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Flexible Dynamic Linking for .NET

Anders Aaltonen, Alex Buckley, Susan Eisenbach
a.buckley@imperial.ac.uk

Imperial College London

Abstract

A .NET application is a set of assemblies developed or reused by programmers, and tested together for cor-
rectness and performance. Each assembly’s references to other assemblies are type-checked at compile-time and
embedded into the executable image, from where they guide the dynamic linking process.

We propose that an application can potentially consist of multiple sets of assemblies, all known to the ap-
plication’s programmers. Each set implements the application’s functionality in some special way, e.g. using
only patent-free algorithms or being optimised for 64-bit processors. Depending on the assemblies available on a
user’s machine, the dynamic linking process will select a suitable set and load assemblies from it.

We describe how, in our scheme, an application is written to use adefaultset of assemblies but carries nominal
and structural specifications about permissible sets ofalternativeassemblies. We implement the scheme on Rotor,
a .NET virtual machine, by modifying its linking infrastructure to efficiently find assemblies on the user’s machine
that satisfy the application’s specifications. Specifications can be applied to individual classes and methods, so
that only code wishing to use alternative assemblies has to undergo the modified linking process.

1 Introduction

1.1 Dynamic linking in .NET

Modern virtual machines, like the Common Language
Runtime in .NET, support dynamic linking of byte-
code obtained from local and remote sites. The key
concept in .NET linking is theassembly. An assembly
is a file that contains classes’ bytecode and serves as a
versioned, tamper-proof unit of deployment. To guide
linking, an assembly has metadata that describes its
classes’ dependencies on other assemblies andtheir
classes. Source languages typically disallow a pro-
grammer from specifying which assembly is to pro-
vide which class; the choice is made by the compiler.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

So, for a method call in C]:

System.Console.WriteLine(‘‘Hello’’)

the compiler will choose an assembly in the compile-
time environment that contains theSystem.Console
class, e.g. mscorlib 1.0.5. The compiler embeds
the name and version of the chosen assembly into the
metadata of the assembly being built, and emits byte-
code that references (in[...]) the chosen assembly’s
name:

ldstr ‘‘Hello’’
call void [mscorlib]System.Console::WriteLine(string)

.NET will (try to) link exactly the version of the
mscorlib assembly specified in the executing assem-
bly’s metadata. This helps to avoid “DLL hell” [6],
because the user’s machine can have multiple versions
of an assembly installed,e.g.mscorlib 1.0.5 for ap-
plication A andmscorlib 1.1.0 for application B, and
both application’s dependencies can be satisfied.

The problem is that while an assembly specified in
the metadata of an executing assemblywasavailable at
compile-time on the programmer’s machine, the user’s
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machine maynow have alternative assemblies avail-
able at run-time. Reasons why assemblies at run-time
may differ from those at compile-time include:

• .NET’s standard libraries provide interfaces for
well-understood features like XML processing,
database access and networking, so it is straight-
forward for multiple vendors to provide differ-
ent implementations of the interfaces. Each ven-
dor’s assembly is likely to have a different name.

• Within a company’s IT department, developers
often have different implementations of a busi-
ness interface that version numbering alone can-
not reasonably differentiate. For example, two
assemblies that contain different implementation
classes for a bond trading strategy may well be
signed by different keypairs and have different
versioning conventions; and thus different names.

Unfortunately, linking in .NET cannot cope when
assemblies in the run-time environment have differ-
ent names to those in the compile-time environment.
The .NET assembly loader can only redirect a request
for oneversionof an assembly to another version of
the same assembly; it cannot redirect thenameof an
assembly. Thus, a programmer who wishes to make
his application portable between differently-named as-
semblies (that are expected to contain implementation
classes for popular interfaces) must code portability by
hand. Typically, a Factory pattern or an inversion-of-
control container [9] is used to abstract class names
from the main application code, but some reflective,
type-unsafe code is always needed to discover assem-
blies and extract implementing classes.

1.2 Flexible dynamic linking in .NET

We propose a more declarative approach to portabil-
ity. An application programmer merely enumerates as-
semblies and classes that his application can use (e.g.that
provide implementation classes of useful interfaces),
and the dynamic linker finds and instantiates them as
available. Thus, we reduce an assembly’s dependence
on a particular assembly (known to a compiler) by
addingpotentialdependencies that increase the range
of valid run-time environments.

In our scheme,any assembly or class name that
appears in bytecode can be redirected. The program-
mer writes code as usual that references classes, but
includesnominal specificationsalong the lines of “try

assembliesB andC as well asA” and “try classesP and
Q as well asR”. After a compiler has generated an as-
sembly from the programmer’s code, we have a tool
that, for the purpose of type-safety, takes the assembly
and addsstructural specificationsbased on its nominal
specifications and the classes and members that it ref-
erences. For example, given the nominal specifications
above, the generated structural specifications would be
along the lines that “any assembly used in place of as-
semblyA must provide classD” and “any class used in
place ofD must provide a fieldf of typeE”.

Our modified dynamic linker inspects an assem-
bly’s nominal and structural specifications at run-time.1

If an assembly name referenced in bytecode is not avail-
able, then the linker searches for substitute assemblies
given in the nominal specifications; any found assem-
bly must satisfy the structural specifications. Then,
when an assembly’s classloader searches for classes,
it considers the nominal and structural specifications
for classes.

Even with structural specifications providing type-
safety, it is unlikely that an assembly exists at run-time
with the “right” classes (with the “right” members)un-
less the programmer knew about it in advance. This
is because only the programmer can ensure that the
assemblies and classes named in nominal specifica-
tions are semantically compatible with (i.e.exhibit the
same observable behaviour as) assemblies and classes
known to the compiler. Thus, our policy is that only
assemblies directly referenced in bytecode or enumer-
ated in nominal specifications should be linked. To
prevent third parties making or modifying specifica-
tions, specifications are embedded in an assembly’s
metadata rather than being expressed in standalone re-
source files that anyone could edit.2

1.3 Related work

The use of type variables for abstracting over data types
is well-known in the functional [12] and object-oriented
[10] worlds. For example, rather than having byte-
code refer to specific classes, introducing type vari-
ables at bytecode at compile-time can provide true sep-

1Strictly speaking, the linker works at JIT-time, loading assem-
blies in support of member resolution. But we consider JIT-time as
“run-time”, because after bytecode is JIT-compiled, it is extremely
difficult to inspect which assemblies and classes it uses.

2We assume that assemblies will routinely be strongly-named,
thus making them tamper-proof. This is analogous to how a pub-
lisher policy is a strongly-named assembly that contains an XML
file, rather than a standalone XML file.
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arate compilation for object-oriented languages [1]. In
[3], we also advocated inserting type variables into
bytecode at compile-time and substituting them to avail-
able assembly and class names at run-time. We mod-
ified the .NET dynamic linker to recognise type vari-
ables, but the end-user could specify substitute assem-
blies and classes without any guarantee that their sub-
stitutions were type-safe, so clearly the system was not
realistic.

Most work on assemblies in .NET concerns a co-
herent relationship between executing assemblies and
installed assemblies. [7] describes a management tool
that can, by respecting a model of binary compati-
bility, configure a program to safely use a different
version of an assembly.Type forwarders[11] are a
feature in .NET 2.0 that allow a class to be moved
from one assembly to another without breaking pro-
grams that reference the class in its original assembly.
Metadata is added to the class’s old assembly spec-
ifying a new assembly, and Fusion silently redirects
all requests for the old assembly to the new assem-
bly. The feature is needed by framework maintainers
because, as noted earlier, Fusion cannot redirect as-
sembly names nor does it deal with classes. Type for-
warders’ redirections are one-to-one and unknown to
the programmer, whereas our redirections are one-to-
many and intended for programmers and deployers.

As the scope of link-time activity grows, describ-
ing the behaviour of dynamic linking gains importance.
Dynamic linking for Java was formalised [8, 4] be-
cause of its perceived complexity. In fact, Java’s link-
ing for unversioned, unsigned classes is considerably
simpler than .NET’s linking for versioned, signed as-
semblies, and [2] describes the assembly resolution
and loading process for various .NET implementations.
[5] provides a simple framework for linking in both the
Java Virtual Machine and .NET.

1.4 Structure of this paper

§2 describes the high-level features available to a pro-
grammer in our system for making code more flexible
with respect to its execution environment.§3 describes
the architecture of a dynamic linker capable of choos-
ing assemblies and classes at run-time, and explains a
key abstraction, theLinkContext. §4 describes our ex-
tensions to the dynamic linker of “Rotor”, the shared-
source version of Microsoft’s .NET Framework.

2 Design

2.1 Specifying flexible linking

To let a programmer specify alternative assembly and
class names, we define two classes of custom attribute.
Custom attributes are a mechanism in .NET for speci-
fying non-functional program properties in a language-
independent way. They are attached to source lan-
guage constructs, such as classes and methods in an
object-oriented language, and have a canonical repre-
sentation in bytecode.

Our custom attributes are[LinkAssembly] and
[LinkClass]; we call themlinking attributes. In fig.
1, we assume that classC uses GUI classes - specifi-
cally System.Windows.Forms - supplied with .NET
on Windows. To helpC run on a .NET implementation
on MacOS or Linux, whereSystem.Windows.Forms
mayexist but where alternative assemblies providing
GUI classesmay be available, we attach linking at-
tributes to specify both the alternative assemblies and
their classes.

[LinkAssembly(‘‘System.Windows.Forms’’,
‘‘cocoa’’, ‘‘1.3.*’’,
‘‘macos’’, LOCAL_INTERFACE)]

[LinkAssembly(‘‘System.Windows.Forms’’,
‘‘qt’’, ‘‘*’’,
‘‘linux’’, LOCAL_INTERFACE)]

[LinkClass(‘‘System.Windows.Forms.Button’’,
‘‘GelButton’’,
‘‘macos’’)]

[LinkClass(‘‘System.Windows.Forms.Button’’,
‘‘qButton’’,
‘‘linux’’)]

class C { ... }

Fig. 1: Preparing code for flexible linking

Attributes are attached to theC class to specify that
any reference inC’s bytecode to the assembly
System.Windows.Forms can be redirected by the dy-
namic linker to either 1) an assemblycocoa of version
1.3.x that the programmer expects to be available on
MacOS, or 2) an assemblyqt of any version (“*”) that
the programmer likes to use on Linux.

If either of these redirections happens, then class
names used inC will be redirected by the dynamic
linker. TheGelButton class will be used in prefer-
ence toSystem.Windows.Forms.Button if the linker
chose assemblycocoa, whileqButton will be used if
the linker chose assemblyqt.

We say thatC’s bytecode issubject to flexible link-
ingsince it is in the scope of at least one[LinkAssembly]
attribute. Our modified .NET dynamic linker will recog-
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nise where code is subject to flexible linking, while
an unmodified linker will ignore any linking attributes
and simply link bytecode to the types embedded in
metadata by the compiler.

2.2 Semantic interfaces

If the code above happens to run on a Linux machine,
then the likelihood is that only theqt assembly and not
MacOS’cocoa assembly would be found. It therefore
makes sense to only look for Linux-specific assem-
blies after findingqt. To capture the fact that different
[LinkAssembly] attributes are likely related by plat-
form, vendor or maturity (e.g.alpha, beta, production),
the penultimate parameter of[LinkAssembly] is a
semantic interface namethat characterises the relation.
If a [LinkAssembly] attribute specifies an assembly
name that is actually used by the dynamic linker, then
we support multiple policies for which linking attributes
to consider in future. The policy is determined by the
final parameter of the successful[LinkAssembly],
which is called itssemantic interface qualifierand can
take one of the following values:

LOCAL INTERFACE If an assembly has already been
chosen based on a[LinkAssembly] with this
semantic interface qualifier, then all further as-
sembly and class resolutions in the same scope
must use linking attributes with the same seman-
tic interface name as that[LinkAssembly].

LOCAL INTERFACE PREFERRED If an assem-
bly has already been chosen based on a
[LinkAssembly] with this semantic interface
qualifier, then[LinkAssembly] attributes with
the same semantic interface name are checked
first when resolving other assemblies and classes
in the same scope. If none of these attributes
successfully specify a loadable assembly, then
other[LinkAssembly] attributes are tried.

LOCAL INTERFACE EAGER A [LinkAssembly]
attribute with this semantic interface qualifier is
“eager” in the sense that all[LinkAssembly]
attributes in the same scope with the same se-
mantic interface name must be successfully re-
solved immediately.

ANY INTERFACE No restriction on later resolutions.

2.3 Attribute Scoping

Custom attributes can be attached to assemblies, mod-
ules, classes and methods. This aids expressiveness
because an attribute can be attached to the most refined
scope necessary; only methods that require flexibility
need to have attributes. We search for attributes “in-
side out” to aid performance,i.e. first at the method
level, then the class and assembly levels.

As an example of how attribute scoping works, the
following code callsList::op1 and
List::op2 on anArrayList implementation of aList
interface. But if possible, the programmer would like
to use theSinglyLinkedList implementation in the
assembly that encloses classC, becauseList::op1’s
traversal is suited to a linked list rather than an array-
based list.m2, however, callsList::op2, that can rea-
sonably expected to traverse the list backwards as well
as forwards, so aDoublyLinkedList would be help-
ful:

[assembly: LinkClass(ArrayList, SinglyLinkedList)]

class C {
void m1() {

List l = new ArrayList(); l.op1();
}

[LinkClass(ArrayList, DoublyLinkedList)]
void m2() {

List l = new ArrayList(); l.op2();
}

}

Linking attributes apply not only to member ref-
erences, but to any type within an attribute’s scope.
Thus, the following code permits an object of either
classC or D (or any of their subclasses) to be passed
to m1, and an object of either classC or E (or any sub-
class) tom2.

[LinkClass(C,D)]
class C {

void m1(C x) { ... }

[LinkClass(C,E)]
void m2(C x) { ... }

}

2.4 Type safety

Assemblies and classes specified in linking attributes
must be binary-compatible with the assemblies and
classes referenced by bytecode, or else resolution ex-
ceptions (i.e. “message not understood” errors) could
arise at run-time. We therefore need a way to en-
sure that any assembly/class specified in a linking at-
tribute chosen by the linker is type-compatible with
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all references to the original assembly/class through-
out an assembly. An assembly’s metadata enumer-
ates which other assemblies and classes it depends on,
the members accessed in those classes are found only
in individual bytecode instructions. Hence, they are
only revealed at JIT-compilation when each instruc-
tion in the assembly is verified. To avoid an extra pass
over bytecode during JIT-compilation, we gather con-
straints about member accesses with a compile-time
tool, and store them as custom attributes attached to
methods. Theseconstraint attributesare similar in
style to those in [13] and [1].

A [LinkMemberConstraint] attribute describes
required fields and methods of classes,e.g.

[LinkMemberConstraint(‘‘A1’’, ‘‘C1’’, 100, ‘‘M1’’)]

states that whatever class is linked for[A1]C1 is
expected to contain a member (field or method signa-
ture) defined by token 100 in moduleM1. (A module is
a unit inside an assembly that actually holds the assem-
bly’s class definitions. The metadata for the classes’
dependencies - on other assemblies, class and mem-
bers - is stored at the module level rather than class
level, and indexed by integers known as tokens.)

A [LinkSubtypeConstraint] attribute encapsu-
lates subtype constraints,e.g.

[LinkSubtypeConstraint(‘‘A1’’, ‘‘C1’’, 100,
‘‘A1’’, ‘‘C2’’, 200, ‘‘M1’’)]

states that whatever type replaces[A1]C1 is a su-
pertype of whatever replaces[A1]C2. (100 and 200
are the tokens where[A1]C1 and[A2]C2 are defined
in metadata.)

Fig. 2 shows how source code is annotated with
linking attributes to support flexible dynamic linking.
Ideally, a .NET compiler would emit member and sub-
type constraints after successful type-checking. But,
to stay language-independent, we built a small pro-
gram,flex, that inspects an assembly’s bytecode, iden-
tifies member accesses and inserts
[LinkMemberConstraint] attributes at the appropri-
ate scope. Unfortunately, we cannot generate subtype
constraints without performing complex data-flow anal-
ysis, as the verifier does during JIT-compilation. We
currently require a programmer to specify
[LinkSubtypeConstraint] attributes manually.

3 Architecture

We now describe how flexible dynamic linking is ar-
chitected in Microsoft’s shared-source version of .NET

known as “Rotor”. There are two candidates for which
run-time subsystem should perform flexible linking for
members and types: 1) the resolver called by the JIT-
compiler, or 2) the loaders called by the resolver to
physically find assemblies on disk and extract classes
from them. The latter is an attractive place to check
linking attributes, because .NET’s assembly loader al-
ready consults user-defined policies for redirecting as-
sembly versions. But, if the redirection to load a dif-
ferent assembly/class is done at too low a level and not
exposed to the higher-level resolver, then the wrong
types may be loaded later in the resolution process.
For example, our constraint verifier needs to know ex-
actly what assemblies and classes have been loaded in
order to check member and class definitions. There-
fore, we prefer to place our implementation closer to
the JIT-compiler’s resolver. (We do not consider per-
formance, but do not believe either subsystem would
have an advantage.)

Fig. 3 summarises where our implementation (boxes
with bold text) lives in Rotor. It sits just below the the
high-level resolution algorithm, intercepting requests
to resolve members and types, and modifies requests
those before assemblies and classes are actually loaded.
By sitting just above the assembly loader, we apply
linking attributes to a member or type resolution be-
fore user-defined policies are applied. This is appro-
priate, because versioning policies,e.g.to avoid a se-
curity flaw in an old assembly, should apply even to
assemblies named in linking attributes.

Fig. 3: Overview of flexible dynamic linking in Rotor
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Fig. 2: Preparing code for flexible linking

3.1 Linking contexts

A member access (field access or method call) instruc-
tion in bytecode contains an integer “token” that is
mapped, in metadata, to amember descriptorvery sim-
ilar to a field or method signature,e.g.[A]C::m(void).
Resolution is the process during JIT-compilation that
turns a token, via a member descriptor, into a first-class
object that directly represents the member’s definition
in a loaded class from a loaded assembly. Similarly,
a class declaration contains one or more tokens that
map totype descriptorsfor its superclasses,e.g.[A]C.
Also, a type-cast instruction contains a token for the
target type. Resolution turns these tokens into objects
representing loaded class definitions. Note that a to-
ken always references at least an assembly name and a
class name.

When resolving a particular token, we need to con-
sider the linking attributes and constraint attributes ap-
plicable to,i.e. in scope at, the token being resolved.
We call the set of in-scope linking attributes applica-
ble to a token itsresolving context. Each token has
its own resolving context because different linking and
constraint attributes apply to it.

We introduce aLinkContextto compute and en-
capsulate a resolving context. For a particular token, a
LinkContext finds all the[LinkAssembly] attributes
declared closest to it. If previous resolutions chose
[LinkAssembly] attributes whose semantic interface
qualifier was
LOCAL INTERFACE PREFERRED or
LOCAL INTERFACE EAGER, then a LinkContext
will find only those[LinkAssembly] attributes with
the appropriate semantic interface names. The resolv-
ing context consists of those[LinkAssembly] attributes,

plus[LinkClass] attributes (with the appropriate se-
mantic interface name, if necessary) in the same scope
as the[LinkAssembly] attributes, plus constraint at-
tributes in the same scope. A LinkContext can be queried
for the linking and constraint attributes “relevant” to a
particular token,e.g.if the token being resolved is for
a type[A]C, then only[LinkAssembly] attributes for
assemblyA are relevant.

4 Implementation

4.1 Modifying the JIT-compiler

We add a stack of LinkContexts to each module loaded
from an assembly. When a method is JIT-compiled,
we push a “master” LinkContext on to the module’s
stack for efficiency reasons. This LinkContext imme-
diately gathers all the linking and constraint attributes
(at method, class, module and assembly levels) in scope
for the method. These attributes are a superset of any
individual token’s resolving context.

Whenever the JIT-compiler reaches a token that it
needs resolved, we push a further LinkContext on to
the module’s stack (and pop it after the token has been
resolved). This LinkContext computes the token’s re-
solving context by querying the master LinkContext
for attributes in scope for the token, then selecting ap-
propriate linking and constraint attributes as described
in §3.1.

To actually push a LinkContext when the JIT-compiler
encounters an unresolved token that refers to a mem-
ber or type, we modify methods called by the JIT-
compiler that resolve a token:CEEInfo::findField,
CEEInfo::findMethod and
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CEEInfo::findClass. These methods are made to
create and destroy LinkContexts as follows:

// If linking attributes present...
if (pLink->HasLinkContext() && pLink->IsScopeFlexLinked())

// Create a nested LinkContext
pLink->NewNestedLinkContext(...);

else
pLink = NULL;

// Pre-existing resolution code to
// find a field/method/class
...

if (pLink)
// Remove the LinkContext from the stack
pLink->GetParentLinkContext();

4.2 Modifying assembly loading

The pre-existing resolution code that we have elided
above calls the assembly loader to visit the filesystem.
As usual, the loader looks up the assembly name (of
the token being resolved) in the currently executing as-
sembly’s metadata. This gives various details, such as
the version number of the token’s referenced assembly,
which are stored in anAssemblySpec object. At this
point, our code intercedes, passing theAssemblySpec
to the top LinkContext on the current module’s stack.

The LinkContext uses the “master” LinkContext to
build the resolving context for the current token, then
picks just the[LinkAssembly] attribute that specifies
a redirection for the assembly mentioned by the token.
(If there is more than one possible[LinkAssembly],
we pick the first.) For example, if the token mentions
assemblyA, then having
[LinkAssembly(‘‘A’’, ‘‘B’’, ‘‘1.0’’...] in
the resolving context will cause the LinkContext to
choose assemblyB v1.0. The LinkContext then loads
this substitute assembly and performs some security
checks that will be performed by the JIT-compiler later;
we do not wish its checks to fail.

Having chosen and loaded a substitute assembly,
we update theAssemblySpec object with the substi-
tute assembly’s name and pass the object back to the
usual assembly loading logic. Since the assembly has
already been loaded by LinkContext for constraint ver-
ification, it will be found immediately in the assembly
loader’s cache.

4.3 Modifying class loading

Ordinarily, once a valid assembly is loaded, the JIT-
compiler’s pre-existing resolution code uses the assem-
bly’s classloader to load the token’s class. We inter-
cede in the classloader to ask the top LinkContext on

the current module’s stack to choose a substitute class
based on the resolving context.

The LinkContext again uses the “master” LinkCon-
text, this time to retrieve a[LinkClass] attribute in
the token’s resolving context that has the appropriate
semantic interface name and is for the token’s class.
The LinkContext tries to load the class specified in the
[LinkClass], and verify any applicable constraint at-
tributes for it.

To respect[LinkMemberConstraint] attributes,
a LinkContext first uses the ordinary method and field
resolversEEClass::FindMethod and
EEClass::FindField to check the presence of mem-
bers in the substitute class’s definition (anEEClass
object). Then, it verifies that the signatures of the
members requested in constraint attributes match ex-
actly the signature of the member found in the class.
This entails resolving and loading each type (i.e. as-
sembly+class) in the found members’ signatures, such
as method formal parameters. Since those members
are in classes thatthemselvesmay have linking attributes,
further LinkContexts are created and the whole flexi-
ble dynamic linking process recurses. A similar issue
arises when verifying subtypes to respect
[LinkSubtypeConstraint] attributes.

Having checked constraints on substituted classes,
we pre-empt a later check by the JIT-compiler, which
is that any loaded class is visible to the method be-
ing JIT-compiled. If the substitute class is visible and
its definition satisfies member and subtype constraints,
then the class’s member definition or the class defini-
tion itself (depending on whether the token is a mem-
ber descriptor or a type descriptor, respectively) is cached
by the LinkContext for that token. The substitute class’s
name is then used by the classloader to retrieve an
EEClass class definition from the assembly, as usual,
and this succeeds immediately since we already loaded
the class’s definition to check constraints.

4.4 Source language issues

When compiling a method call, Rotor’s C] compiler
statically binds to the class that defines the method, re-
lying on the runtime to dynamically dispatch the method
in a subclass if necessary. Consider the following C]

source code:

class A { virtual void m1() { ... } }
class B : A { override void m1() { ... } }

// Main program
[LinkClass(B,...)]
{ ... new B().m1(); ... }
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The compiler produces bytecode that specifiesm1
in classA :

[LinkClass(B,...)]
newobj instance void [...]B::.ctor()
callvirt instance void [...]A::m1()

At runtime, the body ofB::m1 will be executed as
usual. But if the programmer wrote[LinkClass] at-
tributes with alternatives to classB, they will never be
used. LinkContext only sees a call (thecallvirt in-
struction) to a method in class A, which no[LinkClass]
attribute mentions. We could partially fix the problem
by modifying the compiler to bind to thevirtual dec-
laration ofm1 rather than the overriding declaration;
Sun made this change tojavac between JDK1.3 and
JDK1.4. Modifications to the virtual machine would
also be necessary.

5 Conclusion

Dynamic linking in .NET is over-constrained because
it must provide exactly the types known to a compiler
on a programmer’s machine. While software engi-
neering techniques can find and link alternative code
at run-time, they have to be coded into each applica-
tion and often use type-unsafe reflection. We have de-
signed a scheme that lets the programmer describe al-
ternative choices for what types can be linked, which is
the only way to ensure observational equivalence with
types named in source code. If our dynamic linker
picks a different type from that named in source code,
then any check for type-safety, security or class vis-
ibility will succeed if it would have succeeeded for
the original type. .NET’s ability to attach attributes
to code allows for precise specification of what and
where choices should be available in a program, in
a way that causes no overhead to unmodified .NET
virtual machines. Also, our specifications let the pro-
grammer reflect the fact that families of assemblies are
often grouped together logically,e.g. patent-free al-
gorithms, so that linking one assembly should restrict
later linking to the same family.

Further work is identifying when to perform flexi-
ble linking even if a compiler has “hidden” the oppor-
tunity with its static resolution, and finding real-world
applications that can benefit from our scheme. Increas-
ing portability between mobile and desktop frameworks
may be a fruitful avenue, particularly as the number
grows of .NET-enabled mobile devices with API sup-
port for differentiated capabilities (GPS, wi-fi, cam-
eras, etc).
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Abstract

This paper presents XMS – a language independent security framework calledeXtensible Multi Securitywhich is designed to
verify that modules written in .NET languages are safe with respect toContractsSafety Policy. Dynamic verification engine
uses code instrumentation to supervise the execution and validate contracts at run-time. Static verification engine is based on
the Proof-Carrying Code paradigm where it is up to the Code Producer to construct aCertificate of Safety– formal logic proof
enclosed in the code – which can be used by a Code Consumer to verify that the code is secure.

Keywords: intermediate language, dynamic verification, static verification, contracts

1 INTRODUCTION

Distributed systems play a major role in today’s com-
puter systems. However, the convenience and freedom
offered by such systems is sometimes misused. The
software and the hardware is a potential victim to a ma-
licious virus, the data is a potential victim to a trojan
horse or a spy-software.

In fact, there is a lot of carelessness when dealing
with distributed systems. There are critical bugs found
even in vital parts of Operating Systems and commonly
used applications. It is still very easy to trick the trust-
ing user and make him run a malicious code on his sys-
tem and it is usually impossible to check the software
and decide if it is secure or not.

Alas, over forty years after the Internet has been born,
the majority of users still have to believe that the soft-
ware they buy or download is secure in the sense that it
will not do any harm to their hardware and data.

Widely spread antivirus software can detect several
thousands of computer viruses. That’s good. Alas, it is
able to detect only these viruses that are known. That’s
bad. If a new virus is released, my machine is probably
vulnerable again.

Runtime environments can dynamically supervise the
code execution and disallow the execution of some po-
tentially harmful activities. That’s good. They cannot
however make sure that the code runs correctly. That’s
bad. Even the fancy managed code is not a bit helpful
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when the banking software steals money from my bank
account.

The goal of eXtensible Multi Security (XMS) is to
unify various ideas in one coherent and extensible plat-
form. XMS evolved from logic systems that form a
powerful certification framework based on a notion of
Proof Carrying Code (PCC, [11]).

The original PCC approach focuses on type-safety.
However, the type-safety does not guarantee that other
important aspects of safety are preserved. In fact, vari-
ous aspects of security are rather independent. For ex-
ample, the code can be type-safe but not correct or type-
unsafe but perfectly safe from the control flow point of
view.

This is where the XMS starts. XMS infrastructure
focuses on selected notions of security and applies
them to the existing Microsoft Intermediate Language
(MSIL) Runtime Environment. XMS is designed
in the spirit of .NET platform – digital certificates
are language independent. Certificates are put in
attributes and then stored in binarymeta-dataso that
they do not play any role in the code execution but
instead they can be used in the verification process.

XMS is a Work in Progress – currently about60%
from over 200 MSIL opcodes are supported by Static
Contracts certification tools. Since compilers of some
high-level languages use only selected subsets of MSIL
opcodes, XMS is yet compatible with some existing
high-level compilers, for example the C# compiler.

1.1 Static vs Dynamic Security
In dynamicchecking, the safety policy is constantly
checked at the run time. This of course requires the
existence of a virtual machine or a runtime environ-
ment that would be powerful enough, in the sense that
it could detect any activity that breaks the safety policy.
An example of such an infrastructure is the Java Vir-
tual Machine or the Microsoft .NET Framework. Both
"supervise" the execution of code, and enforce precise
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checks before any potentially dangerous instruction is
executed.

On the other hand in the process ofstatic checking
the code is verified without being actually run. The an-
swer of a static check is always positive or negative,
and the code is accepted or rejected. It is impossible
to break the execution in the middle, as in the dynamic
approach. A static checking does not necessarily need
any support from a runtime environment. In this sense
it is more general than the other. However, the static se-
curity policies are usually less precise because all non-
trivial security policies are undecidable. The user must
then accept the fact that some programs would be mis-
judged which means that some perfectly legal programs
could be rejected (the opposite situation, where an il-
legal code was accepted, would be a true disaster and
should never happen).

All these observations lead to an obvious conclusion:
there is no perfect way to enforce a safety policy. The
best what we could probably do would be to put the
advantages of dynamic and static checking together in
a framework that unifies all advantages of these two.

1.2 XMS = Static + Dynamic Security
This is exactly what XMS is. On one hand, XMS is
built to certify .NET code and that is why .NET dy-
namic security policies are still validated in run-time.
On the other hand, XMS is built on the top of the Proof
Carrying Code paradigm and that is why the safety poli-
cies are verified statically.

Here is a short summary of XMS benefits:

• XMS is designed to certify the MSIL language, one
of the most promising and widely used intermediate
languages.

• XMS certificates are compatible with high-level
.NET languages. A high-level language developer
does not need to knowMSIL to certify the code.

• To support XMS the .NET Runtime Environment
does not need to be changedin any way.

• XMS certificates are built around the notion of PCC
thus inherit all desirable properties of PCC:

– the certificates are sufficient to guarantee that the
code is valid,

– the authority of a code producer is completely in-
significant to the code security.

2 COMPARISON TO RELATED
WORK

Formal verification of software has long history ([15]).
The PCC framework ([11]) was a milestone at this area.
PCC was proposed to certify the type-safety of low
level languages as the alternative to the TAL ([14]).
There are several main PCC research directions:

• exploiting the core of PCC paradigm ([5])

• applying PCC type-safety to industrial environments
([9])

• developing other safety policies for research lan-
guages ([1], [2])

For many reasons the type security is strongly desir-
able for assembly-level languages. In such approach the
primary goal of PCC is to validate the language com-
piler by detecting compile-time bugs. This idea was fur-
ther adopted to certify the type safety of Java binaries
at machine-level (SpecialJ compiler described in [9]).

Initially XMS started as a PCC variant for a toy-like
object language. After migration to .NET platform,
XMS marks out its own way:

• XMS does not certify type-safety of the low level
language but instead it allows to certify other safety
policies of the MSIL language.

• Since the certificates can be applied to any high-
level language, XMS is more general than solutions
bound to a single low-level ([11]) or high-level ([6])
language.

• XMS will ultimately adopt other security policies,
such as Non-Interference, to its verification engine

Currently, as a contract verification framework, XMS
competes with specialized contract frameworks for
.NET Platform like the Spec# ([20]). Major differences
between these two:

• Unlike XMS, Spec# is bound to a single language -
it is a superset of C#.

• Unlike XMS, Spec# is bound to a single safety pol-
icy (contracts). XMS is an extensible framework
with pluggable verification engines

• In Spec# contracts are declared using the language
extensions and turned into inlined code during the
compilation. In XMS, contracts are external to the
language (attributes) and code instrumentation tech-
niques are used for dynamic analysis

• Spec# uses its own intermediate representation of
the code, BoogiePL, which is interpreted and trans-
formed before it is provided to the theorem prover.
XMS uses symbolic evaluation to build verifica-
tion traces directly from the .NET Intermediate Lan-
guage code.

3 XMS CERTIFICATES

3.1 Certification Scheme
The PCC certification scheme is based onVerification
Conditions, logic predicates that contain information
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about the execution of programs. XMS Verification
Conditions are built by theVCGen – a tool that scans
MSIL binaries and performs symbolic evaluation of the
MSIL code. The Theorem of XMS Safety (3.1) says
thatif certificates are provablethen properties of corre-
sponding programs hold. Thus, formal proofs of Veri-
fication Conditions can be used asdigital certificates.
Such certificates are unbreakable since it is impossible
to hack a formal logic system if it is proven to be sound
and correct.

The XMS certification protocol assumes that a Safety
Policy is shared between Code Producer and Code Con-
sumer. The protocol is shown in Figure 3.

Figure 1: XMS Certification Protocol

The Code Producer and Code Consumer use the same
public and verified safety policy that define logic and al-
gorithms to build Verification Conditions for each logic.

The Code Producer:

1. adds method specifications to the source code,

2. uses VCGen to build and encode Verification Con-
ditions (VC),

3. constructs proofs for VCs,

4. embeds VCs and proofs as a metadata (metadata is
not used at runtime but is extracted in the certifica-
tion process).

The Code Consumer:

1. uses VCGen to build Verification Conditions,

2. checks if the same VCs have been supplied with the
code by the Code Producer,

3. validates the correctness of proofs (certificates).

Note that the protocol can fail at some point at the
Code Consumer side. Specifically:

1. the MSIL binary does not contain the metadata that
is required to build Verification Conditions,

2. the predicates built at Code Consumer side can differ
from these supplied with the code,

3. proofs supplied with the code can be invalid in the
sense that they do not prove Verification Conditions.

If the protocolfails for any of these reasons the Code
Consumer shouldreject the code as unsafe.

XMS introduces the concept ofVerification Traces.
While Verification Condition is a predicate that cap-
tures any execution of a method, the Verification Trace
is a predicate that represents execution of a single trace
of a method. And while Verification Condition acts like
a digital certificate which verifies code correctness, Ver-
ification Traces can be used by developers to identify
possible invalid execution traces in the code - any Ver-
ification Trace that is not provable refers such possible
invalid execution sequence.

3.2 Contracts

The Design By Contractsparadigm lays the base for
systematic object-oriented development [7]. It defines
a precise framework where software components can
be seen as communicating entities whose interaction is
based on mutual obligations. These obligations take
the form of predicates: preconditions, postconditions
and invariants. It means that the specification of each
method must be a quadruple:

SpecF = (SigF ,PreF ,PostF , InvF)

whereSigF is a method’s signature,PreF is a pre-
condition predicate,PostF is a postcondition predicate,
InvF is a partial function that maps MSIL instruction
numbers to invariants.

Currently XMS supports Eiffel-style Contracts [8]
with the complete compatibility (i.a. subcontracting) as
the ultimate goal. Contracts are provided in attributes.

3.3 Dynamic Contracts

There are two main techniques of code instrumenta-
tion for the .NET platform, .NET Profiler API and
context-bound objects. .NET Profiler API is a great
way for transparent instrumentation since is it com-
pletely decoupled from the source code. It is how-
ever COM-based and thus not portable. For now XMS
uses then context-bound objects and by implement-
ing IContributeServerContextSink interface
it is able to intercept method invocations and returns.
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3.4 Static Contracts

Both Security Policy for static verification and accom-
panying Theorem are stated formally using formal op-
erational semantics of the .NET intermediate language
(defined for XMS formally by following the .NET draft
[21]).

Definition 3.1 (Safety Policy of Contracts).A method
F is safe with respect to Static Contracts if for any ini-
tial stateΣ0 = (0,ρ0) such thatρ0(PreF) and any state
Σ = (i,ρ) reachable from the initial state we have that
if Fi = ret thenρ(PostF). We will denote this fact as
SafeSC(F).

SafeSC(F)⇐⇒

∀Σ0=(0,ρ0),Σ=(i,ρ) ρ0(PreF) ∧ Σ0 7→∗ Σ ∧ Fi = ret⇒

ρ(PostF)

A moduleM is safe with respect to Static Contracts
if all methods from the module are safe. We will denote
this fact as SafeSC(M ).

SafeSC(M )⇐⇒∀F∈M SafeSC(F)

This formal definition gives the base of the XMS
Static Contracts certification. It says that if a method’s
precondition is satisfied when the execution begins then
the method is safe only if the postcondition is satisfied
when the execution is about to end. It also says that
Static Contracts aremodularwhich means that a mod-
ule is safe only if all its methods are safe.

The underneath theorem is the central part of Static
Contracts for XMS. It formally states the soundness of
the VC-based certification framework.

Theorem 3.1 (Theorem of Safety for Static Con-
tracts). If the verification condition for a given mod-
ule M is valid, i.e. if |= VC(M ) then all executions
of any module methods are correct with respect to their
contracts, i.e. SafeSC(M ).

The VCGen algorithm the theorem refers to and the
proof of the theorem are long, technical and will not be
presented here. Both are inductive on the MSIL instruc-
tion set.

Symbolic evaluation of an object language (like
MSIL) which is a heart of the algorithm arise several
issues:

arithmetics an arithmetic instruction causes VCGen to
update its symbolic store to new state.

conditionals a conditional jump causes VCGen to split
the symbolic evaluation into recursive paths for all
branches. Conditions became assumptions inside
the verification predicate.

backward jumps backward jumps could lead to infi-
nite analysis. VCGen requires then that each back-
ward jump targets instructions which haveinvari-
ants provided. Invariants are validated when they
are seen for the first time and then validated again
when a backward jump is encountered.

method calls a method call makes VCGen to put the
method’s precondition as an assumption into the
predicate and then initialize a new state with all
variables which could be modified inside the called
method (out parameters) set to new, fresh values.

objects objects are evaluated symbolically.

arrays an array is stored as a index-value dictionary.

polymorphism is it not known until the run-time
which exact method is called from a class hierarchy.
VCGen relies here on asubcontractingparadigm
([8]) according to which contracts of inherited
methods must depend on contracts of base-class
methods.

0-values contracts must allow to use original values in
postconditions. VCGen uses special form of an as-
sumption to support such possibility.

3.5 XMS Architecture
XMS Architecture is presented in Figure 2. Both en-
gines (static and dynamic) are written in C#.

The main core of the dynamic verification engine is
about 250 lines long and uses .NET context attributes
and message sinks to instrument the code at run-time.
Expressions are evaluated using .NET dynamic code
execution technique.

The main core of the static verification engine has
currently 1500 lines of code but uses external parser
for specification parsing and external IL decompiler.
The symbolic evaluator maintains the state of evaluated
code between recursive calls and produces either one
Verification Condition or a set of Verification Traces for
each method. A simple windowed user interface is pro-
vided for user’s convenience.

Figure 2: XMS Architecture
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3.6 An Example of XMS Certification
To give a glimpse of the XMS framework we present a
simple example of an interactive session with the XMS
toolkit.

Suppose that the Code Producer has a code of a sim-
ple C# method to compute the GCD of two positive in-
teger numbers using the Euclid algorithm:

[XMS_Spec(
"x>=0 & y>=0", "VALUE = GCD(x,y)",
"GCD(x,y)=GCD(V_0,V_1)", "by auto.")]

public static int GDC( int x, int y ) {
int k = x;
int l = y;

while ( k-l != 0 ) {
if ( k > l )

k -= l;
else

l -= k;
}

return k;
}

There is nothing special with the code except for the
XMS_Specattribute. It is supplied by the Code Pro-
ducer and it carries the information about the method’s
specification:

• the precondition:x≥ 0 ∧ y≥ 0

• the postcondition:VALUE= GCD(x,y)

• the loop invariant:GDC(x,y) = GDC(V0,V1)

The precondition establishes an initial assumption on
method’s parameters. The postcondition characterize
method’s expected behaviour. The invariant describe a
constant condition that is valid in any execution of the
loop.

The Verification Condition Generator (VCGen) pro-
duces the Verification Condition that captures all es-
sential aspects of arbitrary invocation of the method.
Both Code Producer and Code Consumer use VCGen
invoked on a binary module:

> VCGen.exe gdc.exe

It examines the module structure, reads the MSIL bi-
nary code and specification metadata and produces the
Verification Condition. Note how the specification and
conditional branches become assumptions for further
parts of the VC.

forall x. forall y. (x >= 0 & y >= 0 =>
(((x-y) =0=> x = GCD(x,y)) &

((x-y)!=0=>GCD(x,y)=GCD(x,y) &
forall V_0_. forall V_1_.

GCD(x,y)=GCD(V_0_,V_1_)=>

((V_0_>V_1_ =>
((((V_0_-V_1_)-V_1_) =0=>

(V_0_-V_1_) = GCD(x,y)) &
(((V_0_-V_1_)-V_1_)!=0=>

GCD(x,y)=
GCD((V_0_-V_1_),V_1_)))) &

(V_0_<=V_1_ =>
(((V_0_-(V_1_-V_0_)) =0=>
V_0_ = GCD(x,y)) &

((V_0_-(V_1_-V_0_))!=0=>
GCD(x,y)=
GCD(V_0_,(V_1_-V_0_)))))))))

The last XMS attribute parameter, "by auto. " is
the proof of the predicate supplied by the Code Pro-
ducer. In our example this is a simple proof for a tac-
tical theorem prover. The Code Consumer uses this
proof to verify the reliability of the C# method – be-
cause the proof is correct for the Verification Condition
(|= VC(F)), the Code Consumer can be sure thatany
execution of the method is safe according to the Static
Contracts Safety Policy (SafeSC(F)). Ultimately, XMS
will allow to use a tactical theorem prover (Isabelle) to
shorten proofs or a proof checker (Twelf) for faster val-
idation.

Another example:

[XMS_Spec( 0,
"n >= 0",
"VALUE=sum(0, n)",
"V_0=sum(0, V_1) & n >= V_1",
"", "")]

public int Sum_I( int n )
{

int sum = 0;
for ( int k=0; k<=n; k++ )
{

sum += k;
}

return sum;
}

Produces following Verification Condition:

forall n. (n >= 0 => 0=sum(0, 0) & n >= 0 &
forall V_0_. forall V_1_.
V_0_=sum(0, V_1_) &
n >= V_1_=>

((V_1_<n => (V_0_+(V_1_+1))=
sum(0, (V_1_+1)) & n >= (V_1_+1)) &

(V_1_>=n => V_0_=V_0_ &
V_0_=sum(0, n))))

Let us also look at the example of dynamic verifica-
tion:

[XMSIntercept]
public class Test : ContextBoundObject
{
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[Process(typeof(XMSProcessor))]
[XMS_Spec( 1,

"true",
"x == y_0 && y == x_0", "", "", "" )]

public void Swap( ref int x,
ref int y )

{
int z = x;
x = y;
y = z;

}
}

This time the method is declared to swap input val-
ues, the return value ofx is equal to original value ofy
(y0) and vice versa. Actual client code:

int u = 0, v = 1;
t.Swap( ref u, ref v );

And the engine outputs:

Preprocessing Test.Swap.
Specification found:
Pre=[true]
Post=[x == y_0 && y == x_0]

Precondition : true
Substituted expression : true
Evaluated expression : True

Postcondition : x == y_0 && y == x_0
Substituted expression : 1 == 1 && 0 == 0
Evaluated expression : True

4 FROM MSIL TO HIGH-LEVEL LAN-
GUAGES

The .NET paradigm unifies many programming lan-
guages at MSIL level. Whether you use C#, VB.NET,
Managed C++ or any other .NET language, your code
can closely cooperate with any other .NET code.

Since the Verification Condition Generator works at
MSIL level, it cannot determine which language was
used to produce MSIL binary. And no matter if a binary
was produced by IlAsm compiler, C# compiler or any
other language compiler, it should be certifiable in the
uniform way.

The goal of "lifting" the certification framework from
MSIL to a high-level language is then executed under
two paradigms:

• A high-level language developer should not be
forced to learn MSIL language. In particular, a
solution where a high-level code is first compiled to
MSIL and then manually certified is unacceptable.
Certificates should be then easily applicable to a
high-level language code.

• A high-level compiler should not require any major
changes to support the certification. In fact, it would
be perfect, if the high-level compiler did not require
any changes. In particular, existing high-level lan-
guage compilers should not damage certificates that
were applied to high-level code.

It seems that comparing to other security policies,
Static Contracts is quite difficult to be lifted to high-
level languages. There are several important difficulties
that have to be addressed:

• Static Contracts Invariants have the formInvF(i) =
(P, . . .) wherei is the MSIL instruction number and
P is the invariant predicate. It could be however
extremely difficult to determine the MSIL instruc-
tion number for given high-level instruction, since it
would require a deep knowledge of compiler trans-
formation routines.

• During the compilation to MSIL, names of local
variables are omitted.

The first difficulty can be addressed with a clever
technical trick. We would like to avoid attributing in-
struction numbers to invariant predicates. We would
rather like to have an ordered set of invariants:

InvsF = (P0, . . . ,Pn)

and somehow inferInvF from it by mapping consecu-
tive invariants to instructions that need invariants.

This goal can be achieved with additional scan of
the binary code which could discover instructionsI =
(i0, . . . , ik) that are targets for backward jumps.

We could then take:

InvF(i) =
{

Pj if i = i j for somej and j ≤ n
ε in other case

The second difficulty can be addressed by "virtually"
renaming consecutive local variables tov0, . . . ,vn and
using these "virtual" names in specifications by a high-
level language developer.

4.1 Common Certificate Specification
Both above technical tricks require that the high-level
language satisfies two important conditions. These con-
ditions areessentialfor the "lifting" process to work,
so we will formulate them as theCommon Certificate
Specification(by analogy to Common Language Spec-
ification and Common Type System, two fundamental
.NET paradigms). The Common Certificate Specifica-
tion is as follows:

Variable Ordering Consecutive high-level language
local variables become consecutive MSIL local
variables.
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Structure of Loops High level language loops be-
come MSIL loops with as simple structure as
possible.

While the above specification does not look formal
enough, we are not going to make it formal. It is be-
cause some important existing compilers (like the C#
compiler) fulfill both these requirements, so the CCS
formulation should be treated as a set of guidelines for
new compilers.

Both requirements are crucial for proper translation
of loop invariants between a high-level language and
MSIL. In an example from section 3.6 the loop invariant
refers to variablesk and l but in MSIL they become
V0 andV1. Since there is only one loop in C# code,
only one loop invariant should be supplied. VCGen will
automatically detect instructions which invariants refer
to.

In fact, the main reason that makes the "lifting" pos-
sible is that .NET high-level language compilers fol-
low few simple and obvious patterns while producing
MSIL from high-level code. This is not a coincidence
and chances are that future compilers will also behave
in similar way because MSIL is not a platform-native
language – it is the Just-In-Time compiler which does
most of fancy optimizations while translating the MSIL
to platform-native language.

Of course this "simple translation with obvious pat-
terns" rule applies mainly to C# and VB.NET, two main
business languages for the .NET platform. Other lan-
guages with non-trivial translation schemes must find
their own way to integrate with XMS. There are three
possibleintegration strategies:

no integration or limited integration Developers are
forced to consult the compiler output to find exact
MSIL structure and then put appropriate attributes
either at language level or at MSIL level

attribute integration The language recognizes XMS
attributes and knowing its own translation schemes
puts the attributes in appropriate places inside MSIL

language integration The language syntax is aug-
mented with contract expressions which are
compiled as XMS attributes

5 XMS IN PRACTICE
A practical implementation of PCC-oriented certifica-
tion framework requires three key components: the VC-
Gen that build Verification Conditions for given code
modules, a Theorem Prover for Code Producer to build
formal proof of a Verification Condition and a Proof
Checker for Code Consumer to verify the proof.

The VCGen was exclusively developed for XMS and
runs on the .NET platform itself. It reads .NET bina-
ries, scans method bodies and builds Verification Con-

ditions. An example of a session was presented in Sec-
tion 3.6. Current implementation supports broad range
of MSIL instructions, i.a. arithmetical and control flow
instructions, instructions for addressing fields and argu-
ments and instructions for calling methods.

There are three possible approaches to theorem prov-
ing and proof checking. XMS does not favour any but
currently uses the first one.

1. A tactical theorem prover (Isabelle, Coq) can be
used for proof construction and proof validation.
Proofs are concise and in many cases can be
constructed automatically without any manual
guidance. However, the prover must be present at
Code Consumer side.

2. Proofs can be encoded in a metalogic (LF [19]).
This results in long and detailed proofs but the proof
checking procedure is cheap at the Code Consumer
side. Metalogic proof checkers are short and thus re-
liable. Additional techniques can be used to shorten
proofs ([12]).

3. A logical interpreter can be used as a proof checker
([13]). Such interpreter uses information about the
proof structure provided by the Code Producer but
instead of recreating the proof it actually checks if
the proof exists at all.

6 SECURE COMPUTATION
One of free benefits of conforming to static verifica-
tion paradigm with predicates/proofs as certificates is
the possibility of using XMS forSecure Computation.

Suppose that a partyA needs expensive computation
to be performed on some private data.A is unable to
perform the computation locally. Suppose that partyB
is able to perform the computation forA.

However,A does not want its private data to be re-
vealed toB and B does not want its algorithm to be
revealed toA.

Using XMS as a certification framework and .NET
Web Services as remote computation layer,A and B
can rely on followingXMS Secure Computation Pro-
tocol:

1. A andB ask a trusted party,C, to make a Web Ser-
vice,W, available to both of them

2. B publishes its service onW together with XMS
specification and certificates

3. A asksW for the specification ofB’s service, checks
if the specification meets his/her requirements and
asksW to verify thatB’s service is correct with re-
spect to its specification using XMS Protocol

4. W verifies theB’s service and sends the verification
result toA
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5. A checks the verification status and if it is positive,
sends its data toW and collects the results

Figure 3: XMS Secure Computation Protocol

7 FUTURE WORK
Formal certificates can rely on other certification
paradigms like the Model Carrying Code ([17]) where
the certificate takes the form of an abstract model of
the code execution and model checking techniques
are involved to verify these models. The XMS will
ultimately unify various approaches. The combination
of PCC and MCC seems especially promising. Three
main directions of future XMS development are:

• support for more MSIL instructions and built-
in predicates (Static Verification): Currently the
static verification does not support all MSIL instruc-
tions. It is a short-term implementation goal to
support complete MSIL language. For user conve-
nience, some built-in predicates could be supported,
such asISNULL .

• other code instrumentation techniques (Dynamic
Verification) : Although context-bound objects are
an easy way to code instrumentation, using .NET
Profiler API could make the dynamic verification
faster and transparent.

• better integration with high-level languages: Cur-
rent handling of loop invariants require high-level
languages to cope with Standard Certificate Spec-
ification. This could be restrictive for some high-
level languages, for example functional languages
with atypical compilation schemes. A long-term
goal would be to integrate XMS with such languages
using one of proposed integration strategies.

• other Safety Policies: Contracts Safety Policy is not
the only interesting Safety Policy that can be verified
in a XMS manner. Other policies such as Tempo-
ral Specifications ([17]) or Non-Interference ([18])
could be adapted to XMS certification scheme.
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ABSTRACT

Nine years after its first publication, aspect-oriented programming (AOP) is finding more and more support, but adoption by the
industry is still slow. The subclass proxy approach, a new implementation mechansim for .NET-based AOP tools, claims to have
the potential of easy adoptability. This paper analyzes subclass proxies as a lightweight infrastructure for AOP, characterizing
its properties, advantages, and disadvantages as compared to other implementation techniques. It evaluates technical strengths
and weaknesses as well as psychological factors which could influence adoption, and it shows the results of performance
benchmarks. In addition, it augments the mechanism with a new way of providing aspects woven at runtime with efficient and
safe access to objects’ private members.

Keywords
Aspect-oriented programming, code generation, subclass proxies, evaluation.

1. INTRODUCTION

Since 1997, when Gregor Kiczales, John Lamping,
Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin intro-
duced the term aspect-oriented programming (AOP)
[KL+97], AOP has found a lot of support in the re-
search community. Successful implementations of the
paradigm on the Java platform include AspectJ [LK98],
JBoss AOP [Bur04], and Spring AOP [JH+05]. Still,
industrial adoption of this new mechanism for software
development is naturally slow, and adoption in the field
of .NET is hampered by the lack of production-quality
AOP tools for this platform.

Recently, projects such as NAspect [Joh05] and XL-
AOF [eKS05b] (originally introduced for modelling
the concerns of space-based distributed applications in
an aspect-oriented fashion [SeK04]) have introduced
light-weight implementations of the aspect-oriented
programming paradigm based on the .NET platform.
Both of them are founded on the same technology,
which we call subclass proxies. Using subclass proxies
as an infrastructure for AOP has some technical advan-
tages over the more classic approaches (i.e. weaving
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compilers and postcompilers), as well as the important
benefit of being easy to adopt by software developers.

In this paper, we perform an analysis of the technol-
ogy backing both NAspect and XL-AOF. We analyze it
on a technical level, describing its implementation, and
show its potential as a weaving approach, classify it and
characterize it and its properties, advantages, and disad-
vantages, and we evaluate the concept from an adopt-
ability viewpoint. We also introduce a novel way of
allowing aspects to efficiently access private fields and
methods of their target objects, which was a privilege
of code-weaving approaches until now. By providing a
performance analysis, we show that the performance of
solutions based on subclass proxies is better than it is
often assumed of proxy-based approaches.

The rest of this paper is structured as follows: section
2 describes the technical background of the subclass
proxy mechanism and its use for aspect-orientation
(note that we use notions such as aspect, advice,
introduction, and join point as defined by AspectJ
[LK98] without further explanation). Section 3 aug-
ments the mechanism by introducing an approach for
accessing a target object’s private secrets from within
a subclass proxy-based aspect. Section 4 does an
extensive analysis of the concept’s potential as a base
for AOP and section 5 evaluates it from a performance
viewpoint. Section 6 concludes the paper.

2. SUBCLASS PROXIES

A proxy P is defined to be an object which acts as a
placeholder for a target object T [GHJV95]. Wherever
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T is expected, the proxy can be used instead, trans-
parently extending the target object’s behavior or con-
trolling access to it without client code needing to be
adapted. Runtime proxies are proxies created dynam-
ically at run time, without the programmer having to
prepare a dedicated proxy class for every target class.

The Microsoft .NET Common Language Runtime
provides a transparent proxy [Low03] mechanism
whose uses are limited by its functionality and its
impact on application design. Design-wise, it re-
quires the proxied object to be derived from the
System.ContextBoundObject base class. This will
not be an option in some cases, in other scenarios
it might require unclean changes to the application
design, which is contrary to the goals of AOP [KL+97].
Functionally, it is designed for .NET Remoting (i.e.
communication between different application domains,
processes, or computers) and it cannot extend behavior
of an object which is accessed from its own context
(including self calls—methods called on the this
reference), a drawback for realizing a join point model.
Introduction can not be implemented using transparent
proxies at all. Positive aspects of the mechanism
include that proxies are also created transparently
because the CLR intercepts the newobj instruction
(new in C#, New in Visual Basic .NET) and returns
a proxy instead of the target object. In addition, the
CLR automatically corrects the this reference within
T ’s methods—it refers to P instead of T , which is
important if it is to be passed to other objects.

Looking for an alternative to transparent proxies, it can
be noted that the property of substitutability used pre-
viously for defining the term “proxy” is similar to the
Liskov Substitution Principle (LSP) [LW94], which de-
scribes the relationship between subtypes. Like a proxy
P, which can be substituted for an object T , the LSP
states that an object of a subtype can be substituted for
one of a supertype. This similarity can be used to imple-
ment proxies using the subtyping mechanisms present
in .NET: interfaces and inheritance.

To realize a proxy using interface implementation—we
call this an interface proxy approach—the target object
T must implement a set of interfaces I and all client
code must access T via these interfaces only. Then, a
proxy object P can be created which also implements I
and holds a reference to T for delegation. T in the client
code can be transparently replaced by P, which plays
the role of a proxy. Within T ’s method implementa-
tions, however, the this reference refers to T rather than
P, which is problematic if the reference is used to ac-
cess the object: such access will not be registered by the
proxy. In addition, like with transparent proxies, the in-
terface proxy approach does not allow self calls to be
extended, it is therefore a suboptimal solution as well.

Realizing proxies using inheritance—the subclass
proxy approach—is different from the aforementioned
approaches. Whereas transparent and interface proxies
have an object instance P replacing a target object
instance T (and delegating), inheritance allows proxy
and target to be one and the same object: a class P is
derived from the target class T , overriding its methods
and delegating to the original implementation. When P
is instantiated, one object instance implements both P’s
and T ’s functionality. Since subclasses are subtypes
in .NET, the LSP applies and instances of P can be
used wherever instances of T are expected. Subclass
proxies intercept self-calls correctly, the this reference
is automatically correct, and introduction is possible
via interface implementation (see below). Figure 1
compares the unproxied scenario with a simplified
drawing of transparent, interface, and subclass proxies.

T

Client Code

call

self callthis

P

Client Code

call

self call

this

T

delegate

P

Client Code

call via I

self callthis

T

delegate

«interface»
I

P

Client Code

call

self callthis

delegate

T

unproxied transparent interface subclass

Figure 1. Proxy approach visualization.

In contrast to transparent proxies, both interface and
subclass proxy have the disadvantage of needing a class
factory [GHJV95] to make object creation transparent
to client code. Table 1 summarizes the properties of the
different proxy approaches, positive characteristics are
shown in boldface.

Transparent Interface Subclass
Parent class ContextBoundObject arbitrary arbitrary
Creation newobj factory factory
Usage direct interfaces direct
This reference P T P
Extend self calls no no yes
Introduction no yes yes

Table 1. Properties of proxy approaches.

2.1 Runtime Subclass Proxies

In the simplest form, subclasses do not implement a
runtime proxy approach: the programer needs to write
dedicated derived classes for each target type, manu-
ally overriding the methods that need to be extended.
Using code generation, this can however be generi-
cally performed at runtime by a tool or framework.
The .NET Base Class Library provides two powerful
mechanisms allowing for runtime code generation: the
System.Reflection.Emit namespace contains low-level
classes and methods to dynamically generate .NET as-
semblies and types, System.CodeDom provides base
classes for higher-level code generation. In this article,
we will concentrate on System.Reflection.Emit.
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Listing 1 shows how to dynamically generate a
subclass of an arbitrary type at runtime using Sys-
tem.Reflection.Emit: it asks the current application
domain to define a dynamic assembly, naming it
“proxies”, which in turn is used to define a dynamic
module named “proxies” as well; by giving the module
a DLL file name (and using the RunAndSave flag when
creating the assembly), it is possible to save the module
to disk after generation in addition to using its types.
The dynamic module is used as a factory for the type
which is to be created. The type’s base class is specified
to be baseType, the parameter passed to the method
(which corresponds to the proxied type T ), its access
attribute is Public to make it publicly accessibly from
other assemblies, and its name is defined by attaching
“___Subclass” to the base type’s name. By calling its
CreateType method, the dynamic type is finished and
the corresponding Type object (P) is returned and can
be instantiated using System.Activator.CreateInstance.

public Type DefineSubclass(Type baseType) {
AssemblyBuilder a =
AppDomain.CurrentDomain.DefineDynamicAssembly(new
AssemblyName("proxies"),
AssemblyBuilderAccess.RunAndSave);

ModuleBuilder m = a.DefineDynamicModule("proxies",
"proxies.dll");

TypeBuilder subtype = m.DefineType(baseType.Name +
"___Subclass", TypeAttributes.Public, baseType);

return subtype.CreateType();
}

Listing 1. Creating a subclass at runtime.

2.2 Weaving Based on Subclass Proxies

Aspect-oriented programming is based on two main
concepts: join points, i.e. points in the imperative pro-
gram flow where aspects’ advice methods are triggered,
and introduction of new members to the aspects’ tar-
get classes. Both concepts can—to a degree—be im-
plemented with subclass proxies; the method of doing
so is described in this section. An analysis on the join
point model which is gained from this mechanism is
performed later in section 4.

Join Points By overriding the methods of its base
class, a proxy class can provide replacement code for
them, delegating to the original (base) implementation
if necessary, and triggering join points before, after, and
instead of (or around) method executions.

With System.Reflection.Emit, overriding methods is
easily possible by inserting code prior to calling Type-
Builder.CreateType. Listing 2 shows how to override
all virtual methods of the given base type. It does so
by using the .NET Reflection mechanism to find all
the public and nonpublic instance methods of the base
type, checking whether they are virtual, and, if yes,
defining a method with the same name and signature.
The signature is found by inspecting the parameters of

the base method and extracting their types (using an
anonymous delegate for brevity); the override’s return
type is the same as that of the base method.

foreach (MethodInfo m in baseType.GetMethods(
BindingFlags.Public | BindingFlags.NonPublic |
BindingFlags.Instance)) {

if (m.IsVirtual) {
ParameterInfo[] parameters = m.GetParameters();
Type[] parameterTypes =

Array.ConvertAll<ParameterInfo,
Type>(parameters,

delegate(ParameterInfo parameter)
{ return parameter.ParameterType; });

MethodBuilder subMethod =
subtype.DefineMethod(m.Name,
MethodAttributes.Virtual |
MethodAttributes.Public,

m.CallingConvention, m.ReturnType,
parameterTypes);

ILGenerator il = subMethod.GetILGenerator();
il.Emit(OpCodes.Ldarg_0);
foreach (ParameterInfo parameter in parameters) {
il.Emit(OpCodes.Ldarg, parameter.Position + 1);

}
il.EmitCall(OpCodes.Call, m, null);
il.Emit(OpCodes.Ret);

}
}

Listing 2. Overriding methods.

The code snippet then defines the override’s method
body via IL (intermediate language) opcodes. The body
loads the object reference (argument 0) and the param-
eters, calls the base method, and finally returns to the
caller. An AOP approach can insert additional code into
the body, implementing before, after, and around advice
and delegating back to the original method if desired.

Opposed to method join points, construction and cre-
ation join points need not be implemented by the proxy
itself: they can be triggered by the factory used to create
the proxy types and their instances. Property get and set
join points are equivalent to method join points, since
all properties are backed by respective getter and set-
ter methods. Finalizer join points can be implemented
the same way as method join points by overriding the
Finalize method of the object. Field get and set join
points cannot be implemented with subclass proxies. It
is up to the AOP implementation of how to bind ad-
vice methods to the join points implemented with the
subclass proxy mechanism, the most runtime-efficient
way being to directly encode calls to advice methods
(or even inline these) into the override’s method body.

Introduction As opposed to compiler-based AOP ap-
proaches, runtime weaving approaches cannot simply
introduce new members to a class. While it is eas-
ily possible to add these members to a subclass proxy,
client code uses the proxy transparently and has no
way of accessing the introduced entities with a stati-
cally typed programming language. The only form of
introduction easily conceivable for runtime approaches
is interface introduction: an aspect can add an interface
and its implementation to an object, and client code can
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cast its object reference to the interface type. Since the
proxy implements the interface, the cast succeeds.

Interface introduction can be easily implemented with
Reflection.Emit by having the dynamically created sub-
class implement the interface. This is similar to listing
2 and therefore not separately demonstrated here.

3. PRIVILEGED ACCESS TO TARGET
OBJECTS’ SECRETS

One important property of aspects is that they often
require more privileged access to their target object’s
internals than other objects should have, because they
implement cross-cutting concerns which can be tightly
coupled to the objects they cut. While a subclass proxy
naturally has access to all public and protected (family-
accessible) fields and methods of its base class, it has
no access to private or assembly-visible members.

.NET provides a Reflection mechanism to work around
this: given the necessary rights, every object can reflect
over another object’s private fields and methods in or-
der to inspect and change the fields’ values or invoke
the methods. However, Reflection is not optimized for
performance: our tests have shown that accessing a field
via reflection is around 200 to 700 times slower than di-
rect access, and still 180 times slower than invoking an
accessor method would be. Since field access is such
a basic operation, this might conceivably slow down an
aspect-oriented application, depending on the degree of
coupling between aspects and object state.

It would be desirable, therefore, to at least have acces-
sor methods for those private fields required by an as-
pect. Unfortunately, such a method cannot be added
to a subclass, which has no access to private members.
As a solution, with .NET 2.0 there is a new mecha-
nism called Lightweight Code Generation (LCG), or
Dynamic Methods [Mic06]. It allows methods to be
generated at runtime which can be attached to any exist-
ing type, allowing access to all its private data. Access
to the method is provided via a delegate, allowing flex-
ible invocation which is still 15 to 20 times faster than
reflection-based field access. The diagram in figure 2
shows a performance comparison of the different ways
of accessing fields (measured on an Athlon XP1800+
with 512 MB RAM and .NET framework v2.0.50727).

Field Access Framework For an AOP approach
based on subclass proxies, we suggest a field access
infrastructure which consists of a set of generic dele-
gate types Setter and Getter as strongly typed wrappers
for the accessor methods, an accessor method gener-
ator MethodGenerator which generates the accessor
methods using LCG, and a wrapper structure for fields,
which simply initiates the accessor method generation
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Figure 2. Performance of access methods.

when being constructed and provides a Value property
delegating to the accessor methods for convenient use.

Listing 3 shows the source code for these infrastructure
entities. The method body constructed by CreateSetter
simply loads the given target object (argument 0) fol-
lowed by the value (argument 1), which is then stored
in the given field before returning. The method body
constructed by CreateGetter first loads the target, then
loads the field value, and then returns, leaving the field
value on the evaluation stack, returning it to the caller.
Because the created dynamic methods are associated
with the target type (ClassType), they can safely access
even private fields using the ldfld and stfld opcodes.

delegate FieldType Getter<ClassType, FieldType>(
ClassType target);

delegate void Setter<ClassType, FieldType>(
ClassType target, FieldType value);

class MethodGenerator {
public static Setter<ClassType, FieldType>
CreateSetter
<ClassType, FieldType>(FieldInfo fieldInfo) {

DynamicMethod newMethod = new DynamicMethod(
fieldInfo.Name + "___GeneratedSetter",
typeof(void),

new Type[] { typeof(ClassType),
typeof(FieldType) },

typeof(ClassType));
ILGenerator ilGenerator =
newMethod.GetILGenerator();

ilGenerator.Emit(OpCodes.Ldarg_0);
ilGenerator.Emit(OpCodes.Ldarg_1);
ilGenerator.Emit(OpCodes.Stfld, fieldInfo);
ilGenerator.Emit(OpCodes.Ret);
return (Setter<ClassType, FieldType>)

newMethod.CreateDelegate(
typeof(Setter<ClassType, FieldType>));

}

public static Getter<ClassType, FieldType>
CreateGetter
<ClassType, FieldType>(FieldInfo fieldInfo) {

DynamicMethod newMethod = new DynamicMethod(
fieldInfo.Name + "___GeneratedGetter",
typeof(FieldType), new Type[] {
typeof(ClassType) },

typeof(ClassType));
ILGenerator ilGenerator =
newMethod.GetILGenerator();

ilGenerator.Emit(OpCodes.Ldarg_0);
ilGenerator.Emit(OpCodes.Ldfld, fieldInfo);
ilGenerator.Emit(OpCodes.Ret);
return (Getter<ClassType, FieldType>)

newMethod.CreateDelegate(
typeof(Getter<ClassType, FieldType>));

}
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}

struct Field<ClassType, FieldType> {
public readonly FieldInfo FieldInfo;
public readonly ClassType Target;
public readonly Getter<ClassType, FieldType>
Getter;

public readonly Setter<ClassType, FieldType>
Setter;

public Field(ClassType target, FieldInfo
fieldInfo) {
this.FieldInfo = fieldInfo;
this.Target = target;
this.Getter = MethodGenerator.CreateGetter

<ClassType, FieldType>(fieldInfo);
this.Setter = MethodGenerator.CreateSetter

<ClassType, FieldType>(fieldInfo);
}

public FieldType Value {
get { return Getter(Target); }
set { Setter(Target, value); }
}
}

Listing 3. Infrastructure for efficient field access.

4. CONCEPTUAL ANALYSIS
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Figure 3. Classification of weaving mechanisms.

Figure 3 shows two orthogonal classifications of weav-
ing mechanisms with regard to an assembly’s lifecy-
cle. On the one hand, weaving is classified based on
the kind of woven code: source code weaving manipu-
lates an assembly’s source code to inject aspect or glue
code1; it can be performed either by a code transforma-
tion tool or by a dedicated compiler (plugin). Interme-
diate code weaving manipulates intermediate code (IL
and metadata [ECM05]) to inject aspect or glue code;
this is usually done by a post-compiler or custom class
loader. Augmenting weaving does not manipulate exist-
ing code, but instead augments it with new glue code,
connecting it to aspect code; this can be performed by
frameworks rather than tools. Subclass proxy-based ap-
proaches are augmenting mechanisms, while traditional
approaches like AspectJ are source code or intermedi-
ate code weaving mechanisms or mixes thereof.

On the other hand, weaving can be classified based
on when it is performed: AspectJ, for example, has
traditionally been a static weaver (including load-time
weaving in recent versions) [tAT05]. Contrarily, sub-
class proxy approaches are real runtime weaving ap-
proaches, with the main weaving done at object instan-
tiation time, when the proxy type is created.

1 Glue code is code which “glues” an aspect to its target objects.

With regard to the kind of code being woven, we char-
acterize based on the following properties, displayed in
table 2 with advantageous properties in boldface:

Invasiveness is a measure for the degree of manipu-
lation the weaving approach performs on user-written
code. Source code weaving approaches compiling a
dedicated aspect language have low invasiveness, aug-
menting approaches only extend and also have low in-
vasiveness. Other approaches change the structure of
user-written code and are thus highly invasive.

Debuggability denotes how much effort is needed to
make the woven program debuggable with standard
mechanisms (e.g. Microsoft Visual Studio). This is
easy with proxy-based approaches, because the original
debug information remains valid after weaving. Source
code weaving also results in correct debug informa-
tion. With intermediate code weaving, debuggability
involves manipulating a debugger-specific file format.
This is not portable and often hard: for example, the
undocumented Program Database file format used by
Visual Studio cannot be easily manipulated.

Join point model denotes the join point kinds an ap-
proach can provide. Source code weaving makes no re-
strictions whatsoever to the join point model. With in-
termediate code weaving, the only restrictions are those
posed by IL and metadata (e.g. there are no “for” loops
available in IL; to a certain extent this can be overcome
by pattern matching as it is also done by decompilers).
Augmenting weaving relies on the manipulation mech-
anisms provided by the CLR, i.e. OOP techniques such
as interfaces implementation and method overriding.

Design prerequisites describes prerequisites needed
from the perspective of the application designer. With
subclass weaving, it is necessary to use a factory to in-
stantiate objects. With source code and intermediate
code weaving, there is no such restriction.

Tool prerequisites describes the tools needed for the
approach. Source code weaving needs a precompiler or
real compiler, intermediate code weaving needs a post-
compiler or class loader, augmenting weaving can be
done by a framework or library.

Implementation effort is a measure for the effort
needed to create a tool based on the approach and
keep it up to date with platform changes. Source code
weaving requires the most effort by an implementer:
it needs at least a source code parser and source code
emitter. If the tool is a compiler, complexity is even
worse. With intermediate weaving, an IL and metadata
parser and emitter are needed, although IL is typically
simpler to weave than source code. Augmenting
weaving only requires a very simple framework.

Compatibility is a measure for the compatibility of the
approach with third-party compilers, frameworks, or
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metaprogramming tools. With compiler-based source
code weaving tools, third-party compilers cannot be
used. Intermediate code and augmenting weaving tools
pose no compatibility problems and can usually easily
be combined with any compiler, framework, or tool.

Language support denotes the number of supported
programming languages. While intermediate code and
augmenting weaving strategies can handle all program-
ming languages targeting .NET, a source code weaving
tool can only target a single programming language.
Since one of .NET’s goals is to be a multilanguage
environment [ECM05], this is an important restriction
which might exclude a high number of potential users
(much more important than on the Java platform).

Performance is a measure for the runtime efficiency of
the approach. With source code weaving, performance
is optimal, all compiler optimizations and JIT optimiza-
tions can be performed. With IL code weaving, com-
piler optimizations should be disabled in order to re-
tain a powerful join point model (e.g. target methods
must not be inlined by the compiler), but JIT optimiza-
tions can be performed without any restriction. With
augmenting weaving, some optimizations are disabled
by the use of certain OOP features (like virtual method
calls), but most JIT optimizations are available.

Source Intermediate Augmenting
Invasiveness low to high high low
Debuggability no-effort hard no-effort
Join point model arbitrary IL and metadata OOP
Design prerequ. none none factory
Tool prerequ. compiler postcompiler framework
Impl. effort very high high low
Compatibility low high high
Language support one all all
Performance optimal good medium

Table 2. Weaving approaches by code form.

With regard to the time of weaving, we characterize the
approaches as follows, summarized in table 3:

Changeability denotes how much effort is needed to
add or remove an aspect to or from the application.
With static weaving, recompilation or reinstrumenta-
tion of the assembly is needed, the application has to
be restarted and redeployed. With load-time weaving,
the application domain needs to be reloaded, often re-
quiring a restart. With runtime weaving, changes can be
applied immediately to objects created after the change.

Deactivating aspects is equally possible in all three
weaving variants and requires some sort of join point
manager which is asked before a join point is triggered.

Error detection refers to the point of time when weav-
ing configuration errors are detected. With static weav-
ing, this is before application deployment, whereas it is
after deployment with the other two approaches.

Testability is inversely proportional to the effort needed
to test an object in scenarios with different (or no) as-
pects attached to it. This follows directly from the

changeability: static and load-time weaving require
much effort, whereas runtime weaving does not.

Static Load-Time Runtime
Changeability recompilation reload immediately
Deactivating aspects immediately immediately immediately
Error detection before depl. after depl. after depl.
Testability low low high

Table 3. Weaving approaches by time of weaving.

4.1 Join Point Model

From an AOP perspective, a number of join points can
be implemented using subclass proxies, whereas others
can’t. Table 4 characterizes the join point model real-
izable with the approach. Using a source code weaving
tool, all the join points shown could be realized.

Join Point Type Before Instead of After
Object creation yes yes yes
Constructor execution yes no yes
Class construction no no no
Object finalization yes yes yes
Method execution yes (virtual) yes (virtual) yes (virtual)
Method call no no no
Property get yes (virtual) yes (virtual) yes (virtual)
Property set yes (virtual) yes (virtual) yes (virtual)
Field get no no no
Field set no no no
Exception thrown no no no
Exception caught no no no
Exception escaping yes (virtual) yes (virtual) -
Construct (for, if, . . . ) no no no

Table 4. Join point model with subclass proxies.

While this join point model is definitely restricted when
compared to that of a source code weaving tool, we be-
lieve that this is not a problem in most AOP scenar-
ios. When an application is designed from scratch in
an aspect-oriented way, all join points are known in ad-
vance, before any of the classes or aspects is to be im-
plemented. With a subclass proxy approach, the design
would naturally evolve around the join point kinds be-
ing available, ignoring those which can’t be used. In
most cases, however, small design changes can work
around the missing join point types.

For example, because field access join points cannot
be realized using subclass proxies, a design guideline
could be created to access fields via accessor meth-
ods (or properties) only, which is a common guideline
with OOP already. Those methods whose execution is
needed as a join point would be defined to be virtual.
The only join points which can’t be worked around are:
instead-of constructor execution, class construction, ex-
ceptions thrown and caught in the same method, and
join points at a statement-level granularity. In addition,
subclass proxies cannot advise non-virtual methods or
distinguish between method call and execution.

4.2 Psychological Factors

Adoption of AOP is hindered by many factors, which
are remedied to a great extent by the use of an approach
based on subclass proxies:
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AOP as an invasive mechanism: AOP is often re-
garded with distrust, because its tools weave code to-
gether as a black box. Developers can’t see what hap-
pens when aspects and objects are mangled together,
concerns about reliability and debuggability (if an er-
ror occurs in mangled code, will it be retraceable to the
original source code?) as well as the question of unpre-
dictable execution paths in woven code arise. In con-
trast, subclass proxies are built on established object-
oriented concepts such as method overriding and in-
terface implementation. These are well-known, don’t
introduce reliability or debuggability problems, and de-
velopers can comprehend what happens at runtime.

Adaption to new tools: Aspect-oriented tools often re-
place the tools (e.g. compilers) developers are used to
instead of augmenting them. With all approaches, de-
velopers need to adapt to new tools with new error mes-
sages, longer or different update cycles, and sometimes
incompatibilities with the original tools. Since subclass
proxies can be implemented as a framework or class
library, there is no need to switch tools with such an
approach—developers can continue using their familiar
environment and still obtain the benefits of AOP.

Unfinished tools: AOP tools usually need a lot of work,
this is the cause of the lack of production quality .NET-
based AOP tools. However, since subclass proxies are
much simpler to implement than code weaving tools,
the probability of reaching production status is much
higher with this approach.

AOP based on subclass proxies has high adoption po-
tential. With the described prerequisites, users should
be easily convincable of the new technology.

5. PERFORMANCE EVALUATION

With proxy-based approaches, aspect code is not
directly inserted into the target code; object-oriented
mechanisms are used instead. This is often regarded as
a performance disadvantage of such approaches. On
the .NET platform, however, most optimizations are not
done by a language compiler inlining code, but by the
JIT compiler’s optimizer at runtime. There are some
restrictions to JIT optimization with subclass proxies,
because virtual method calls to the target object are
always performed through the proxy and can’t be
replaced by ordinary calls, but these apply just as well
when the application makes use of the object-oriented
mechanisms itself. Most JIT optimizations should not
be affected adversely by the use of subclass proxies.

In this section, we will take a look at two implementa-
tions of the subclass proxy mechanism—NAspect and
DynamicProxy [Ver04] (which XL-AOF is based on)—
and analyze object construction time and method call

time, since these represent the main points during pro-
gram flow where a proxy-based mechanism performs
differently from a mechanism based on code weaving.

5.1 Object Creation

The first time an object is created from a target type, the
proxy-creating factory must construct the new proxy
subclass. This is a lengthy operation, our measurings
have shown this to take up to 37ms (DynamicProxy)
and 12ms (NAspect), as opposed to the few nanosec-
onds an ordinary new operation (usually) needs. Seen
as isolated numbers, this is a tremendous slowdown.

However, analysis of cross-cutting concerns in space-
based computing [eKS05a] reveals that common sce-
narios only have few types being aspectized at the same
time, with a higher number of instances created from
those. In such scenarios, the generated proxy sub-
classes can and should be cached, making an instantia-
tion consist of one hashtable lookup plus one call to the
type’s constructor (either via Reflection or, optimized,
via a delegate), which takes a few hundred microsec-
onds at most in our measurements. In the use cases
we studied, this makes instantiation time of proxied ob-
jects not a problem. On the other hand, if it is vital
that proxied objects of many different types are created
with rigid performance requirements (a few nanosec-
onds per instantiation), pure proxying might not be the
mechanism of choice, although pooling and flyweight
techniques [GHJV95] can improve on that.

Regarding memory usage, an AOP tool based on sub-
class proxies should use as few dynamic assemblies and
modules as possible. Our tests have shown this to scale
much better than having one assembly per proxied type.
Caching of the generated proxy types will also improve
memory footprint. A user should be aware that the only
way to remove the generated proxy types from mem-
ory is by unloading their application domain (of course,
their instances are garbage collected as usual), although
again this will not be an issue in scenarios with a rea-
sonable number of aspectized types.

5.2 Method Invocation

Method join point performance is more important than
object creation performance because the frequency of
method calls as compared to object instantiations is
typically very high. With subclass proxies, method
join points are implemented via method overrides. A
method join point of an optimal proxy is therefore no
different from a virtual method call (a few nanosec-
onds) plus one non-virtual base call if delegation to the
original code is needed (a few nanoseconds as well).
This optimal approach however requires injection of
advice code into the subclass proxy, which is not triv-
ial to implement. Current implementations therefore

Journal of .NET Technologies ISSN 1801 - 2108 23 ISBN 80-86943-13-5



0

10

20

30

40

50

60

70

Virtual Call Dynamic Proxy NAspect Ideal Proxy

T
im

e 
(µ

s)

Figure 4. Method call benchmarks.

choose not to directly invoke the base method from
within the override. Instead, they encapsulate the base
call and hand it to an interceptor provided by the aspect,
which may then choose to invoke the method or not.
For this encapsulation, DynamicProxy constructs a del-
egate, whereas NAspect relies on Reflection. Both ap-
proaches are not ideal what regards method interception
performance, although delegates are an order of magni-
tude faster than Reflection.

Figure 4 shows a method call benchmark done with an
AMD XP1800+ system. The values for ordinary vir-
tual call, DynamicProxy, and NAspect are measured,
the value for the ideal proxy is calculated—an imple-
mentation can achieve this performance if call times are
of much importance. We measured the call and return
time of empty methods (with the proxies delegating to
the original empty methods); in real scenarios, these
values have to be seen in relation to concrete method
execution time. For example, our tests have shown that
with an average method whose body needs several mi-
croseconds for execution, the measured call times are
not that significant.

To summarize, while current implementations show
medium to significant method call slowdowns, an ideal
subclass proxy approach can lead to call times in the
range of nanoseconds, not much higher than ordinary
method calls. Even the call times of current implemen-
tations are less significant if the called methods have
nontrivial bodies.

6. CONCLUSION

In this paper, we have motivated, described, and ana-
lyzed the subclass proxy mechanism as an implemen-
tation infrastructure for aspect-oriented programming.
We compared the different proxy mechanisms available
on the .NET platform, identifying the subclass proxy
mechanism as the most powerful of these. Classify-
ing the weaving approach implementable with subclass
proxies, we have shown the disadvantages of the model,
such as a more constrained join point model and design

restrictions, but have also identified technical advan-
tages over classical implementation mechanisms, such
as easy debuggability and runtime weaving capabilities.

Performance benchmarks have shown current subclass
proxy implementations to be of medium performance;
however the proxy concept could be improved in this
regard if necessary in order to achieve call times not
much different from ordinary virtual calls.

Analyzing the psychological properties of subclass
proxies, we have identified a high potential of the
non-invasive mechanism which requires no dedicated
compiler tools—we ourselves have successfully used
the approach for developing space-based distributed
applications [SeK04]. Such light-weight implemen-
tations could finally lead to industrial acceptance of
aspect-oriented programming.
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Superinstructions and Replication
in the Cacao JVM interpreter
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Abstract
Dynamic superinstructions and replication can provide large
speedups over plain interpretation. In a JVM implementation
we have to overcome two problems to realize the full potential
of these optimizations: the conflict between superinstructions
and the quickening optimization; and the non-relocatability
of JVM instructions that can throw exceptions. In this paper,
we present solutions for these problems. We also present
empirical results: We see speedups of up to a factor of 4
on SpecJVM98 benchmarks from superinstructions with all
these problems solved. The contribution of making potentially
throwing JVM instructions relocatable is up to a factor of
2. A simple way of dealing with quickening instructions is
good enough, if superinstructions are generated in JIT style.
Replication has little effect on performance.

1. Introduction
Virtual machine interpreters are a popular programming
language implementation technique, because they combine
portability, ease of implementation, and fast compilation.
E.g., while the Mono implementation of .NET has JIT com-
pilers for seven architectures, it also has an interpreter in
order to support other architectures (e.g., HP-PA and Alpha).
Mixed-mode systems (such as Sun’s HotSpot JVM) employ
an interpreter at the start to avoid the overhead of compilation,
and use the JIT only on frequently-executed code.

The main disadvantage of interpreters is their run-time
speed. There are a number of optimizations that reduce this
disadvantage. In this paper we look at dynamic superinstruc-
tions (see Section 2.1) and replication (see Section 2.2), in the
context of the Cacao JVM interpreter.

While these optimizations are not new, they pose some
interesting implementation problems in the context of a JVM
implementation, and their effectiveness might differ fromthat
measured in other contexts. The main contributions of this
paper are:

• We present a new way of combining dynamic superin-
structions with the quickening optimization (Section 3).

• We show how to avoid non-relocatability for VM instruc-
tion implementations that may throw exceptions (Sec-
tion 4).

• We present empirical results for various variants of dy-
namic superinstructions and replication combined with
different approaches to quickening and to throwing JVM
instructions (Section 5). This shows which of these issues
are important and which ones are not.

∗ Correspondence Address: Institut für Computersprachen,Technis-
che Universität Wien, Argentinierstraße 8, A-1040 Wien, Austria;
anton@mips.complang.tuwien.ac.at
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Figure 1. Threaded-code representation of VM code

2. Background
This section explains some of the previous work on which the
work in this paper is built.

2.1 Dynamic Superinstructions

This section gives a simplified overview of dynamic superin-
structions [RS96, PR98, EG03].

Normally, the implementation of a virtual machine (VM)
instruction ends with the dispatch code that executes the next
instruction. A particularly efficient representation of VMcode
is threaded code [Bel73], where each VM instruction is repre-
sented by the address of the real-machine code for executing
the instruction (Fig. 1); the dispatch code then consists just of
fetching this address and jumping there.

A VM superinstruction is a VM instruction that performs
the work of a sequence of simple VM instructions. By replac-
ing the simple VM instructions with the superinstruction, the
number of dispatches can be reduced and the branch predic-
tion accuracy of the remaining dispatches can be improved
[EG03].

One approach for implementing superinstructions is dy-
namic superinstructions: Whenever the front end1 of the inter-
pretive system compiles a VM instruction, it copies the real-
machine code for the instruction from a template to the end of
the current dynamic superinstruction; if the VM instruction
is a VM branch, it also copies the dispatch code, ending the
superinstruction; the VM branch has to perform a dispatch in
order to perform its control flow, otherwise it would just fall
through to the code for the next VM instruction. As a result,
the real-machine code for the dynamic superinstruction is the
concatenation of the real-machine code of the component VM
instructions (see Fig. 2).

In addition to the machine code, the front end also pro-
duces threaded code; the VM instructions are represented by
pointers into the machine code of the superinstruction.

During execution of the code in Fig. 2, a branch to the
iload b performs a dispatch through the first VM instruction
slot, resulting in the execution of the dynamic superinstruc-

1 More generally, the subsystem that generates threaded code, e.g.,
the loader or, in the case of the Cacao interpreter, the JIT compiler.
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Figure 2. A dynamic superinstruction for a simple JVM sequence

tion code starting at the first instance of the machine code for
iload, and continues the execution of the dynamic superin-
struction until it finally executes another dispatch through an-
other VM instruction slot to another dynamic superinstruc-
tion.

As a result, most of the dispatches are eliminated, and
the rest have a much better prediction accuracy on CPUs
with branch target buffers, thus eliminating most of the dis-
patch overhead. In particular, there is no dispatch overhead in
straight-line code.2

There is one catch, however: Not all VM instruction im-
plementations work correctly when executed in another place.
E.g., if a piece of code contains a relative address for some-
thing outside the piece of code (e.g., a function call on the
IA32 architecture), that relative address would refer to the
wrong address after copying; therefore this piece of code is
not relocatable for our purposes.3 The way to deal with this
problem is to end the current dynamic superinstruction be-
fore the non-relocatable VM instruction, let the VM instruc-
tion slot for the non-relocatable VM instruction point to its
original template code (which works correctly in this place),
and start the next superinstruction only afterwards.

Dynamic superinstructions can provide a large speedup at
a relatively modest implementation cost (a few days even with
the additional issues discussed in this paper). It does require a
bit of platform-specific code for flushing the instruction cache
(usually one line of code per platform), but if this code is
not available for a platform, one can fall back to the plain
threaded-code interpreter on that platform.

2.2 Replication

As described above, two equal sequences of VM instructions
result in two copies of the real-machine code for the superin-
struction (replication [EG03]).

An alternative is to check, after generating a superinstruc-
tion, whether its real-machine code is the same as that for a
superinstruction that was created earlier4; if so, the threaded-
code pointers can be directed to the first instance of the real-

2 Some people already consider this to be a simple form of JIT
compilation. In this paper we refer to it as an interpreter technique, for
the following reasons: 1) It can be added with relatively little effort
and very portably (with fall-back to plain threaded code if necessary)
to an existing threaded-code interpreter; 2) The executed machine
code still accesses the VM code for immediate arguments and for
control flow.
3 Why do we not support a more sophisticated way of relocating
code that does not have this problem? Because that relocation method
would be architecture-specific, and thus we would lose the portability
advantage of interpreters; it would also make the implementation
significantly more complex, reducing the simplicity advantage.
4 Of course, instead of checking the real-machine code afterwards,
one could also check the virtual-machine code beforehand, but that is
an implementation detail.
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Figure 3. Instructions in the (JVM-derived) Cacao inter-
preter VM that reference the constant pool

machine code, and the new instance could be freed (non-
replication).

Replication is good for indirect branch prediction accuracy
on CPUs with branch target buffers (BTBs) and is easier to
implement, whereas non-replication reduces the real-machine
code size significantly and can reduce the I-cache misses.

2.3 Cacao interpreter

For the present work, we revitalized the Cacao interpreter
[EGKP02] and adapted it to the changes in the Cacao system
since the original implementation (in particular, quickening,
and OS-supported threads).

The most unusal thing about the Cacao interpreter is that
it does not interpret the JVM byte code directly; instead, a
kind of JIT compiler (actually a stripped-down variant of
the normal Cacao JIT compiler) translates the byte code into
threaded code for a very JVM-like VM, which is then inter-
preted. The advantage of this approach is that the interpreter
can use the fast threaded-code dispatch, and the immediate ar-
guments of the VM instructions can be accessed much faster,
because they are properly aligned and byte-ordered for the
architecture at hand. Moreover, this makes it easier to imple-
ment dynamic superinstructions and enables some minor op-
timizations.

The Cacao interpreter is implemented using Vmgen [EGKP02],
which supports a number of optimizations (e.g., keeping the
top-of-stack in a register), making our baseline interpreter
already quite fast.

3. Quickening
This section discusses one of the problems of the JVM and
.NET when implementing dynamic superinstructions.

3.1 The problem

A number of JVM instructions (see Fig. 3) refer to the con-
stant pool, and through it to components of (possibly) other
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Figure 4. Simple solution: Exclude slow and quick instructions from dynamic superinstructions.

classes. A class should be loaded and must be initialized ex-
actly when the first instruction refering to it is executed.

Performing all the overhead of checking whether the class
is already loaded and initialized, and resolving the class and
component information into the actual information needed (an
offset in the case ofgetfield) on every execution is very
expensive: in experiments with an old version of Kaffe5 we
found that optimizing this overhead away gives a speedup on
the SpecJVM98 benchmarks by about a factor of 3.

The original Java interpreter optimizes suchslow instruc-
tionsby rewriting them and their immediate operand(s) in the
VM code intoquick instructionswhen they are executed the
first time [LY97, Chapter 9]. This optimization is calledquick-
ening.

The immediate operand of the quick instruction is the re-
sult of resolving the operand of the slow instruction. E.g.,for
the slowgetfield instruction the immediate operand is a
constant-pool reference to the field of a class, whereas the im-
mediate operand ofgetfield quick is the offset of the field.
In our examples (e.g., Fig. 4) as well as in our implementa-
tion, we have separate slots for these two operands; in the ex-
amples, this makes it easier to show what is happening; in the
implementation, this reduces the need for locking [GH03].

This approach does not work with dynamic superinstruc-
tions: In general, rewriting the VM code is not enough; we
would also have to rewrite or patch the real-machine code
generated for the superinstruction; and the difficulties there
are that the real-machine code of the slow and the quick in-
struction usually have a different length; moreover, the slow
instruction and its quick equivalent might not be both relocat-
able (usually, the slow instruction is not relocatable, andthe
quick instruction is).

3.2 A simple solution

A simple solution is to exclude slow instructions from being
integrated into dynamic superinstructions (just as it is done for
non-relocatable instructions). A preceding dynamic superin-
struction would end right before the slow instruction and dis-
patch to the slow instruction as usual in threaded code. The
slow instruction could then rewrite itself into the quick in-
struction, as in a plain threaded-code interpreter.

The disadvantages of this solution are:

• Usually two additional VM instruction dispatches are per-
formed per execution of the quick instruction that would
not be performed if it was integrated in the dynamic su-
perinstruction: One for ending the preceding superinstruc-
tion, and one by the quick instruction itself. This hurts

5 http://www.complang.tuwien.ac.at/java/kaffe-threaded/

mainly CPUs without BTBs (branch target buffers) or
similar indirect-branch predictors.

• The quick instruction is not replicated, leading to a low
prediction accuracy for the dispatch by the quick instruc-
tion on CPUs with BTBs. This disadvantage could be
eliminated in, e.g., the following way: When the slow in-
struction rewrites itself into the quick instruction, it repli-
cates the quick instruction (including its dispatch) and lets
the instruction slot point to the new replica. However, this
approach will lead to less spatial locality and thus more
I-cache misses than the normal arrangement of dynamic
superinstructions with replication.

• When applying additional optimizations, such as static su-
perinstructions [EGKP02] or static stack caching [EG04a],
the natural approach to take would be to also exclude
the to-be-quickened instructions from these optimizations.
Everything else would require additional implementation
costs similar to more sophisticated approaches for this
problem.

These disadvantages lead to significant slowdowns (com-
pared to more sophisticated approaches) when all slow in-
structions are treated in this way [GH03].

However, the Cacao interpreter translates the JVM byte-
code into threaded code using a JIT compiler with method
granularity. If the JIT compiler encounters a slow JVM in-
struction that references a class that has already been loaded
and initialized, it translates it into a quick instruction with-
out the intermediate state of a slow threaded-code instruction.
These quick instructions can be integrated into dynamic su-
perinstructions without a problem.

So, in the Cacao interpreter, only a subset of the slow
instructions from the original JVM code have the problems
mentioned above even with this simple solution. If the parts
of the code containing this subset are only executed rarely,the
performance disadvantage of the simple solution is negligible.
Our results (see Section 5) indicate that this is indeed the case.

However, we did not know this from the start, so we also
looked into more sophisticated approaches. Moreover, more
sophisticated approaches do have their merits in settings (like
SableVM) where no JIT translation into threaded code with
superinstructions is used: At least our sophisticated approach
is simpler to implement than a JIT translator.

3.3 Previous sophisticated solutions

Like the Cacao interpreter, SableVM translates the JVM byte-
code into threaded code with dynamic superinstructions. One
difference is that SableVM keeps only the instruction slot for
the first VM instruction in a superinstruction, whereas the Ca-
cao interpreter keeps all the VM instruction slots around (even
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Figure 5. SableVM’s preparation sequence for the first execution and the dynamic superinstruction including a quick instruc-
tion for subsequent executions

though only the first one is used when the superinstruction is
executed); to avoid confusion, we show the same approach in
all the examples: all VM instruction slots are kept.

SableVM deals with quickening by creating an out-of-line
preparation sequence in VM code (see Fig. 5), as well as
the superinstruction (which incorporates the quick versions of
any instructions to be quickened instruction). On first execu-
tion the VM code jumps to the preparation sequence, which
performs the first execution (including a variant of the slow
instruction that patches the operand elsewhere), and rewrites
the goto to the preparation sequence into an invocation of
the superinstruction; finally, the preparation sequence jumps
to the first (super)instruction behind the VM code covered by
the superinstruction. On the next execution, the VM code just
executes the superinstruction.

Casey et al. [CEG05, Section 5.4] have also implemented
dynamic superinstructions in a JVM interpreter. They treat
the slow instruction as non-relocatable, as in the simple so-
lution, but leave space in the real-machine-code area for the
(real-machine code of the) corresponding quick instruction;
on quickening, they copy the real-machine code for the quick
instruction into that space, resulting in a dynamic superin-
struction that includes the quick instruction. This solution re-
quires that all VM instruction slots are kept around.

3.4 Our sophisticated solution

Figure 6 shows our approach: When we generate the threaded
code for a block, we also generate the real-machine code for
the superinstruction; however, if we encounter a slow instruc-
tion, we generate the real-machine code for the appropriate
quick instruction.

However, if there is a slow instruction in the block, we do
not let the threaded code point to the dynamic superinstruction
right away. Instead, we first generate conventional threaded
code, which does not reference the dynamic superinstruction

in any way, and that code contains the slow instructions.
We also record what the last slow instruction in the block
is, and use this in a table called superstart: the last slow
instruction is the lookup key, and it also contains a pointer
to the superinstruction real-machine code for the block, and
the first threaded-code word in the block.

When a slow instruction is executed, it first performs all
the necessary loading and initialization work. Then it looks
itself up in the superstart table, and patches the threaded-
code word at the block start to point to the real-machine code
for the superinstruction.6 The next time the basic block is
executed, it will use the dynamic superinstruction.

We did not define above what we mean byblock: It is the
VM code covered by a dynamic superinstruction. It is essen-
tially the same as a basic block, with one additional boundary
condition: If there is a VM instruction with non-relocatable
real-machine code, that also terminates the superinstruction
(and thus the block); the next superinstruction starts after the
non-relocatable VM instruction.

In earlier work [EG03] we let superinstructions continue
straight-line across control-flow joins. We cannot do this here;
consider the case of a superinstruction consisting of two ba-
sic blocks, with each basic block containing one slow VM
instruction:

• When the first slow instruction is reached, this is not the
last slow instruction in the superinstruction, so we cannot
do the patching; if we did, we would get a race condition:
another thread could execute the quick instruction imple-
mentation in the superinstruction before this thread has
performed the necessary class loading and initializations.

6 We need to patch only the first threaded-code word, because, once
we are executing the dynamic superinstruction, the other threaded-
code words are not used.
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Figure 6. Cacao’s sophisticated solution: first execute threaded code; the last slow instruction rewrites the first instruction in
the sequence into the superinstruction.

• When the second slow instruction is reached, it does not
know if it can patch the start of the first basic block, be-
cause it does not know if that basic block and its slow
instruction has been executed, and the appropriate initial-
izations done.

As a result, the part of the superinstruction for the first
basic block would never be used.

In earlier work we also let superinstructions continue
across fall-through edges of conditional branches. We also
do not do this here: If there is a slow instruction in the fall-
through path, but the branch is always taken, the superinstruc-
tion might never be activated.

One could work around these issues, but that would re-
quire significant complexity.

Note that the simple solution (Section 3.2) does not have
these restrictions and thus can be better than our sophisticated
solution (depending on the dynamic frequencies of originally-
slow instructions vs. basic block ends and not-taken condi-
tional branches).

Another thing worth noting is that our solution requires
that the superinstruction keeps all the VM instruction slots,
because the first time the code is executed as plain threaded
code. In terms of the SableVM solution, we use the origi-
nal sequence combined with the entry in the superstart ta-
ble as preparation sequence. So keeping all the slots leads
to a significant simplification here, as well as in other con-
texts, such as superinstructions across basic block boundaries
[EG03] and optimal selection of static superinstructions.

Finally, one of the advantages of our sophisticated ap-
proach over the simple solution and over the solution of Casey
et al. [CEG05] is that our solution is easier to adapt to situ-
ations where dynamic superinstructions are combined with
static stack caching and/or static superinstructions: While
generating the dynamic superinstruction, we use static stack
caching or static superinstructions without having to consider
complications from quickening, and the threaded code for the
first execution need not use these optimizations.

4. Relocatability and exceptions
Only relocatable real-machine code can be used in dynamic
superinstructions (see Section 2.1). In order to be relocatable,
a code fragment must not contain relative references to targets
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Figure 7. Instructions in the (JVM-derived) Cacao inter-
preter VM that can throw exceptions

outside the code fragment, nor absolute references to targets
inside the code fragment.

There are a number of JVM instructions that can throw an
exception, but usually don’t (see Fig. 7); e.g.,getfield (and
its quick variants) can throw a null pointer exception.

The code for throwing an exception is quite complex, so
we don’t want to replicate it with frequently occuring instruc-
tions like getfield. Moreover, it involves a function call,
which makes the code non-relocatable on most architectures
(it is a relative reference to code outside the fragment).

What we actually would like to do is to keep the throw
code common, and jump to it from the various potentially
exception-generating VM instructions. Unfortunately, when
implemented directly, this usually still makes the exception-
generating VM instructions non-relocatable, because the di-
rect jump uses relative addressing on most architectures.

Our way to deal with this is to use an indirect jump instead
of the direct jump. Since exceptions are rarely thrown and,
when thrown, cost a lot of time anyway, the additional cost of
the indirect jump is negligible.

We implement the indirect call by putting the addresses
of the throw code in a local variable, and then jumping to it
with goto *. We have to take some care to confuse the con-
stant propagation7, otherwise gcc will “optimize” the indirect

7 We make the local variable appear to be non-constant by having an
assignment of another value to it in some code fragment that appears
to be reachable.
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branch back into a direct branch. An additional problem is
that we have to work around the bugs that recent gccs have in
this area: PR15242 and PR25285.

Both SableVM [GH03] and Casey et al.’s work [CEG05]
solve this problem in a way similar to our’s8, but they do not
discuss it in their papers, and do not provide data about the
effectiveness of this work.

5. Empirical results
5.1 Setup

The hardware we used in our experiments was a 2.2GHz
Athlon 64 X2 4400+, a 2.26GHz Pentium 4, and a 1GHz
Pentium III. The main difference between these CPUs for our
experiments is in the size of the instruction cache: while the
I-cache of the Athlon 64 is relatively large (64KB), it is much
smaller in the Pentium III (16KB) and the Pentium 4 (12K
microinstructions); so, negative effects of replication should
become visible on the latter CPUs first.

All systems were running under Linux 2.6.13 or 2.6.14.
We used SpecJVM98 as benchmark; we ran each benchmark
three times, and report the median result.

5.2 Superinstructions

We benchmarked a threaded-code Cacao interpreter without
any kind of superinstructions (plain), and the Cacao inter-
preter with dynamic superinstructions with all combinations
of the following variants:

throw Instructions that can throw an exception cannot (-)
or can (+) be integrated in a dynamic superinstruction
(Section 4).

simple/soph The approach used for dealing with quickening:
simple (Section 3.2) or our sophisticated solution (Sec-
tion 3.4).

replication Without or with replication (Section 2.2).

We compiled the Cacao interpreter with gcc-2.95. We used
GNU Classpath 0.19 as Java library for Cacao.

One thing worth noting is that the performance of the
Cacao interpreter is strongly influenced by how many VM
registers end up in real-machine registers. In the present case
we managed to get the most important VM registers (ip, sp,
TOS) in real-machine registers, but with more recent gcc
versions, or when compiling the interpreter into a dynamically
linkable library, the results are significantly worse. We used
the same interpreter executable for all these measurements,
with the variants determined by command-line options. This
ensures that all the variants use the same register allocation.

Figure 8, 9 show the timing results; for space reasons we
do not show the Pentium III results, but they are similar to the
Athlon 64 X2 results.

We see that the best variant of dynamic superinstructions
provides a huge speedup over plain threaded code, compa-
rable to the effects we saw for Forth [EG03]. The speedup
is even bigger on the Pentium 4 (which we did not measure
earlier), probably because this CPU has a relatively higher
branch misprediction penalty.

Looking at the variations, we see thatthrow has a large
performance effect. By contrast, both replication and our so-
phisticated quickening usually have a small and not consis-
tently positive effect on performance.

Our result for our sophisticated quickening is remarkable
because the results for SableVM show a large speedup of so-
phisticated quickening over simple quickening [GH03]. Our

8 Email communications with Etienne Gagnon and David Gregg.

explanation for this is that Cacao converts many instructions
(and apparently most of the frequently-executed ones) into
quick instructions already during the translation from byte-
code (so there is no need to quicken them at run-time and they
can be integrated into superinstructions like ordinary instruc-
tions), whereas SableVM goes through the slow-instruction
stage for all slow instructions in the bytecode.

Another interesting result is that, despite Java’s reputation
for bloat, replication does not hurt much on any of the bench-
marks, not even on the Pentium 4 and III with their small I-
caches. So at least the SpecJVM98 benchmarks have good
temporal locality. Implementing the non-replication option
cost only three hours of work, so it may still be worthwhile
(as an option) for CPUs that do not predict indirect branches
with BTBs.

5.3 Other systems

Figure 10 shows the performance of various other JVM sys-
tems, both interpreters and JIT/mixed-mode systems com-
pared to the Cacao interpreter with dynamic superinstruc-
tions.

The first interesting result is that already theplain Cacao
interpreter (without superinstructions) is quite competetive.
Surprisingly, it regularly beats even SableVM (which does use
dynamic superinstructions), probably thanks to better register
allocation.

The Cacao interpreter with dynamic superinstructions
(+throw soph +repl) is quite a bit faster, as discussed above.

JIT and mixed-mode systems are generally even faster
(except, usually, Kaffe). The most comparable of these is, of
course, the Cacao JIT compiler, which provides speedups by
up to a factor of 3.3. So, dynamic superinstructions provide
performance that is halfway between plain threaded code and
a JIT compiler, for much less than half the effort.

6. Related work
The work most closely related to our work is the work on dy-
namic superinstructions in the JVM in SableVM [GH03] and
by Casey et al. [CEG05, Section 5.4]. Both papers discuss the
problem of combining quickening with dynamic superinstruc-
tions; the sophisticated solutions they present are more com-
plex than our sophisticated solution (for a more detailed dis-
cussion, read Section 3.3). One significant difference is that
we use a JIT-style translation, which allows us to use quick
instructions right from the start in many cases, and this makes
the simple approach competetive, whereas SableVM always
goes through the slow instructions, and sees a big slowdown
from the simple approach. Another difference between our
work and the previous ones is that we discuss the issue of the
relocatability of instructions that can throw exceptions,and
we present results.

Choi et al. [CGHS99] point out the large effect that poten-
tial exception-throwing instructions have on a JIT compiler
and present some solutions in that context, but do not discuss
or solve the problems that are addressed in the present paper.

With static superinstructions the set of superinstructions is
fixed at interpreter build time (or earlier). Static superinstruc-
tions, and the related, but more complex concepts of super-
combinators [Hug82] and superoperators [Pro95, HATvdW99]
have been used for a long time in interpreters. This includes
an earlier version of the Cacao interpreter [EGKP02]; in that
work we did not encounter the conflict between superinstruc-
tions and quickening, because that version of Cacao (incor-
rectly) initialized classes on compiling, not on first execution.
So one of the advances of this work over the earlier work is
a proper solution for this conflict. The other important differ-
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ence between these earlier works and this work is that in this
work we look at dynamic superinstructions.

Dynamic superinstructions [RS96, PR98] (also known as
selective inlining) are a relatively recent invention. Replica-
tion [EG03] was developed to improve BTB indirect branch
prediction accuracy, and combines nicely with dynamic su-
perinstructions for improved performance with reduced im-
plementation effort. The present work applies these concepts
in the context of the JVM, and solves the problems that arise
in this context: combining dynamic superinstructions withthe
quickening optimization; and ensuring that VM instructions
that can throw exceptions can be included in superinstruc-
tions.

As a further step after dynamic superinstructions with
replication, one can generate code that includes immediatear-
guments and performs control flow directly instead of through
the threaded code, turning the system into a simple native-
code compiler. The work based on Forth [EG04b] showed a
nice speedup, but the work based on Tcl [VA04] did not show
a speedup over the baseline interpreter (without superinstruc-
tions or replication) for many application benchmarks, be-
cause it led to a large increase in I-cache misses. This problem
would certainly also arise in an implementation of dynamic
superinstructions with replication (where the resulting code is
typically a little bit larger than for the more advanced tech-
nique above). Therefore, we were a little worried, how well
dynamic superinstructions and especially replication would
work for the JVM; we answer these questions in the present
work.

7. Conclusion
Applying dynamic superinstructions and replication to the
JVM poses two challenges, which we solve in this paper:

• These optimizations conflict with thequickeningopti-
mization for the first-execution resolution of constant-
pool references. A simple approach just excludes slow
instructions from dynamic superinstructions. As our em-
pirical results show, this method works well enough in
the context of a JIT-style compiler with method granu-
larity, because it usually translates slow instructions to
quick instructions already when generating the dynamic
superinstruction.

We also present a more sophisticated approach that is eas-
ier to implement than previous sophisticated approaches
and is useful if the system does not use JIT-style transla-
tion to threaded code.

• Instructions that can throw an exception would normally
have non-relocatable real-machine code and could not be
included in dynamic superinstructions, leaving a lot of the
speedup potential from dynamic superinstructions unused.
We solve this problem by converting the direct branches
to the throwing code (which are the cause of the non-
relocatability) into indirect branches (which are relocat-
able).

We also present empirical results on a number of plat-
forms: The overall speedup we see is quite large, up to a
factor of 4, with a factor of about 2 being more typical. The
effect of making instructions that can throw exceptions relo-
catable is also quite large (up to a factor of 2). Replication
has a relatively small effect. A simple approach to quickening
combined with a JIT-style translation into threaded code with
dynamic superinstructions usually works about as well as a
sophisticated approach to quickening.
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