eXtensible Multi Security
Contracts for .NET Platform

Wiktor Zychla

wzychla@ii.uni.wroc.pl

Institute of Computer Science
University of Wroclaw, Poland

.NET Technologies 2006

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part I: Overview of XMS
Part Il: Proof-Car

Part IV: To

Part V: Dyr

Part VI: Appli

Part VII: XMS Internals
Part VIII: Future of XMS

Outline of Part |

@ Static vs Dynamic Security
© Design by Contract

© What is eXtensible Multi Security

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part I: Over f XMS
Part II: Proof Carrymg-Code Paradigm
S S

Part VI: Appli
Part VII: XMS Intema\g
Part VIII: Future of XMS

Outline of Part Il

@ Introduction to Proof-Carrying-Code
@ Central Theorem of PCC

@ PCC Certification Protocol

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part I:

2 ode Paradigm
Part Ill: Static XMS Contracts for MSIL
Part IV Is High-Level Langauges
Part V:

Part VIII: Future of XMS

Outline of Part Il

@ PCC for XMS
© Symbolic Evaluation
© How it works
@ First example

@ Other Aspects of OO Languages

@ Example

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part II: Proof-Car ode Paradigm
Part Ill: Static X ntracts for MSIL
Part IV: Towards High-Level Langauges
Part V: Dynamic XMS Contracts

Part VI: Applications of XMS

Part VII: XMS Interna

Part VIII: Future of XMS

Outline of Part IV

@ High-Level Paradigms
@ Compilation issues

@ Integration Strategies

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part I: Overview of XMS

Part II: Pro Code Paradigm
Part Ill: Static XMS Contracts for MSIL
Part IV: Towards High-Level Langauges
Part V: Dynamic XMS Contracts

Part VI: Applications of XMS

Part VII: XMS Intern

Part VIII: Future of XMS

Outline of Part V

@ Dynamic XMS Contracts

Wiktor Zychla eXtensible Multi Security, Contracts for .NET

Part I: Overview of XMS

Part II: Proof-Carrying-Code Paradigm
Part IlI: Static XMS Contracts fo

Part IV: Towards High-Level Lan

Part V: Dynamic XMS Contracts

Part VI: Applications of XMS

Part VII: XMS Internals

Part VIII: Future of XMS

Outline of Part VI

@ Applications of XMS

Wiktor Zychla eXtensible Multi Security, Contracts for .NET

Part II: Proof-Car Code Paradigm
Part Ill: S Contracts Y
Part IV: Tow igh-Level La

Part V: Dynamic XMS Contrac

Part VI: Applications of XMS

Part VII: XMS Internals

Part VIII: Future of XMS

Outline of Part VII

@ Validation of XMS Certificates

@ Implementation Details

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part II: Proof-Car Code Paradigm
Part Ill: S Contracts Y
Part IV: Tow igh-Level La

Part V: Dynamic XMS Contrac

Part VI: Applications of XMS

Part VII: XMS Internals

Part VIII: Future of XMS

Outline of Part VIII

€ Future of XMS

@ Availability of XMS

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part |

Overview of XMS

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Security Policy

Security Policy

The Security Policy is a formal set of rules and restrictions that
somehow tells us which programs are valid and which are invalid
and should be considered illegal, unsafe.

memory safety
type safety

°
°

@ control flow safety

@ information flow safety
°

code correctness

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Security Policy

Language-Based Security

The Security Policy must be formal and objective.
Language-Based Security Policies exploit the semantics of

programming languages, operating systems and/or runtime
environments.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Security Policy

Enforcing a Security Policy

How do we enforce a security policy?

@ Dynamic security

e Policy is constantly checked at run time

o Needs to be supported by a runtime environment
@ Static security

e Validation result does not require the code to be actually run
o Valiadtion may reject valid code
e Does not to be supported by a runtime environment

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Design by Contract

Design by Contract

Communication between entities is based on obligations which take
the form of predicates.
Specification of a method is a quadruple:

Specg = (Sigg, Preg, Postg, InvE)

where Sigr is a method's signature, Preg is a precondition
predicate, Postr is a postcondition predicate, Invg is a partial
function that maps instruction numbers to invariants.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Design by Contract

DBC Security Policy

The Design By Contract Security Policy states that a method F is
safe when

@ the precondition Preg holds upon the invocation
@ the postcondition Postr holds when F returns

@ a invariant Invg(i) holds when i-th instruction is executed

Wiktor Zychla eXtensible Multi Security, Contracts for NET

What is eXtensible Multi Security

eXtensible Multi Security Framework

eXtensible Multi Security Framework is a security framework for
Microsoft Intermediate Language. It currently supports static and
dynamic Contract Security Policy. Its primary focus is static
verification.

@ Static verification engine

e works directly on MSIL

e based on Proof-Carrying-Code paradigm
@ Dynamic verification engine

e much easier than the other
e instrumentates code by using Context-Bound objects

Wiktor Zychla eXtensible Multi Security, Contracts for NET

What is eXtensible Multi Security

Evolution of XMS

e DBC/PCC implementation for a toy C-like language
@ concurrent work on other formal security policies

@ currently beeing ported to the enterprise world [.NET]

Wiktor Zychla eXtensible Multi Security, Contracts for NET

What is eXtensible Multi Security

Benefits of XMS

@ XMS is designed to certify the MSIL language, one of the
most widely used enterprise intermediate languages.

@ To support XMS the .NET Runtime Environment does not
need to be changed in any way.

@ XMS certificates are compatible with existing high-level .NET
languages. A high-level language developer does not need to
know MSIL to certify the code.

@ XMS certificates are built around the notion of PCC thus
inherit all desirable properties of PCC:

o the certificates are sufficient to guarantee that the code is
valid, ..

o the authority of a code producer is completely insignificant to (12
the code security.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part 1l

Proof-Carrying-Code Paradigm

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Introduction to PCC

Proof-Carrying-Code

Proof-Carrying-Code (PCC) paradigm has been proposed by
George Ciprian Necula in 1998. It is a generalisation of many
eariler Language-Based Security techniques.

Three key ideas

e Verification Condition (VC), a logic predicate that contains
the information about the program execution.

e Verification Condition Generator (VCGen), a utility which
rebuilds VCs from modules of given language

@ Proof Checker, a utility which is able to verify the
correspondence between a logic predicate and its formal proof (

(N

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Central Theorem of PCC

Central PCC Theorem

The Central PCC Theorem states that:

For given Safety Policy S and code F, if the Verification Condition
for S applied to F is valid, i.e.

S | VCs(F)

then the code F is safe according to S.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Central Theorem of PCC

Central PCC Theorem - challenges

Such generality raises severe challenges:

@ safety policy S must be expressed with a formal logic
@ sound and complete proof system must exist for S

@ VCGen must be built for the language

@ the Security Theorem must be proved

Original PCC was defined for Type-Safety of simple generic
RISC-like assembly language.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

PCC Certification Protocol

PCC Certification Protocol

CODE | CODE
CODE PRODUCER | CONSUMER
SOURCE

CODE +
INVARIANTS+ Ve
XMS PROOFS GENERATOR
ve
GENERATOR
¥
PROOF
CHECKER

=\

Wiktor Zychla eXtensible Multi Security, Contracts for NET

PCC Certification Protocol

PCC Certification Protocol

The Code Producer:

© adds method specifications to the source code,

@ uses VCGen to build and encode Verification Conditions (VC),
© constructs proofs for VCs,
(%)

embeds VCs and proofs as a metadata (metadata is not used (,2
at runtime but is extracted in the certification process).

Wiktor Zychla eXtensible Multi Security, Contracts for NET

PCC Certification Protocol

PCC Certification Protocol

The Code Consumer:
@ uses VCGen to build Verification Conditions,
@ checks if the same VCs have been supplied with the code by
the Code Producer,
© validates the correctness of proofs (certificates). (l,

Wiktor Zychla eXtensible Multi Security, Contracts for NET

PCC Certification Protocol

PCC Certification Protocol

The protocol may fail at some point at the Code Consumer side.
Specifically:

© the binary may not contain the metadata that is required to
build Verification Conditions,

@ the predicates built at Code Consumer side can differ from
these supplied with the code,

© proofs supplied with the code can be invalid in the sense that
they do not prove Verification Conditions.

If the protocol fails for any of these reasons the Code Consumer
should reject the code as unsafe.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part 111

Static XMS Contracts for MSIL

Wiktor Zychla eXtensible Multi Security, Contracts for NET

PCC for XMS

Formal Semantic of MSIL

The semantics of the IL language is well documented in the CLI
Draft. However, it rather takes a semi-formal form.

Because a precise semantics is a core of XMS infrastructure we
had to reformulate it in a concise, formal manner.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

PCC for XMS

Formal Semantic of MSIL

We model the execution state as a tuple ¥ = (i, p) that contains a
program counter i € Dom(F) and a local memory context p. In a
fixed context, we will sometimes write (i, (/a, v, h, H, s)) instead

of (i, p)

The operational semantics is a formal judgement of a form
F+(i,p) — (j,p'). It means that the execution of F takes one
step from state (i, p) to state (j, o).

We assume that 0 € Dom(F) and that the execution of F starts in
a state X9 = (0, /a, Iy, h, H,€)).

Wiktor Zychla eXtensible Multi Security, Contracts for NET

PCC for XMS

Formal Semantic of MSIL

Example judgements:

F;=add
FH(iy...,u-v-s)—(i+1,...,u+v-s) add

F;=1ldarg v
FE(i,..,s)—=(i+1,...,1a(v) s) ldarg
FI‘F:FC Z(i,ll musntance uOC- p)T HG call instance

G + (0, Ip[athis — p,ag — Ug, . ..,an — upl,...,€)

Wiktor Zychla eXtensible Multi Security, Contracts for NET

PCC for XMS

PCC Theorem for XMS

The General PCC Theorem for XMS Contracts is stated as follows:

A method F is safe with respect to Static Contracts if for any
initial state X9 = (0, po) such that po(Prer) and any state
Y = (i, p) reachable from the initial state we have that if F; = ret
then p(Postg).
Safesc(F) <
vZo=(0,po),Z=(i,p) po(Preg) N Lo —" XL A Fi =ret =
p(Postr)

()

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Evaluation

XMS VCGen

Verification Conditions are generated by Symbolic Evaluation of
code. The evaluation is defined as a recursive function that takes
four parameters, written as

SEg(i o, L, b)
where
@ F is a method whose body is evaluated
@ / is an address of evaluator's current instruction

@ o is a symbolic store

o L is a loop stack

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Evaluation

XMS VCGen

The symbolic evaluator is run against all methods in a module M
and the global verification condition is build using the resulting
predicates. In a simplified form:

VC(M) = /\ VC(F)
FeMm

VC(F) =Vao,..., a,,.aOF(PreF) = SE(0, UOF, 0, true)

where:

U(I): = (la[ai — ai], Iv[vi — 0],¢€) ('3

Wiktor Zychla eXtensible Multi Security, Contracts for NET

How it works

XMS VCGen

During the scan, the Symbolic Evaluator simulates the method'’s
execution by updating the symbolic store with respect to current
instruction.

From the Evaluator's perspective there are two types of MSIL
instructions. For some instructions SE does not produce anything,
it just changes the state of the symbolic store. For other
instructions SE not only changes the state of the symbolic store
but also produces a part of the Verification Condition.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

How it works

XMS VCGen Opcodes

The evaluation is sometimes easy and obvious.

@ In case of 1dc instruction SE puts the integer parameter at
the top of the symbolic stack.

@ In case of all arithmetic instructions (add, sub, mul, ...) SE
performs the symbolic evaluation and puts the result back to
the symbolic stack.

@ The ldarg, 1dloc and 1dsfld instructions put the value
from local argument, local store or the shared store
(respectively) at the top of the stack.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

How it works

XMS VCGen - Opcodes

Fi=1ldcidu AN o= (i,...,s) = SEF(i) = SEF(i+1,...,u-s, L)

Fi=add Ao =(i,...,uv-s)= SEg(i) = SEF(i+1,...,u+vs, L)
Fi=1dargv Ao = (i,...,s) = SEF(i) = SE(i+1,...,1a(v)s, L)

However, since the MSIL is an Object-Oriented language there are
also difficult cases.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

How it works

XMS VCGen - Branches

A branch is a first interesting type of opcode. Encountering a
brach, Symbolic Evaluators splits in two independend evaluators,
one for each branch:

Fi=bgel A I <i A Inve(i) # e = fail
Fi=bgel N o=(i,...,u-v-s)=
SE(i)=o(u) <o(v)=SE(i+1,...,5,L) A

o(u) >o(v)= SE(Il,...,s, L) ('2

How it works

XMS VCGen - Returning

Another interesting opcode is ret:

Fi=ret N Sige=CF(..)No=(i,...,u-s)=
SE(i) = o(Postr[u/ VALUE])
Fi=ret A Sigr =void F(...) N o =(i,...,s) =
SE(i) = o(PostF)

Wiktor Zychla eXtensible Multi Security, Contracts for NET

First example

An easy example

Consider following C# code:

public int Abs(int x)
{
if (x >=0)
return Xx;
else
return -Xx;

The specification would be:

Prer = true Postp = VALUE >0

First example

An easy example

It translates to:

Int32 Abs (Int32 x)

// Code Size: 15 Bytes
.maxstack 2

.locals (System.Int32 V_0)
L_0000: ldarg.1
L_0001: 1ldc.i4.0
L_0002: blt.s L_0008
L_0004: ldarg.1
L_0005: stloc.0
L_0006: br.s L_000d
L_0008: ldarg.1
L_0009: neg

L_000a: stloc.0
L_000b: br.s L_000d
L_000d: 1dloc.0
L_000e: ret

Wiktor Zychla eXtensible Multi Security, C

First example

An easy example

The resulting Verification Condition is:

forall x. true =>
(x>=0=>x%x>=0)& (x<0=>——x>=0))

This predicate holds and because of the PCC theorem for XMS we
conclude that the Contract Security Policy holds for any execution
of the method.

To construct a certificate for the method we would only need a
formal proof of above predicate.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Other Aspects of OO Languages

Other Aspects of OO Languages

Backward branches
Method calls
Objects and arrays
Polymorphism
0-values

Exceptions

Delegates, Events, Generics (under research)

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Other Aspects of OO Languages

Backward branches

Since the recursion of SE must not be infinite we must guard all
backward jumps with invariants.

When an invariant is seen for the first time, all variables and stack
slots which are modified by the loop body are set to fresh, symbolic
values and the invariant is appended to the Verification Condition.

When an invariant is seen for the second time, it is appended to
the Verification Condition in the new state of Evaluator.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Other Aspects of OO Languages

Method calls

A method call makes VCGen to put its precondition as an
assumption into the predicate and then initialize a new state with
all variables which could be modified inside the called method (out
parameters) set to new, fresh values.

If the method returns a value, a new fresh value is put onto the

symbolic stack and the substituted postcondition is guarded by the
fresh value universally quantified.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Other Aspects of OO Languages

Objects and arrays

Objects are evaluated symbolically, fields are stored in a dictionary.
Arrays are stored as index-value dictionaries. Each operation on an

array results in branches that put unification expressions as
assumptions.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Other Aspects of OO Languages

Polymorphism

Is it not known until the run-time which exact method is called
from a class hierarchy. VCGen relies here on subcontracting
paradigm according to which contracts of inherited methods must
depend on contracts of base-class methods.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Other Aspects of OO Languages

0-values

Contracts must allow to use original values in postconditions.
VCGen uses special form of an assumption for the Verification
Condition of a method to support such possibility.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Example

Example

Consider another C# code (easier to read than MSIL):

public static int ComputeGDC(int x, int y) {
int k = x;
int 1 = y;
while (k-1 !=0) {
if (k>1)
k -=1;

Pre(F) = x>0 A y>0
Post(F) = VALUE = GCD(x,y)
Inv(.) = GCD(x,y) = GCD(Vp, V1)

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Example

Example

is:

Correspondning Verification Condition

forall x. forally. (x> 0&y > 0 =>
(((x-y) =0=> x = GCD(x,y)) &
((x-y) '=0=>GCD(x,y)=GCD(x,y) &
forall V_O_. forall V_1_.
GCD(x,y)=GCD(V_O_,V_1_)=>

((((V_0_-V_1_)-V_1_) =0=>
(V_0_-V_1_) = GCD(x,y)) &

(((V_0_-V_1_)-V_1_)!=0=>
GCD(x,y)=

GCD((V_0_-V_1_),V_1.)))) &
(V_0_<=V_1_ =>
(((V_0_-(V_1_-V_0_)) =0=>
V_0_ = GCD(x,y)) &
((V_0_-(V_1_-V_0_)) !'=0=>
GCD(x,y)=
GCD(V_0_,(V_1_-V_0_.)))))))))

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part IV

Towards High-Level Langauges

Wiktor Zychla eXtensible Multi Security, Contracts for NET

High-Level Paradigms

High-Level Languages

@ A high-level language developer should not be forced to learn
MSIL language. In particular, a solution where a high-level
code is first compiled to MSIL and then manually certified is
unacceptable.

@ A high-level compiler should not require any major changes to

support the certification. It would be perfect, if the high-level
compiler did not require any changes.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Compilation issues

High-Level Language Compilation Issues

e Static Contracts Invariants have the form Inve(i) = (P, ...)
where / is the MSIL instruction number and P is the invariant
predicate. It could be however extremely difficult to determine
the MSIL instruction number for given high-level instruction,
since it would require a deep knowledge of compiler
transformation routines.

@ During the compilation to MSIL, names of local variables are
omitted.

These issues can be relatively easy solved for high-level languages
with simple translation schemes (C#, VB.NET). (,3

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Compilation issues

High-Level Language Compilation Issues (C#, VB.NET)

@ First issue is adressed with the additional scan of the binary
code where we discover instructions | = (i, ..., ix) that are
targets for backward jumps.

We could then take:

P; if i = i; for some jand j < n
€ in other case

Inve(i) = {

@ The second difficulty is addressed by "virtually” renaming
consecutive local variables to vy, ..., v, and using these
"virtual” names in specifications by a high-level language
developer (a little knowledge of compiler translation schemes
is required in few cases)

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Integration

Integration Strategies for other languages

no integration or limited integration Developers are forced to
consult the compiler output to find exact MSIL
structure and then put appropriate attributes either
at language level or at MSIL level

attribute integration The language recognizes XMS attributes and
knowing its own translation schemes puts the
attributes in appropriate places inside MSIL

language integration The language syntax is augmented with
contract expressions which are compiled as XMS

attributes (3
(/K
N '

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Dynamic XMS Contracts

Part V

Dynamic XMS Contracts

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Dynamic XMS Contracts

Dynamic XMS Contracts

There are two main techniques of code instrumentation for the
.NET platform, .NET Profiler APl and context-bound objects.

For now XMS uses context-bound objects and able to intercept

method invocations and returns. Predicates are evaluated
dynamically using .NET dynamic code creation technique.

()

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Dynamic XMS Contracts

Example

Consider following C# code:

[XMSIntercept]
public class Test : ContextBoundObject
{
[Process (typeof (XMSProcessor))]
public void Swap(ref int x, ref int y)

{
int z = x;
X =7y
y =2z

}
The specification would be:

Prep = true Postr =x==yg A y == Xxo

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Dynamic XMS Contracts

Example

Actual client code:

int u=0, v=1;
t.Swap(ref u, ref v);

Engine outputs:

Preprocessing Test.Swap.
Specification found:

Pre=[true]

Post=[x == y_0 && y == x_0]
Precondition : true

Substituted expression : true
Evaluated expression : True
Postcondition : x == y 0 & y =
Substituted expression : =1
Evaluated expression : True

Wiktor Zychla eXtensible Multi Security, C

Part VI

Applications of XMS

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Applications of XMS

Obvious applications

@ Producer-side dynamic testing
@ Producer-side static verification

@ Client-side static certification

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Applications of XMS

Anonymous Computation

Suppose that a party A needs expensive computation to be
performed on some private data. A is unable to perform the
computation locally. Suppose that party B is able to perform the
computation for A.

However, A does not want its private data to be revealed to B and
B does not want its algorithm to be revealed to A.

Using XMS as a certification framework and .NET Web Services as
remote computation layer, A and B can rely on following XMS

Secure Computation Protocol: (,2

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Applications of XMS

Anonymous Computation

© A and B ask a trusted party, C, to make a Web Service, W,
available to both A and B

@ B publishes its service on W together with XMS specification
and certificates

© A asks W for the specification of B's service, checks if the
specification meets his/her requirements and asks W to verify
that B's service is correct with respect to its specification
using XMS Protocol

@ W verifies the B's service and sends the verification result to
A

© A checks the verification status and if it is positive, sends its (,2
data to W and collects the results

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part VII

XMS Internals

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Validation of XMS Certificates

Validation of XMS Certificates

There are three possible approaches to theorem proving and proof

checking. XMS does not favour any but currently uses the first
one.

@ A tactical theorem prover (Isabelle, Coq) can be used for
proof construction and proof validation.
@ Proofs can be encoded in a metalogic (LF).

@ A logical interpreter can be used as a proof checker.

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Implementation Details

Implementation Details

@ Both engines are written in C#

@ Static engine is about 1500 lines long relies on some external
layers (MSIL Reader, Parser). It currently supports about 70
percent of MSIL opcodes

@ Dynamic engine is about 250 lines long

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Part VIII

Closing Comments

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Future

Future of XMS

@ support for more MSIL instructions and builtin predicates
(Static Verification)

@ other code instrumentation techniques (Dynamic Verification)
@ better integration with high-level languages

@ other Safety Policies

Wiktor Zychla eXtensible Multi Security, Contracts for NET

Availability of XMS

Availability of XMS

@ the XMS engine has not been yet released to public

e complete details (including MSIL formal semantics, Symbolic
Evaluator definition and the proof of Security Theorem) will
be available in my PhD thesis (expected in few months)

Wiktor Zychla eXtensible Multi Security, Contracts for NET

	Agenda
	Part I: Overview of XMS
	Part II: Proof-Carrying-Code Paradigm
	Part III: Static XMS Contracts for MSIL
	Part IV: Towards High-Level Langauges
	Part V: Dynamic XMS Contracts
	Part VI: Applications of XMS
	Part VII: XMS Internals
	Part VIII: Future of XMS

	Static vs Dynamic Security
	Design by Contract
	What is eXtensible Multi Security
	Introduction to Proof-Carrying-Code
	Central Theorem of PCC
	PCC Certification Protocol
	PCC for XMS
	Symbolic Evaluation
	How it works
	First example
	Other Aspects of OO Languages
	Example
	High-Level Paradigms
	Compilation issues
	Integration Strategies
	Dynamic XMS Contracts
	Applications of XMS
	Validation of XMS Certificates
	Implementation Details
	Future of XMS
	Availability of XMS

