase 1
 IF(Sv != V)
 G = G+1
 GOTO Phase 1
 ELSE
 SendSuccess()

Figure 4. Algorithm

Change of membership: The participating nodes
maintain two lists of instructions. In the “Client
list” are stored the data items submitted by the
clients, while the “System list” contains the
instructions for system maintenance. The handling
change of membership is solved by these special
instructions, which are treated the same way as
instructions from clients.
Message optimization: A Leader may incorporate
an arbitrary number of Paxos messages with
different G values into one submitted packet. The
Decide packets may be piggybacked to Accept
packets. The prepare packets are only needed
during the start of a longer stable period. With these
optimisations we then need only one message per
transaction during stable periods. The details of
these optimisations were mentioned in part in two
papers [Lam00, Lam01].
Slow/Fast query: A client may learn the chosen
values in a fast or slow way. The fast way is to
query the adjacent node about its list of decided
values. The slow way is to perform a distributed
query of the missing values. This query is
submitted to the Instructions multicast channel. The
distributed query contains the number label of the
last known decision. The nodes receiving the query

will respond to and return the accepted values. The
client will summarise the answers and in the case of
unknown new decisions it will send a decide
message to the Instructions multicast channel to
help the progress of the whole system.

9. Measurement
We tested our implementation in different
circumstances to prove that the single leader role
does not affect its stability.
To be able to simulate different network conditions
we developed a simulation framework where every
machine was simulated with separate thread. With
the help of this solution we were able to fine tune
the machine restart probabilities.
In the following we will present our results about
the stability of the leader election process. During
the experiment we simulated 200 PCs with the
restarting probability of 10% to 50% . On the
Figure 5 we can notice, that the system converged
in a very fast manner in the case of low restarting
probability. If we raise the restarting probability the
system also converged, but in this case the
convergence is slower, and it contains more peaks.

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Time(10s)

10% 20% 30% 40% 50%

Figure 5. Number of threads, which are know

the good leader at the same time

10. Paxos in a peer-to-peer environment
The services of the Windows Peer-to-Peer API
were described in the recent solutions section. We
can if we wish use it as a basic infrastructure to
build an IP overlay multicast service. The
communication service will be less efficient than in
the native case, but in some situations we cannot
use native multicast services anyway. The reliable
storage service does not guarantee safety properties
comparable to those of Paxos.
In our system we solved the following problems:
Group membership: To be able to implement a
Paxos-like algorithm with guaranteed safety
properties we have to know something about the
success of the spread of the information. For this
we need some membership details. As this
framework assumes that there will be a high
number of nodes there is no central information
about the membership. To overcome this, we chose

to measure the total weight of the network and this
value will be refined from time to time, but we will
save only the maximal value while the system is
running. Based on the maximal and the current
value, the algorithm will be able to decide whether
a partitioning has occurred and if this partition is
capable of acting as a reliable storage medium. In
the case of partitioning only the partition with
weight more than the half of the whole weight will
be suitable to act as a reliable storage. This solution
works when, after the partitioning, there is a will on
the user’s part to merge the graph. If the partitioned
sections start their lives separately, one can initiate
a separate instance of the consistency algorithm on
each. After doing so, it will be impossible to unify
the network, however as the algorithm is intended
to preserve global consistency there is no easy way
of merging systems with a different history. With
this membership view the nodes in the Peer-to-Peer
network act as Paxos nodes.
Global order: This can be handled in a distributed
or centralised way. The decentralised solution may
be a more suitable solution for a peer-to-peer
network, but as the Windows Peer-to-Peer API uses
a central point of the network for graph
maintenance we opted for this solution. A step
toward the fully decentralised solution could be the
use of per client root nodes. In this case an
additional iteration is needed to evaluate the global
order of the values. This could be done with the
help of the weight of the groups which accepted a
value with the same serial number.
After this high-level overview we will describe how
our solution works:
The Peer-to-Peer network or segment has a central
point- the node with the smallest ID (the same node
being used for graph maintenance). This node sends
a beacon signal every T seconds to each of its
neighbours. The main task of this beacon is to
measure the weight of the network.
Loop free message transfer: The graph
constructed by the P2P system is a redundant one,
hence we need an algorithm to avoid the situation
of message loops. The P2PDatabase article
[Awe02] advocates using spanning trees, but in a
dynamic network it would be a costly solution. So
we decided to use the well-known “Path Vector”
algorithm [BGP06][Win03] (the same idea being
used for name queries in MS P2P API). Every
beacon packet has a path vector attribute that
contains the sequence of nodes it traversed during
its trip. If a node receives a beacon packet it first
checks whether it is present in this attribute. If it
finds its ID then the packet will be discarded. It
then inserts its ID at the end of the path vector
attribute and submits the packet to each of its
neighbours except the neighbours which are present

in the path vector. With this solution we have a
multicast communication infrastructure.
Aggregated feedback: To measure the current
weight of the network, each node will send a
feedback to each beacon packet with the aggregate
number of feedback packets received. Every non-
leaf node (i.e. one which transmitted a beacon
packet) has to wait for an answer for each
submitted beacon packet. As we use the services of
the Windows Peer-to-Peer API, theoretically the
neighbours are always online (if not, the graph
maintenance algorithm will correct this), but to
avoid a potentially long delay of 5 minutes, every
node has to maintain a timer for each submitted
beacon frame. The timeout value will be inversely
proportional to the number of nodes in the path
vector attribute. In the case of a timeout it will send
back a packet with a weight value of one. If there
are redundant paths it may send the same feedback
back several times. To avoid this, the synchronising
packets contain a timestamp. A node will answer
with an aggregate weight only for the first packet,
and for the remaining packets with the same
timestamp it will respond with a feedback
containing a zero weight. Finally the root node will
aggregate the feedbacks and this number will be the
weight of the current network. The maximal value
during this time will be the membership weight of
the network. To ensure that this value is common
knowledge, it will be attached to each beacon frame
and stored at every node.
The root node acts as the leader in our Paxos
algorithm. The algorithm is the same as in the case
of native multicast, the only difference being that
the nodes aggregate the answers they receive and
send this answer as feedback values. The Propose,
Accept, and Decide packets can act as beacon
packets too. The root node will send beacon packets
only after a defined idle time. To minimise the
network traffic a submitted packet may contain
several Paxos packets for several instructions and
types. The root node will receive an aggregated
feedback from participating nodes. The weight of
the response should have a value greater than
maxweight/2.
Slow/Fast query: The fast query option is the same
as in the native multicast case. The slow query
contains the last known decision number. The
algorithm is the same as in the case of beacon
packets. The feedback packets will contain the
decisions known by the traversing nodes. Every
transmitting node will check the feedback values
for unknown decisions and then store them. If a
node discovers that one or more of its accepted
values are not present among the decided values, it
will attach these values to the voted values. If it
finds its accepted values among voted values, then
it will increase the counter for these values. Thus

the client will be able to learn the decided values
and also the values accepted by the majority of
nodes. The detection of root node failure is handled
by the underlying framework. Each node also
checks whether it is the root node of the new graph.
If it finds that it is, then it will initiate a query to
learn the last synchronising number of the decided
and proposed values. The result of this query will
be the weight value of the current network. If it
finds that it is larger than the half of the previous
one, then it will start acting as the leader.

11. Conclusions and future work
In this article we described a solution which
provides consistency services in a distributed
environment. We implemented the well-known
Paxos algorithm and solved several associated
problems. As our framework handles only the
consistency problem and it provides no group
communication services ours should not really be
compared to recent systems like Isis and Transis.

Our goal was to provide a simple and reliable API
for consistency handling. Currently we also provide
the same set of services on the P2P framework and
on native IP level multicast.
Our software package is now in the development
stage. Timing can be critical in a distributed system.
The current values are based on our experience in
the field of IP routing where the neighbour
maintenance solves the same failure detection issue
[OSPF96]. The tuning of the timeout values should
be done in a real environment and software package
should be tested under a variety of conditions.
In the future we would like to add a gossip-based
module that can be deployed in the Windows P2P
API. With this module the framework will not just
be effective in LAN, but will be scalable in WAN
as well.

12. Acknowledgement
We would like to thank David P. Curley for
checking this article from a linguistic point of view.

REFERENCES
[Awe02] B. Awerbuch and C. Tutu. Maintaining

Database Consistency in Peer to Peer Networks.
Technical Report, CNDS-2002-2. 2002

[Bil05] V. Bilicki. LanStore: a highly distributed reliable
file storage system, .NET Technologies’2005
conference proceedings, ISBN 80-86943-01-1, pp.
47-57, 2005

[Bir94] Birman K., van Renesse R. (editors) - Reliable
Distributed Computing with the Isis Toolkit, IEEE
Computer Society Press

[Bol00] W. J. Bolosky, J. R. Douceur, D. Ely, and M.
Theimer. Feasibility of a serverless distributed file
system deployed on an existing set of desktop PCs. In
Proceedings of SIGMETRICS, Santa Clara, CA, June
2000.

[BGP06] Y Rekhter, T. Li, S. Hares. A Border Gateway
Protocol 4 (BGP-4).
http://www.ietf.org/rfc/rfc4271.txt

[Dal96] D. Malki and Y. Amir and D. Dolev and S.
Kramer. he Transis Approach to High Availability
Cluster Communication. Communications of the
ACM, 39(4):63--70, April 1996.

[Eni05] Enid Burns. Broadband: Online Retail Sales
Grew in 2005.
http://www.clickz.com/stats/sectors/retailing/article.p
hp/3575456 , January 2006

[Kan86] B. Kantor, P. Lampsley. RFC 977 - Network
News Transfer Protocol. 1986
http://www.faqs.org/rfcs/rfc977.html

[Ken00] Ken Birman, Robert Constable, Mark Hayden,
Christopher Kreitz, Ohad Rodeh, Robbert van
Renesse, Werner Vogels. Proc. of the DARPA
Information Survivability Conference & Exposition
(DISCEX '00), January 25-27 2000 in Hilton Head,
South Carolina.

[Ken01] R. Shostack, and M. Pease. Kenneth P. Birman,
Robbert van Renesse and Werner Vogels. Spinglass:

Secure and Scalable Communication Tools for
Mission-Critical Computing. International
Survivability Conference and Exposition. DARPA
DISCEX-2001, Anaheim, California, June 2001.

[Lam00] L. Lamport. Part time parliament. ACM Trans.
on Computer Systems, 16(2), May 1998.

[Lam01]L. Lamport. Paxos made simple. ACM SIGACT
News Distributed Computing Column, 32(4),
December 2001.

[Lam82]L. Lamport, R. Shostack, and M. Pease. The
Byzantine Generals Problem. ACM Transactions on
Programming Languages and Systems, 4(3):382-401,
1982.

[Lamps01] B. W. Lampson. The ABCDs of Paxos.
Principles of Distributed Computing, 2001.

[Mos96] L. E. Moser, P. M. Melliar-Smith, D. A.
Agarwal, R. K. Budhia, and C. A.
LingleyPapadopoulos. Totem: A fault-tolerant
multicast group communication system.
Communications of the ACM, 39(4):54--63, April
1996.

[OSPF96] Y. Moy. OSPF Version 2.
http://www.ietf.org/rfc/rfc2328.txt

[Sch90] Fred B. Schneider. Implementing Fault-Tolerant
Services Using the State Machine Approach: {A}
Tutorial. ACM Computing Surveys, 22(4):299-314,
1990.

[Vit99] R. Vitenberg and I. Keidar and G. Chockler and
D. Dolev. Group Communication Specifications: A
Comprehensive Study. Tech. report CS99-31, Comp.
Sci. Inst., The Hebrew University of Jerusalem and
MIT Technical Report MIT-LCS-TR-790, Sep. 1999.

[Win03] Microsoft. Introduction to Windows Peer-to-
Peer Networking. November 2005.
http://www.microsoft.com/technet/prodtechnol/winxp
pro/deploy/p2pintro.mspx

[Win06] Microsoft. System.Transactions Namespace.
2006. http://msdn2.microsoft.com/en-
us/library/system.transactions.aspx

