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ABSTRACT 
Distributed computing is leaving the laboratory and research lab environment and is now playing a significant 
role in the infrastructure of different companies and institutions. The requirements of running 7x24 without any 
noticeable failure can be effectively achieved only with a distributed architecture. The computing power and 
storage capacity of desktop machines have also become attractive as the basic building blocks of a distributed 
resource-sharing network. 
Along with the useful properties of a distributed environment we get some challenges as well. A crucial question 
is that of consistent global knowledge among the distributed components. During the building and testing phases 
of our distributed software package called LanStore it turned out that currently there is no framework for .NET 
that offers group communication and consistency maintenance. There is the Peer-to-Peer API for unmanaged 
code that can be used in managed code, but this API was intended to be used in a WAN environment and it does 
not provide strong guarantees for consistency. 
Hence we decided to design and build a framework that supports consistency management. One design criterion 
we applied was to support a highly changeable environment like that in a student computer laboratory. Our 
framework does not depend on any underlying communication infrastructure. It can provide the same set of 
services regardless of whether it is a peer-to-peer network or an IP level multicast network is used as the 
platform.  
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1. INTRODUCTION 
The number of the users with broadband Internet 
access is skyrocketing. According to estimates the 
number of users with broadband access in the U.S. 
increased by 36% in 2004. Now almost 70% of all 
U.S. home users have broadband connections. On a 
global scale, the number of the users in the world 
with Internet access grew by 182% during the 
period 2000-2005. 15.7% of the total world 
population now has Internet access. This 
penetration means that more than one billion users 
(one-sixth of the planet’s human population) are 
connected to the Internet, which is probably the 
largest community on earth. The value of this 
community from the business perspective is 

constantly growing as well. The total Internet 
spending hit $143.2 billion in 2005[Eni05]. Yet the 
demands of this market differ from the 
conventional ones in several respects. The most 
important difference arises from the fact that, on the 
Internet, bank holidays and the different parts of the 
day lose their meaning. Business life should be run 
in a 7x24 way. But when this point is combined 
with the fact that the number of users who use a 
service is rather unpredictable, it is becomes clear 
that it is no easy task to develop such a system, one 
that is efficient, reliable and cost effective. 
With the current high speed LAN and WAN 
network infrastructures the distributed paradigm is 
a reasonable solution for these problems. Such a 
service is provided by a group of processes that are 
operating and distributed throughout the network. 
The user should, however, see this system as a 
monolithic service and not notice its distributed 
nature. But using the network as a communication 
medium among processes introduces new problems. 
Current data networks - like IP networks - do not 
give guarantees for the correct delivery of the sent 
data. A developer has to take into account the 
variable aspects of the communication channel. 
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One solution that has become more attractive is to 
use desktop machines as the basic building blocks 
of a distributed system. These PCs are less reliable 
than dedicated servers or they may run in 
environments where continuous operation is not 
guaranteed (as in a student laboratory for instance). 
Therefore a reliable distributed system should be 
able to tolerate the failing of one or more of its 
serving nodes. Depending on the type of tolerated 
failure, the system can become quite complex and 
costly to implement.  
To overcome this complexity a common method is 
to use a framework that hides the failures of the 
system from the higher layers. Probably the biggest 
question for a distributed system is that of 
consistency. To be able to act as one virtual service 
the distributed system should have a consistent 
knowledge base. The message-oriented Group 
Communication Service (GCS) [Vit99] may 
provide the consistency for a distributed system. 
There are well-known frameworks for providing the 
above-mentioned services, but we found just the 
Peer-to-Peer API [Win03] was available for the 
.NET environment. Our experience showed during 
the building and testing of the LanStore [Bil05] 
system that a well-tested, general, easily extendable 
consistency framework removes most of the 
burdens associated with testing and developing. 
Hence we decided to build the DCon framework to 
provide this functionality.  
First we will introduce our  new contribution, then 
we will outline the most common services available 
for group communication. One interesting approach 
is the Paxos algorithm, which will be evaluated in 
the next section, followed by a discussion of several 
well-know frameworks. As one of our goals was to 
build a framework for a student lab environment, in 
the next section we present the results of 
measurements that were conducted in our 
laboratories. Based on our measurements we 
designed a framework that is described in the 
implementation section. In the final section we 
draw some conclusions and suggest several possible 
directions for future study. 

2. Our contribution 
We carried out a set of a measurement to test the 
reliability of a typical campus computer laboratory. 
In the literature we found only the [Bol00] study 
about the reliability of the desktop machines, but 
this measurement was conducted on desktop 
machines used mainly by dedicated persons. In 
contrast, our measurements were conducted in a 
public student laboratory. 
We decided to implement a distributed consistency 
management framework, we know this is the only 
distributed consistency management framework for 
the .NET environment. Our system can use the 

services of a peer-to-peer network and native IP 
level multicast too. We implemented the Paxos 
algorithm [Lam00, Lam01] in a way that is optimal 
for frequently changing networks (see 
measurements). Our Paxos implementation is able 
to handle the membership changes. We ported the 
Paxos algorithm to a Peer-to-Peer environment 
where the group members are not on a central list.  

3. Distributed systems 
A general distributed system may have an arbitrary 
number of components and each of these 
components may have a different task and a 
different state space but to the service user it 
behaves like a centralized monolithic system. These 
components may communicate in an arbitrary way. 
The fault tolerance of these components is usually 
solved by replication. The replicated components 
execute the same algorithm and each of them 
should have the same state. One popular approach 
is to model this system with state machines 
[Sch90]. A metric of a distributed system is the 
safety it provides. Here safety means the number 
and types of failures it survives without losing 
consistency. Another important metric is called 
liveness. This means that with different types and 
numbers of failures the distributed system can still 
progress. A widely used solution for the above 
mentioned issues is the view-oriented group 
communication service (GCS). Here service 
reliability is provided at the message level. The 
following basic services are defined: 

1. Membership service 
2. Reliable multicast 

A view is a state of the system consisting of a set of 
active nodes. If this set changes, the view changes 
as well. The most important property provided by a 
GCS is called “Virtual Synchrony”. If two 
processes participate in the same two consecutive 
views the same set of message will be delivered. 
For further details the interested reader may peruse 
the article [Vit99]. 

4. Paxos 
The “Virtual Synchrony” property provides the 
global ordering of the messages and a reliable 
message delivery in a distributed system. The price 
we pay for this solution is that it is not scalable. As 
was shown in the Spinglass article [Ken01], the 
systems providing “Virtual Synchrony” can scale 
effectively only up to several tens of nodes. 
The classic Paxos [Lam00, Lam01] protocol solves 
the consensus problem for an asynchronous 
replicated system. It guarantees consistency in the 
case of benign failures. Hence this algorithm has 
better scalability properties than systems with the 
“Virtual Synchrony” property. The drawback is that 
the progress of the system is not guaranteed, and 



the total order of messages is not fully controlled by 
the clients. 
The algorithm solves the following problem. Let P 
be a set of processes and let V be the set of values. 
Every process in P can choose one value from the 
set V, the goal of the Paxos algorithm being to 
guarantee that only one from these selected values 
is accepted. The network can delay and multiply the 
messages arbitrarily; the participating nodes can 
crash and restart randomly but the Byzantine 
failures [Lam82] are not tolerated. In other cases 
system consistency is guaranteed. The progress of 
the system is guaranteed only in stable periods. 
The functionality of Paxos is provided by two basic 
primitives: the quorum and a global order provider. 
The task of the quorum is to select at most one 
value from the available values. There are 
distributed solutions for preserving the global order 
of the messages (e.g. GCS), but sometimes a single 
decider can handle it more effectively. Paxos may 
be regarded as a special case of the view 
membership protocols [Lamps01] 

5. Recent solutions 
For handling the issues of a distributed system in 
the .NET environment one can use the P2P API 
[Win03] and the System.Transactions [Win06] 
namespace. P2P API provides a basic IP overlay 
infrastructure. As the consistency of the given 
reliable storage is based on timestamps and serials, 
and it does not give appropriate feedback about the 
success or failure of a transaction, it cannot be used 
in several critical services. The 
System.Transactions namespace in .Net 2.0 offers 
only classical transaction services. It is unsuitable 
for a consensus-based data consistency.  
Group Communication Systems-based frameworks 
have a long history, and they are now in their fourth 
generation. Here we mention only the most well 
known frameworks. 
Isis [Bir94] was the first and best-known primary 
component membership service. Among other 
services it defined and provided the “Virtual 
Synchrony” property for the first time. 
Transis [Dal96] was the first GCS that utilised the 
native IP level multicast services. It was the first 
partitionable membership service. The system 
contains multicast clusters that are interconnected. 
It has a multicast flow control mechanism that 
controls the traffic at the network level. It also 
supports group communication. The messages can 
be unordered, causally ordered, and totally ordered 
and safely delivered. 
Totem [Mos96] utilises the native IP multicast 
capabilities of the underlying network too. It 
provides a system-wide total ordering of the 
messages even in the case of network partition and 
remerge (“Extended Virtual Synchrony”). This goal 

is achieved with a logical ring where only the token 
holder may speak. In larger networks there are 
hierarchical ring topologies. 
The goal of the Ensemble [Ken00] project was to 
improve the quality of the software used in the Isis 
project. Instead of the monolithic approach the 
system was implemented using modules and well-
defined interfaces. The micro-protocol stack further 
improves the flexibility of the system. The code 
was implemented in the ML language, which is an 
O’Calm variant language. With this approach they 
were able to define and perform transformations on 
the code in a mathematically proven way. 
Spinglass [Ken01] uses a revolutionary new 
approach. The currently used GCS’s cannot be 
scaled up to a really large number of nodes. The 
Spinglass project addresses this problem and it uses 
“gossip-based” protocols to provide a highly 
scalable, secure and reliable Group Communication 
System. The gossip protocols emulate the spread of 
an infection in a crowded population. It employs a 
NNTP like protocol [Kan86] (Bimodal multicast) as 
the basic infrastructure provider. This protocol 
gives a steady data delivery rate with predictable, 
low variability in throughput. It provides only 
probabilistic guarantees of virtual synchrony. 

6. Feasibility study 
Our university has a computer science laboratory 
with 204 PCs. Students can either use the Windows 
or Linux operating systems from 8 am. to 8 pm., 
and they can switch between the operating systems 
whenever they want. We measured machine 
availability by pinging these machines every minute 
for 3 weeks between February 6 and February 25 in 
2006. Based on the TTL value of the response we 
were able to detect not only the failures but the type 
of the operating system too.  
We measured that a week the mean number of the 
online Windows workstations was always above the 
critical 50%.  
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Figure 1: Operating system percentage / hours 

(2006.02.20) 
The first figure shows the same statistics but now 
for a particular day. We notice that during the day 
except for a short period the number of online 
windows machines was above the critical level. The 
difference was about 10%. In the next figure the 
number of restarts is shown for another day. We 



notice that there are situations where more than 
10% of the machines are restarted. In such cases it 
may happen that during a transaction more than 
50% of the windows machines are online but the 
ones that are running may vary. 
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Figure 2: Number of restarts every 10 minutes 

(2006.02.14)  
From these measurements we may conclude that for 
a reliable and liveness system we have to take into 
consideration these special time periods. 

7. The DCon framework 
The goal of the framework is to provide a 
distributed replicated data storage service with 
strong safety guarantees and weaker liveness 
properties. It can tolerate any arbitrary number of 
non-Byzantine failures. The liveness property is 
guaranteed only when more than the half of the 
nodes are active, but these nodes can change from 
time to time. 

 
Figure 3. 

We could have followed the approach of the above- 
mentioned frameworks and implemented a 
message-level GCS. But as our framework will 
provide only consistency services and not group 
communication services, we constructed it so that it 
would handle the issue of consistency more 
effectively. We selected the famous Paxos 
algorithm, which is ideally suited for these 
purposes. The reliability of this algorithm is 
mathematically proven. It can tolerate an arbitrary 
number of non-Byzantine failures without losing 
consistency. To be able to use it in a WAN 
environment and to be effective in a LAN 
environment we implemented it on the top of the 
Windows Peer-to-Peer API and the native IP level 
multicast services.  
The DCon framework has three layers. These layers 
are shown in Figure 3. The first layer hides the 

distributed nature of the system from the user. It 
provides basic data manipulation and configuration 
services for the user. A data item can be added to 
the system, and existing data items can retrieved by 
a slow or fast query (see the next section). There 
are several methods available for reconfiguring the 
system.  
The second layer implements the Paxos algorithm 
in a network independent way. At the bottom are 
the network dependent modules. Currently there are 
two modules: the native IP level multicast module 
and the module based on the services provided by 
the Windows Peer-to-Peer API. 
In the following section we will describe our 
implementation of the Paxos algorithm in native 
multicast and P2P environments. 

8. Our Paxos implementation 
Functionality is provided by three abstractions: 
Leader, Consensus algorithm, Learner. 
From a higher point of view the system works as 
follows. The clients send instructions to a leader. 
This leader carries out a three-phase transaction on 
the participating nodes and sends the results to the 
client.  
Now we will describe the algorithm and a detailed 
description of our implementation (please consult 
Figure 4 for details). 
Firstly, during the implementation phase of the 
classic Paxos algorithm we had to solve the 
following problems: 
Message ordering: The purpose of the leader 
abstraction is to serialise the incoming requests. As 
we have seen this task can be done in a distributed 
manner (with logical timestamps and so on), but 
these solutions are more costly and are less reliable 
than the single leader solution. One could argue that 
the single leader incorporates a single point of 
failure into system. This is true, but as the leader 
does not have persistent data it can be easily 
replaced by a live substitute. 
Leader election: As a communication medium 
between the Leader and the participating nodes, the 
Instructions multicast channel is used. During idle 
periods, the Leader periodically multicasts a beacon 
packet that contains the number label of the latest 
instruction. Based on our experience in other fields 
we chose to set this period to 10 seconds. During 
active periods these packets contain Paxos 
instructions (Propose, Accept, Decide). Failure 
detection is achieved by timeouts. If there is no 
traffic on this channel for three times the beacon 
period (30 seconds), the clients will submit a 
LeaderSelect frame that contains their stability 
properties (the greatest message serial known by 
this node, the number of restarts, the duration of the 
longest stable period). Each node compares the 
received values with its values and if it discovers 



that its values were better (in the case of equal 
values the greater IP number is chosen) it will wait 
for a random period between 0 and 15 seconds and 
start sending beacon packets. If a node thinks that it 
has the best values but receives beacon packets it 
will accept the new leader. With these settings a 
Leader change will last at most 45 seconds.  
Learning the actual leader: There is a Leader 
channel where the leader submits the beacon every 
30 seconds. This channel is intended for clients for 
them to determine the actual leader. The clients 
send the data items to be stored to the leader using a 
TCP connection.  
Monotony maintenance: The leader node 
retransmits the messages from the clients to the 
Instructions multicast channel and these values 
assigns a global number G and local number N to 
the messages. Local numbers are interesting only 
when there are two or more leaders. These numbers 
should be unique among the leaders so it is 
constructed as follows: IP address+ N*2

32. For 
every submitted message G is increased and N is 
reset to 0. G and N are included in the beacon 
packets as well. 
Every node in the distributed system is subscribed 
to the Instructions multicast channel. For every 
different global number there will be a separate 
“Synod” protocol that guarantees consistency 
among the nodes. It works as follows: 
Phase 1. The leader selects a global G and a local 
number N for the instruction and sends it as a 
proposal for the nodes subscribed to the 
Instructions channel. This is the so-called Prepare 
request. If a receiving node receives a Prepare 
request it checks whether it is able to accept it. If 
the last accepted request has a global number which 
equals the received global number and the local 
number is less than that of the current request then 
it responds with a reject answer, otherwise it will 
send a prepare accept response. Both of the 
responses contain the last accepted request and the 
also the number of this request.  
Phase 2. If the leader receives a response for its 
propose request from the majority of the nodes, 
then it selects the latest accepted request, or if there 
was no request previously then it uses its own 
request and sends an accept request to the 
Instructions channel. In the case of insufficient 
responses or a reject answer it will increase the 
local number and submit the prepare request again. 
If there are insufficient responses after the fifth 
unsuccessful round it will stop the process and send 
an unsuccessful message to the clients. If it gets one 
or more reject answers it will increase the N value 
and send the message again. After five unsuccessful 
turns it will increase the value of G to the maximal 
value reported by the clients plus one received in 
the reject messages. If it is unsuccessful then it will 

report this to the client. This situation can happen 
only when there are several leaders and all are 
functioning for a longer period of time. But this 
may happen only in very special circumstances. It 
is quite rare. 
The node receiving an accept request checks the 
local number of the request, and if it is greater than 
the last accepted one or there was no such G then it 
accepts the request and sends an accepted message 
to the leader. Otherwise a reject response is sent 
with the N value and maximal known G value.  
Phase 3. After receiving sufficient accepted 
messages the Leader sends a Decided message to 
the Instructions multicast channel. The node that 
receives the Decided message will insert the 
Decided values into its Decided values storage. The 
timeout for each phase is 20 seconds. If the number 
of received accept messages was less than the 
previously defined majority value it will try sending 
the accept request again. If it fails five times it will 
send this result to the client and stop the process. In 
the case of a reject message it will follow the 
process described in Phase 2 and restart Phase 1. If 
the chosen value was not the value originally sent 
by client, then the Leader will repeat the whole 
process until the decided value and the accepted 
value coincide. This situation may occur if the G 
known by the leader is less than the greatest G in 
the whole system. 
A detailed description of this algorithm can be 
found in [Lam00, Lam01]. We implemented the 
Paxos algorithm using several optimisations to 
achieve better response times: 
For the system to progress we need the majority of 
nodes to be live. It may happen that in a fluctuating 
system, the majority of nodes are always present 
but are constantly changing. For example the 
prepare request is received by node A, then node A 
restarts and node B finishes its restarting process. 
So node B will only receive an accept request. The 
classic Paxos algorithm recommends rejecting this 
message. But with this solution it can happen that 
we have to replay the whole propose/accept 
procedure. Instead of this we suggest the following. 
If a node receives an accept request without 
previously receiving a propose request it shall 
answer this request. If it disagrees with the value 
suggested by the accept request it shall handle the 
accept request as a propose request; if it agrees with 
the received value then it shall handle the accept 
request as a propose and accept request. With this 
modification we did not change the durability of the 
algorithm, but in some cases we reduced the 
required number of message exchange from six to 
two. This algorithm is described in [Lam01].  
Phase1: 
Server: 
 Var ReceivedRequest([G[N,V]], Iteration=0 
 SendPropose(Nx232,G) 



Node: 
 Var ReceivedProposes [G[S,V]] 
 ReceivePropose(S,G){ 
 IF(G not known)  
  SendAcceptPropose() 
 ELSE IF (Smax <S) 
  SendAcceptPropose(Sloc,Svalue) 
 ELSE 
  SendRejectPropose(G,Smax,Gmax) 
 } 
Phase2: 
Server: 
 IF (ReceivedAcceptPropose > Memb/2) 
  IF(MAX(S) != 0) 
   SendAcceptReq(G,Sloc,Svalue) 
  ELSE 
   SendAcceptReq(G,Sloc,V) 
 ELSE 
  IF(N<5) 
   N=N+1 
   GOTO Phase1. 
  ELSE 
   REPORT ERROR 
Node: 
 IF(G not known)  
  SendAcceptReq() 
 ELSE IF (Smax <S) 
  SendAcceptReq () 
 ELSE 
  SendRejectReq(G,Smax,Gmax) 
Phase3: 
Server: 
 IF NUM(ReceivedAcceptReq > Memb/2) 
  SendDecide(G,V) 
 ELSE 
  IF(N<5) 
   N = N+1 
   GOTO Phase 1 
 IF(Sv != V) 
  G = G+1 
  GOTO Phase 1 
 ELSE 
  SendSuccess() 

Figure 4. Algorithm 

Change of membership: The participating nodes 
maintain two lists of instructions. In the “Client 
list” are stored the data items submitted by the 
clients, while the “System list” contains the 
instructions for system maintenance. The handling 
change of membership is solved by these special 
instructions, which are treated the same way as 
instructions from clients.  
Message optimization: A Leader may incorporate 
an arbitrary number of Paxos messages with 
different G values into one submitted packet. The 
Decide packets may be piggybacked to Accept 
packets. The prepare packets are only needed 
during the start of a longer stable period. With these 
optimisations we then need only one message per 
transaction during stable periods. The details of 
these optimisations were mentioned in part in two 
papers [Lam00, Lam01]. 
Slow/Fast query: A client may learn the chosen 
values in a fast or slow way. The fast way is to 
query the adjacent node about its list of decided 
values. The slow way is to perform a distributed 
query of the missing values. This query is 
submitted to the Instructions multicast channel. The 
distributed query contains the number label of the 
last known decision. The nodes receiving the query 

will respond to and return the accepted values. The 
client will summarise the answers and in the case of 
unknown new decisions it will send a decide 
message to the Instructions multicast channel to 
help the progress of the whole system. 

9. Measurement 
We tested our implementation in different 
circumstances to prove that the single leader role 
does not affect its stability.  
To be able to simulate different network conditions 
we developed a simulation framework where every 
machine was simulated with separate thread. With 
the help of this solution we were able to fine tune 
the machine restart probabilities.  
In the following we will present our results about 
the stability of the leader election process. During 
the experiment we simulated 200 PCs with the 
restarting probability of 10% to 50% . On the 
Figure 5 we can notice, that the system converged 
in a very fast manner in the case of low restarting 
probability. If we raise the restarting probability the 
system also converged, but in this case the 
convergence is slower, and it contains more peaks.  
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the good leader at the same time 

10. Paxos in a peer-to-peer environment 
The services of the Windows Peer-to-Peer API 
were described in the recent solutions section. We 
can if we wish use it as a basic infrastructure to 
build an IP overlay multicast service. The 
communication service will be less efficient than in 
the native case, but in some situations we cannot 
use native multicast services anyway. The reliable 
storage service does not guarantee safety properties 
comparable to those of Paxos.  
In our system we solved the following problems: 
Group membership: To be able to implement a 
Paxos-like algorithm with guaranteed safety 
properties we have to know something about the 
success of the spread of the information. For this 
we need some membership details. As this 
framework assumes that there will be a high 
number of nodes there is no central information 
about the membership. To overcome this, we chose 



to measure the total weight of the network and this 
value will be refined from time to time, but we will 
save only the maximal value while the system is 
running. Based on the maximal and the current 
value, the algorithm will be able to decide whether 
a partitioning has occurred and if this partition is 
capable of acting as a reliable storage medium. In 
the case of partitioning only the partition with 
weight more than the half of the whole weight will 
be suitable to act as a reliable storage. This solution 
works when, after the partitioning, there is a will on 
the user’s part to merge the graph. If the partitioned 
sections start their lives separately, one can initiate 
a separate instance of the consistency algorithm on 
each. After doing so, it will be impossible to unify 
the network, however as the algorithm is intended 
to preserve global consistency there is no easy way 
of merging systems with a different history. With 
this membership view the nodes in the Peer-to-Peer 
network act as Paxos nodes.  
Global order: This can be handled in a distributed 
or centralised way. The decentralised solution may 
be a more suitable solution for a peer-to-peer 
network, but as the Windows Peer-to-Peer API uses 
a central point of the network for graph 
maintenance we opted for this solution. A step 
toward the fully decentralised solution could be the 
use of per client root nodes. In this case an 
additional iteration is needed to evaluate the global 
order of the values. This could be done with the 
help of the weight of the groups which accepted a 
value with the same serial number. 
After this high-level overview we will describe how 
our solution works: 
The Peer-to-Peer network or segment has a central 
point- the node with the smallest ID (the same node 
being used for graph maintenance). This node sends 
a beacon signal every T seconds to each of its 
neighbours. The main task of this beacon is to 
measure the weight of the network.  
Loop free message transfer: The graph 
constructed by the P2P system is a redundant one, 
hence we need an algorithm to avoid the situation 
of message loops. The P2PDatabase article 
[Awe02] advocates using spanning trees, but in a 
dynamic network it would be a costly solution. So 
we decided to use the well-known “Path Vector” 
algorithm [BGP06][Win03] (the same idea being 
used for name queries in MS P2P API). Every 
beacon packet has a path vector attribute that 
contains the sequence of nodes it traversed during 
its trip. If a node receives a beacon packet it first 
checks whether it is present in this attribute. If it 
finds its ID then the packet will be discarded. It 
then inserts its ID at the end of the path vector 
attribute and submits the packet to each of its 
neighbours except the neighbours which are present 

in the path vector. With this solution we have a 
multicast communication infrastructure. 
Aggregated feedback: To measure the current 
weight of the network, each node will send a 
feedback to each beacon packet with the aggregate 
number of feedback packets received. Every non-
leaf node (i.e. one which transmitted a beacon 
packet) has to wait for an answer for each 
submitted beacon packet. As we use the services of 
the Windows Peer-to-Peer API, theoretically the 
neighbours are always online (if not, the graph 
maintenance algorithm will correct this), but to 
avoid a potentially long delay of 5 minutes, every 
node has to maintain a timer for each submitted 
beacon frame. The timeout value will be inversely 
proportional to the number of nodes in the path 
vector attribute. In the case of a timeout it will send 
back a packet with a weight value of one. If there 
are redundant paths it may send the same feedback 
back several times. To avoid this, the synchronising 
packets contain a timestamp. A node will answer 
with an aggregate weight only for the first packet, 
and for the remaining packets with the same 
timestamp it will respond with a feedback 
containing a zero weight. Finally the root node will 
aggregate the feedbacks and this number will be the 
weight of the current network. The maximal value 
during this time will be the membership weight of 
the network. To ensure that this value is common 
knowledge, it will be attached to each beacon frame 
and stored at every node.  
The root node acts as the leader in our Paxos 
algorithm. The algorithm is the same as in the case 
of native multicast, the only difference being that 
the nodes aggregate the answers they receive and 
send this answer as feedback values. The Propose, 
Accept, and Decide packets can act as beacon 
packets too. The root node will send beacon packets 
only after a defined idle time. To minimise the 
network traffic a submitted packet may contain 
several Paxos packets for several instructions and 
types. The root node will receive an aggregated 
feedback from participating nodes. The weight of 
the response should have a value greater than 
maxweight/2.  
Slow/Fast query: The fast query option is the same 
as in the native multicast case. The slow query 
contains the last known decision number. The 
algorithm is the same as in the case of beacon 
packets. The feedback packets will contain the 
decisions known by the traversing nodes. Every 
transmitting node will check the feedback values 
for unknown decisions and then store them. If a 
node discovers that one or more of its accepted 
values are not present among the decided values, it 
will attach these values to the voted values. If it 
finds its accepted values among voted values, then 
it will increase the counter for these values. Thus 



the client will be able to learn the decided values 
and also the values accepted by the majority of 
nodes. The detection of root node failure is handled 
by the underlying framework. Each node also 
checks whether it is the root node of the new graph. 
If it finds that it is, then it will initiate a query to 
learn the last synchronising number of the decided 
and proposed values. The result of this query will 
be the weight value of the current network. If it 
finds that it is larger than the half of the previous 
one, then it will start acting as the leader. 

11. Conclusions and future work 
In this article we described a solution which 
provides consistency services in a distributed 
environment. We implemented the well-known 
Paxos algorithm and solved several associated 
problems. As our framework handles only the 
consistency problem and it provides no group 
communication services ours should not really be 
compared to recent systems like Isis and Transis. 

Our goal was to provide a simple and reliable API 
for consistency handling. Currently we also provide 
the same set of services on the P2P framework and 
on native IP level multicast. 
Our software package is now in the development 
stage. Timing can be critical in a distributed system. 
The current values are based on our experience in 
the field of IP routing where the neighbour 
maintenance solves the same failure detection issue 
[OSPF96]. The tuning of the timeout values should 
be done in a real environment and software package 
should be tested under a variety of conditions. 
In the future we would like to add a gossip-based 
module that can be deployed in the Windows P2P 
API. With this module the framework will not just 
be effective in LAN, but will be scalable in WAN 
as well. 
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