.NET Technologies 2006

University of West Bohemia
Campus Bory

May 29 — June 1, 2006

Short communication papers proceedings

Edited by

Jens Knoop, Vienna University of Technology, Austria
Vaclav Skala, University of West Bohemia, Czech Republic

.NET Technologies — Short communication papers conference proceedings

Editor-in-Chief: Vaclav Skala
University of West Bohemia, Univerzitni 8, Box 314
306 14 Plzen
Czech Republic
skala@kiv.zcu.cz
Managing Editor: ~ Vaclav Skala

Author Service Department & Distribution:
Vaclav Skala - UNION Agency
Na Mazinach 9
322 00 Plzen
Czech Republic
Reg.No. (ICO) 416 82 459

Hardcopy: ISBN 80-86943-11-9

CONFERENCE CO-CHAIR

Knoop, Jens (Vienna University of Technology, Vienna, Austria)
Skala, Vaclav (University of West Bohemia, Plzen, Czech Republic)

PROGRAMME COMMITTEE

Aksit, Mehmet (University of Twente, The Netherlands)

Giuseppe, Attardi (University of Pisa, Italy)

Gough, John (Queensland University of Technology, Australia)
Huisman, Marieke (INRIA Sophia Antipolis, France)

Knoop, Jens (Vienna University of Technology, Austria)

Lengauer, Christian (University of Passau, Germany)

Lewis, Brian,T. (Intel Corp., USA)

Meijer, Erik (Microsoft, USA)

Ortin, Francisco (University of Oviedo, Spain)

Safonov, Vladimir (St. Petersburg University, Russia)

Scholz, Bernhard (The University of Sydney, Australia)

Siegemund, Frank (European Microsoft Innovation Center, Germany)
Skala, Vaclav (University of West Bohemia, Czech Repubilic)
Srisa-an, Witawas (University of Nebraska-Lincoln, USA)

Sturm, Peter (University of Trier, Germany)

Sullivan, Kevin (University of Virginia, USA)

van den Brand, Mark (Technical University of Eindhoven, The Netherlands)
Veiga, Luis (INESC-ID, Portugal)

Watkins, Damien (Microsoft Research, U.K.)

REVIEWING BOARD

Alvarez, Dario (Spain)
Attardi, Giuseppe (Italy)
Baer, Philipp (Germany)
Bilicki, Vilmos (Hungary)
Bishop, Judith (South Africa)
Buckley, Alex (U.K.)
Burgstaller,Bernd (Australia)
Cisternino, Antonio (Italy)
Colombo, Diego (ltaly)
Comito, Carmela (ltaly)

Ertl, Anton,M. (Austria)
Faber, Peter (Germany)
Geihs, Kurt (Germany)
Gough, John (Australia)
Groesslinger, Armin (Germany)
Huisman, Marieke (France)
Knoop, Jens (Austria)

Kratz, Hans (Germany)
Kumar,C., Sujit (India)
Latour, Louis (USA)

Lewis, Brian (USA)

Meijer, Erik (USA)

Midkiff, Sam (USA)

Ortin, Francisco (Spain)
Palmisano, Ignazio (ltaly)
Pearce, David (New Zealand)
Piessens, Frank (Belgium)
Safonov, Vladimir (Russia)
Schaefer, Stefans (Australia)
Scholz, Bernhard (Australia)
Schordan, Markus (Austria)
Siegmund, Frank (USA)
Srinkant, Y.N. (India)
Srisa-an, Witawas (USA)
Strein, Dennis (Germany)
Sturm, Peter (Germany)
Sullivan, Kevin (USA)
Tobies, Stephan (USA)

van den Brand, Mark (The Netherlands)

Vaswani, Kapil (India)
Veiga, Luis (Portugal)

Contents

Bogardi-Mészoly, A., Levendovszky, T., Charaf, H.: Handling Session
Classes for Predicting ASP.NET Performance Metrics (Hungary)

Pocza,K., Biczo,M., Porkolab,Z.: Towards Effective Runtime Trace
Generation Techniques in the .NET Framework (Hungary)

Lowis,M., Méller,J.: A Microsoft .NET Front-End for GCC (Germany)

Pavlov,N., Rahnev,A.: Architecture and Design of Customer Support
System using Microsoft .NET technologies (Bulgaria)

Grosso,A., Podestagrave,R., Vecchiola,C., Boccalatte,A.: Design and
Implementation of a Grid Architecture over an Agent-Based Framework
(ltaly)

Lohmann,W., Riedewald,G., Tuhlke,T.: A Light-weight Infrastructure to
Support Experimenting with Heterogeneous Transformations (Germany)

Chilingarova,S., Safonov,V.: Sampling Profiler for Rotor as Part of
Optimizing Compilation System (Russia)

Shalyto,A., Shamgunov,N., Korneev,G.: State Machine Design Pattern
(Russia)

Alarcon,B., Lucas,S.: Building .NET GUIs for Haskell Applications (Spain)
Rabe,B.: Self-contained CLI Assemblies (Germany)

Saifi,M.El., Midorikawa,E.T.: PMPI: A Multi-Platform, Multi-Programming
Language MPI Using .NET (Brazil)

17

21

27

35

43

51

67

75

Handling Session Classes for Predicting ASP.NET
Performance Metrics

Agnes Bogardi-Mészdly Tihamér Levendovszky Hassan Charaf
BUTE, Department of Automation BUTE, Department of Automation BUTE, Department of Automation
and Applied Informatics and Applied Informatics and Applied Informatics
Goldmann Gyorgy tér 3. IV.em. Goldmann Gyorgy tér 3. IV.em. Goldmann Gyorgy tér 3. IV. em.
1111, Budapest, Hungary 1111, Budapest, Hungary 1111, Budapest, Hungary

agi@aut.ome.hu tihamer@aut.bme.hu hassan@aut.bme.hu

ABSTRACT

Distributed systems and web applications play an important role in computer science nowadays. The most
common consideration is performance, because these systems must provide services with low response time,
high availability, and certain throughput level. With the help of performance models, the performance metrics
can be determined at the early stages of the development process. The goal of our work is to predict the response
time, the throughput and the tier utilization of web applications, based on queueing models handling one and
multiple session classes, with MVVA and approximate MVA (Mean-Value Analysis) evaluation algorithm, in
addition to balanced job bounds calculation. We estimated the model parameters based on one measurement. We
implemented the MVA and the approximate MVA evaluation algorithm for closed queueing networks along
with the calculation of the balanced job bounds with the help of MATLAB. We have tested a web application
with concurrent user sessions in order to validate the models in ASP.NET environment.

Keywords
Web application, web performance, queueing models, performance prediction, and measurements.

performance of a web-based information system.
Statistical methods, hypothesis tests are used in order
to retrieve factors influencing the performance. An

1. INTRODUCTION
New frameworks and programming environments
have been released to aid the development of

complex web-based information systems. These new
languages, programming models and techniques are
proliferated nowadays, thus, developing such
applications is not the only issue anymore: operating,
maintenance and performance questions have
become of key importance. One of the most
important factors is performance, because network
systems face a large number of users, they must
provide high-availability services with low response
time, while they guarantee a certain level of
throughput.

These performance metrics depend on many factors.
Several papers have investigated various
configurable parameters, how they affect the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency — Science Press,
Plzen, Czech Republic.

.NET Technologies 2006 Short papers

approach [Sop05a] applies analysis of variance,
another [Bog05a] performs independence test.

The performance-related problems emerge very often
only at the end of the software project. With the help
of properly designed performance models, the
performance metrics of a system can be determined
at the earlier stages of the development process
[Smi90a] [SmiOlc]. In the past few years several
methods have been proposed to address this goal. A
group of them is based on queueing networks or
extended versions of queueing networks [Jai9la]
[Man02a] [Urg05a]. By solving the queueing model
using analytical and simulation solutions,
performance metrics can be predicted. Another group
uses Petri-nets or generalized stochastic Petri-nets
[Ber02b] [Kin99a], which can represent blocking and
synchronization aspects much more than queueing
networks. The third proposed approach uses a
stochastic extension of process algebras, like TIPP
(Time Processes and Performability Evaluation)
[Her00a], EMPA (Extended Markovian Process
Algebra) [Ber98a] and PEPA (Performance
Evaluation Process Algebra) [Gil94a].

ISBN 80-86943-11-9

Today one of the most prominent technologies of
web-based information systems is Microsoft .NET.
Our primary goal was to predict the response time of
ASP.NET web applications based on queueing
models handling one and multiple session classes,
because response time is the only performance metric
to which the users are directly exposed. Our
secondary goals were to predict the throughput and
the utilization of the tiers.

The organization of this paper is as follows. Section
2 covers backgrounds and related work. Section 3
presents our demonstration and validation of the
models in the ASP.NET environment, namely,
Section 3.1 describes our estimation of the model
parameters, Section 3.2 presents our implementation
of the MVA and the approximate MVA evaluation
algorithm along with the calculation of the balanced
job bounds, and Section 3.3 demonstrates our
experimental configuration as well as our
experimental validation of the models. Finally, we
draw conclusions.

2. BACKGROUNDS AND RELATED

WORK

Queueing theory [Jai91a] [Kle75a] is one of the key
analytical modeling techniques used for computer
system performance analysis. Queueing networks
and their extensions (such as queueing Petri nets
[Kou03a]) are proposed to model web applications
[Man02a] [Urg05a] [Urg05b] [Smi00b].

In [Urg05a] [Urg05b], a basic queueing model with
some enhancements is presented for multi-tier web
applications. An application is modeled as a network
of M queues: Qy,..,Qy (Figure 1). Each queue
represents an application tier, and it is assumed to
have a processor sharing discipline, since this
discipline closely approximates the scheduling
policies applied by most of the operating systems.

A request can take multiple visits to each queue
during its overall execution, thus, there are
transitions from each queue to its successor and its
predecessor as well. Namely, a request from queue
Q,, either returns to Q,_; with a certain probability

P, Or proceeds to Q,; with the probability
1- p,, . There are only two exceptions: the last queue
Qum » Where all the requests return to the previous
queue (py =1), and the first queue Q;, where the

transition to the preceding queue denotes the
completion of a request. S, denotes the service time

of arequestat Q,, (1<m<M).

Internet workloads are usually session-based. The
model can handle session-based workloads as an

.NET Technologies 2006 Short papers

infinite server queueing system Q,, that feeds the

network of queues and forms the closed queueing
network depicted in Figure 1. Each active session is
in accordance with occupying one server in Q. The

time spent at Q, corresponds to the user think time

Z. It is assumed that sessions never terminate.
Because of the infinite server queueing system, the
model captures the independence of the user think
times and the service times of the request at the
application.

Py P3 Pm
Z P2
§ c»—»O
z v, 51 4 S Sw
() » ') » —> ... —>
3 7 Q 1-p; Q 1-p; 1-py
; 1 2 Qwm
cb—bo
Lowee Qo

Figure 1. Modeling a multi-tier web application
using a queueing network

An enhancement of the baseline model [Urg05a] can
handle multiple session classes. Incoming sessions of
a web application can be classified into multiple (C)
classes. N is the total number of sessions, and N,

denotes the number of sessions of class c, thus,
c
N = ZHNC . A feasible population with n sessions

means that the number of sessions within each class ¢
is between 0 and N, and the sum of the number of

sessions in all classes is n. In order to evaluate the
model, the service times, the visit ratios, and the user
think time must be measured on a per-class basis.

The model can be evaluated for a given number of
concurrent sessions N. A session in the model
corresponds to a customer in the evaluation
algorithm. The MVA (Mean-Value Analysis)
algorithm for closed queueing networks [Jai9la]
[ReiB0a] iteratively computes the average response
time of a request and the throughput. The algorithm
introduces the customers into the queueing network
one by one, and the cycle terminates when all the
customers have been entered.

In addition, the utilization of the queues can be
determined from the model, using the utilization law
[Jai9la] [Kle75a]. The utilization of the queue m is
U, = XV,S,,, where X is the throughput and V,, is
the visit number (the number of visits to Q,, made

by a request during its processing).

The MVA algorithm is only applicable if the
queueing network is in product form, namely, the
network has to satisfy the conditions of the job flow

ISBN 80-86943-11-9

balance, one-step behavior, and device homogeneity.
Furthermore, the queues are assumed either fixed-
capacity service centers or infinite servers, and in
both cases exponentially distributed service times are
assumed.

MVA is a recursive algorithm. Handling one session
class for large values of customers, or if the
performance for smaller values is not required, MVA
can be too expensive computationally. If we handle
multiple session classes, the time and space
complexities of MVVA are proportional to the number
of feasible populations, and this number rapidly
grows for relatively few classes and jobs per class.
Thus, it can be worth using an approximate MVA
algorithm [Rai9la] [Sin05a] or a set of two-sided
bounds [Rai91a] [Zah82a].

These bounds referred to as balanced job bounds are
based on the issue that a balanced system has a better
performance than a similar unbalanced system. A
system without a bottleneck device is called a
balanced system, in other words, the total service
time demands are equal in all queues. The balanced
job bounds are very tight, the upper and lower
bounds are very close to each other as well as to the
real performance. D is the sum of total service
demands, D,,=D/M is the average service

demand per queue, and D, Iis the maximum
service demand per queue.

mw{Nme—Z,D+(N—DDng;;Z}
+

(N-1)D

<R(N)<D+(N _1)Dmax m

N

(N-1)D

N

< X(N) <min ! , 5

" 2D+ (N -1)Day o
+

The model validation presented in [Urg05a] was
executed in a J2EE environment, while in this paper
the models are demonstrated and validated in an
ASP.NET environment. In order to improve the
model, it must be enhanced to handle the limits of the
four thread types in .NET thread pool, in addition to
the global and the application queue limit [Mei0O4a],
since in previous work [Bog05a] we have proven by
statistical methods [Bra87a], that the limits of the
four thread types, namely, the maxWorkerThreads,
maxlOThreads, minFreeThreads, minLocalRequest-

.NET Technologies 2006 Short papers

FreeThreads, along with the global and application
queue limit, namely, the requestQueueLimit, app-
RequestQueueLimit parameters have a considerable
effect on performance, in other words, they are
performance factors.

3. CONTRIBUTIONS

We have implemented a three-tier ASP.NET test web
application (Figure 2). Compared to a typical web
application, it has been slightly modified to suit the
needs of the measurement process.

Presentation layer ASP.NET web forms

Business logic layer | C# classes
 Data access layer =~ ADO.NET
| Database layer | SQL server

Figure 2. The test web application architecture

Thereafter, we have demonstrated and validated the
models in the ASP.NET environment. Firstly, we
have estimated the input values of the model
parameters from one measurement. Secondly, we
have implemented the MVA and the approximate
MVA algorithm, along with the calculation of the
balanced job bounds with the help of MATLAB, and
we have evaluated the model. Finally, we have tested
a typical web application with concurrent user
sessions, comparing the observed and predicted
values in order to validate the models in the
ASP.NET environment.

We expect that the baseline model and the model
handling multiple session classes can be validated in
ASP.NET environment. The thread pool settings and
the queue limits are common in the two
environments (J2EE and .NET), but the concrete
threads (four types, their partitioning in the thread
pool) and queues (two types, their placement and
configuration) are specific to .NET. Thus, a general
model for the two environments with specific
extensions is expected, which is more accurate than
the baseline model or the model handling multiple
session classes. The algorithms presented in
[Urg05a] could not be reused directly, because they
must be extended.

Estimation of the Model Parameters

The web application was designed in a way that the
input values of the model parameters can be
determined from the results of one measurement.
Each page and class belonging to the presentation,
business logic or database was measured separately.

ISBN 80-86943-11-9

Handling one session class, the input parameters of
the model are the number of tiers, the maximum
number of customers (simultaneous browser
connections), the average user think time Z , the
visit number V,, and the average service time S,

for Q, (1<m<M).

During the measurements the number of tiers was
constant (three). The maximum number of customers
means that the load was characterized as follows: we
started form one simultaneous browser connection
then we continued with two, until 52 had been
reached. In order to determine the average user think
time we averaged the sleep times in the user scenario.
To determine V,, we summed the number of

requests of each page and class belonging to the
given tier in the user scenario. To estimate S, we

averaged the service times of each page and class
belonging to the given tier.

Handling multiple session classes, the input model
parameters are the number of tiers, the number and
the maximum number of customers, respectively, on

a per-class basis, the average user think time Z, the
visit number V., and the average service time S, .
for Q, (1<m<M,1<c<C).

There were two classes. The number of sessions for
one class was constant 10, while the number of
simultaneous browser connections for the other class
was varied up to a maximum number of customers.
The load was characterized as follows: we started
from one simultaneous browser connection then we
continued with 5, 10, until 70 had been reached. To
determine Z, the sleep times in the user scenario

were averaged per class. In order to determine V

m,c
the number of requests of each page and class
belonging to the given tier and class in the user

scenario was summed. In order to estimate S_m,c1 the

service times of each page and class belonging to the
given tier and class were averaged.

Model Evaluation

The conditions described in Section 2 have been
satisfied: the number of arrivals to a queue equals the
number of departures from the queue, the
simultaneous job moves are not observed, since the
queues have processor sharing discipline, and finally,
the service rate of a queue does not depend on the
state of the system in any way except for the total
queue length. In addition, the queues Q,;,Q,,Q5 are

fixed-capacity centers, and the Q, queue is an

infinite server. Therefore, the MVVA algorithm can be
applicable to evaluate the model (Figure 1) of the test

.NET Technologies 2006 Short papers

web application (Figure 2), because the model is in a
product form.

We implemented the MVA and approximate MVA
algorithm for closed queueing networks, in addition
the calculation of the balanced job bounds with the
help of MATLAB. Our MATLAB scripts can be
downloaded from [Mat06a].

When we handle one session class, the inputs of the
script are the number of tiers, the maximum number
of customers, the average service times, the visit
numbers, and the average user think time. When we
handle multiple session classes, the inputs the
number of tiers, the number and the maximum
number of customers, respectively, on a per-class
basis the average service times, the visit humbers,
and the average user think time. The scripts compute
the response times, the throughputs and the tier
utilizations up to a maximum number of customers.
MVA provides a recursive way, approximate MVA
computes these in a few steps, while balanced job
bounds method completes in one step.

Model validation

Finally, our experimental configuration and
experimental validation of the model in ASP.NET
environment are demonstrated.

The web server of our test web application was
Internet Information Services (11S) 6.0 with
ASP.NET 1.1 runtime environment, one of the most
proliferated technologies among the commercial
platforms. The database management system was
Microsoft SQL Server 2000 with Service Pack 3.
The server runs on a 2.8 GHz Intel Pentium 4
processor with Hyper-Threading technology enabled.
It had 1GB of system memory; the operating system
was Windows Server 2003 with Service Pack 1. The
emulation of the browsing clients and measuring the
response time were performed by ACT (Application
Center Test), a load generator running on another PC
on a Windows XP Professional computer with
Service Pack 2 installed. It ran on a 3 GHz Intel
Pentium 4 processor with Hyper-Threading
technology enabled, and it also had 1GB system
memory. The connection among the computers was
provided by a 100 Mb/s network.

ACT [Ald03a] is a well-usable stress testing tool
included in Visual Studio .NET Enterprise and
Acrchitect Editions. The test script can be recorded or
manually created. Virtual users send a list of HTTP
requests to the web server concurrently. Each test run
takes 2 minutes and 10 seconds warm-up time for the
load to reach a steady-state. In the user scenario,
sleep times are included to simulate the realistic
usage of the application.

ISBN 80-86943-11-9

When we handle one session class, while the number
of simultaneous browser connections varied, the
average response time and throughput per class were
measured (Figure 3).

‘ —+— Response time (5) —— Throughput (175 ‘

—

[T Y N S R e

Mﬁa#*ﬂvh+mvﬁw -
P Waniadinast
s prore?

1 5 9 13 17 21 25 29 33 37 41 45 49
Simultaneous hrowser connections

Figure 3. The observed response times and
throughputs handling one session class

Handling multiple session classes, there were two
classes of sessions: a database reader and a database
writer. The number of simultaneous browser
connections of one class was fixed at 10, while the
number of simultaneous browser connections of the
other class varied, and we measured the average
response time and throughput per class (Figure 4).

—+— Response time - read (5) —&— Fesponse time - write (5)
—— Throughpt - read (1/5) —s— Throughput - write (152)

Reader sumultaneous browser connections - 10 writer

Figure 4. The observed response times and
throughputs handling multiple session classes

The results presented in Figure 3 and in Figure 4
correspond to the common shape of response time
and throughput performance metrics. Increasing the
number of concurrent (reader) clients, the (reader)
throughput (served requests per second) grows
linearly, while the average (reader) response time
advances barely. After the saturation the (reader)
throughput remains approximately constant, and an
increase in the (reader) response time can be
observed. In the overloaded phase, the (reader)
throughput falls, while the (reader) response time
becomes unacceptably high.

Handling one session class, we experimentally
validated the model to demonstrate its ability to

.NET Technologies 2006 Short papers

predict the response time and the throughput of
ASP.NET web applications with MVA (Figure 5),
and approximate MVA algorithm. We have found
that the model handling one session class predicts the
response time and throughput acceptably.

‘ —+— Ohzerved —— Predicted |

—_

=

=

=

=
1

Average response time (m§

!

IDD IIE
15 9 13 17 21 25 20 33 37 41 45 49 2
Simultatie ous browser cofnections E

10 - ?D
fﬂ 3

—

I 5 9 13 17 21 25 20 33 37 41 45 49

= Throughput 1/
"""“*_

Figure 5. The observed and predicted response
times and throughputs handling one session class
with MVA

Moreover, from the model, the utilization of the tiers
can be predicted. The results are depicted in Figure
6. The presentation tier is the first that becomes
congested. The utilization of the database queue is
the second (29%), and the utilization of the business
logic queue is the last one (17%).

| —+— Presentation —s— Business Logic —«— Database ‘

100 4

]
=

=)
=

&

Ttilizati on (%)

)
=
Il

=
Il

1 5 9 13 17 21 35 29 33 37 41 45 49
SAimultaneous browset connections
Figure 6. The tier utilization handling one session
class with MVA

Thereafter, we demonstrate that the response time,
the throughput and the tier utilization of ASP.NET
web applications move within tight upper and lower
bounds (Figure 7, Figure 8). We have found that the

ISBN 80-86943-11-9

response time, the throughput, and the queue
utilization from the observations fell into the upper
and lower bounds. Thus, the balanced job bounds
handling one session class predict the response time,
the throughput, and the utilization of the tiers
acceptably.

|—0—Observed —— Nlin —-—Ma.x|

o

]

=

(==
1

e
o
3000 W
o e
el

0 T T T T T T T T T T T T T T T T

1 5 9 13 17 21 25 29 33 37 41 45 49
Bimualtaneous browser connections

& 32
=
[R |

Avverage Tesponse time (ms

|

Thooughput (155

e

I
.»’

13 9 13 17 21 25 20 33 37 41 45 49
Figure 7. The observed and predicted response

times and throughputs handling one session class
with balanced job bounds

b

Throughput (1/4)
=

=

—+— Pregentation —=— Business Logic —+— Database

—+— Presentation Wlin =~ —— Business Logic Ilin —e— Database Wiin

—o— Presentation Iax ~ —s— Business Logic Iax —e— Database Iiax
100 1
o0

a0 Z/ W
& 70 f
él:’ﬁu {
2 50 /
= 2 /
20—

10 &
0

g
T

1 5 9 13 17 21 25 20 33 37 41 45 49
Simultaneous browser connections
Figure 8. The tier utilization handling one session
class with balanced job bounds

Finally, the model handling multiple session classes
was experimentally validated. We have found that
the model predicts the response time and throughput
with approximate MV A acceptably (Figure 9). While
the presentation tier is congested, the utilization of
the database queue is about 84%, and the utilization
of the business logic queue is about 16% (Figure 10).
We have found that the response time, the
throughput, and the utilization from the observations
as well as from the approximate MVA fell into the

.NET Technologies 2006 Short papers

upper and lower bounds. Hence, the balanced job
bounds predict the response time, the throughput,
and the utilization acceptably (Figure 11).

—+— Chzerved read —— Predicted read
—s— Chszerved write —— Predicted wite

%

.

]
—

Average responge time (€

._.
[)
(]
iy
(]
thmic scale

Reader sinmltaneous hrovwrser connections
- 10 wrriter

ﬁﬁ.ﬂpﬂgﬂ

/

1)
ar
ol

afl

104

Log

—_

i
=

N T T T T T T T T T T T T T T 1

+
E3
1 20 40]
Figure 9. The observed and predicted response

times and throughputs handling multiple session
classes with approximate MVA

—s— Presentation read ~ —+— Business logic read —a— Database read

—+— Presentation write —s«— Business logic wiite —=— Diatabase write

100 4
Y m—m——a—

e

=3 =)
= =
/j

Ttilizati on %)

A

Reader simultaneous browser connections - 10 writer

Figure 10. The tier utilization handling multiple
session classes with approximate MVA

4. CONCLUSIONS AND FUTURE
WORK

We have demonstrated and validated queueing
models handling one and multiple session classes in
ASP.NET environment, namely, the input model
parameters were estimated from one measurement,
the MVA and approximate MVA evaluation
algorithm, in addition the calculation of the balanced
job bounds were implemented with the help of
MATLAB, and a measurement process was executed
in order to experimentally validate the models.

ISBN 80-86943-11-9

—=— Ohserved —— Approvmate MVA
—s#— Lower bound —— Upper hound
10 7
E
=
g
(=]
&
l&p 1
b
-4 2 .
i i
I:I,3 T T T T T T T T T T T T T T 1 w
1 20 40] =
Reader sittaltaneous browser connections E
- 10 writer g
10 - &
[}
—
g
45
=
)
=
[_.
I:I,3 T T T T T T T T T T T T T T 1
1 20 40]

Figure 11. The observed and predicted response
times and throughputs handling multiple session
classes with balanced job bounds

Our results have shown that the models handling one
and multiple session classes predict the response time
and the throughput acceptably with MVA and
approximate MVA evaluation algorithm, along with
the calculation of balanced job bounds. Furthermore,
the presentation tier is the first to become congested.
The utilization of the database tier is the second one,
and the utilization of the business logic queue is the
last one.

In order to improve the model, the limits of the four
thread types in .NET thread pool, the global and
application queue limits must be handled along with
other features. These extensions of the model and the
validation of the enhanced models, as well as the
validation of the models in ASP.NET 2.0
environment are subjects of future work.

5. REFERENCES

[Ald03a] Aldous, J., and Finnel, L. Performance
Testing Microsoft .NET Web Applications.
Microsoft Press, 2003.

.NET Technologies 2006 Short papers

[Ber98a] Bernardo, M., and Gorrieri, R. A Tutorial
on EMPA: A Theory of Concurrent Processes
with Nondeterminism, Priorities, Probabilities
and Time. Journal of Theoretical Computer
Science, Vol. 202, pp. 11-54, 1998.

[Ber02b] Bernardi, S., Donatelli, S., and Merseguer,
J. From UML Sequence Diagrams and
Statecharts to Analysable Petri Net Models. In
Proceedings of ACM International Workshop
Software and Performance. Rome, Italy, pp. 35-
45, 2002.

[Bog05a] Bogardi-Mészoly, A., Szitas, Z.,
Levendovszky, T., Charaf, H. Investigating
Factors Influencing the Response Time in
ASP.NET Web Applications. Proceedings of
Lecture Notes in Computer Science, 3746, pp.
223-233, 2005.

[Bra87a] Brase, C.H., and Brase, C.P.
Understandable Statistics. D. C. Heath and
Company, 1987.

[Gil94a] Gilmore, A.S., and Hillston, J. The PEPA
Workbench: A Tool to Support a Process
Algebra-Based Approach to Performance
Modelling. In Proceedings of Seventh
International Conference Modelling Techniques
and Tools for Performance Evaluation, pp. 353-
368, 1994.

[Her00a] Herzog, U., Klehmet, U., Mertsiotakis, V.,
and Siegle, M. Compositional Performance
Modelling with the TIPPtool. Journal of
Performance Evaluation, Vol. 39, pp. 5-35, 2000.

[Jai91a] Jain, R. The Art of Computer Systems
Performance Analysis. John Wiley and Sons,
1991.

[Kin99a] King, P., and Pooley, R. Derivation of Petri
Net Performance Models from UML
Specifications of Communication Software. In
Proceedings of 25th UK Performance Eng.
Workshop, 1999.

[Kle75a] Kleinrock, L. Queueing Systems, VVolume
1: Theory. John Wiley and Sons, 1975.

[Kou03a] Kounev, S., Buchmann, A. Performance
Modelling of Distributed E-Business
Applications using Queueing Petri Nets.
Proceedings of IEEE International Symposium on
Performance Analysis of Systems and Software,
Awustin, Texas, USA, 2003.

[Man02a] Manescé, D.A., and Almeida, V.A.F.
Capacity Planning for Web Services. Prentice
Hall, 2002.

[Mat06a] Our MATLAB scripts can be downloaded
from - http://avalon.aut.bme.hu/~agi/research/
[MeiO4a] Meier, J.D., Vasireddy, S., Babbar, A., and
Mackman, A. Improving .NET Application

Performance and Scalability (Patters &
Practices). Microsoft Corporation, 2004.

ISBN 80-86943-11-9

http://avalon.aut.bme.hu/~agi/research/

[Rei80a] Reiser, M., and Lavenberg, S.S. Mean-
Value Analysis of Closed Multichain Queuing
Networks. Journal of Association for Computing
Machinery, Vol. 27, pp. 313-322, 1980.

[Sin05a] Sinclair, B., Mean Value Analysis.
Computer Systems Performance Handout, 2005.

[Smi90a] Smith, C.U. Performance Engineering of
Software Systems. Addison-Wesley, 1990.

[Smi00b] Smith, C.U., Williams, L.G. Building
responsive and scalable web applications.
Computer Measurement Group Conference,
Orlando, FL, USA, pp. 127-138, 2000.

[Smi01c] Smith, C.U., and Williams, L. G.
Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software.
Addison-Wesley, 2001.

[Sop05a] Sopitkamol, M., and Menascé, D.A. A
Method for Evaluating the Impact of Software

.NET Technologies 2006 Short papers

Configuration Parameters on E-Commerce Sites.
In Proceedings of the ACM 5th International
Workshop on Software and Performance, Palma,
Illes Balears, Spain, pp. 53-64, 2005.

[Urg05a] Urgaonkar, B. Dynamic Resource
Management in Internet Hosting Platforms.
Dissertation, Massachusetts, 2005.

[Urg05b] Urgaonkar, B., Pacifici, G., Shenoy, P.,
Speitzer, M., and Tantawi, A. An Analytical
Model for Multi-tier Internet Services and its
Applications. Journal of ACM SIGMETRICS
Performance Evaluation Review, Vol. 33, No. 1,
pp. 291-302, 2005.

[Zah82a] Zahorjan, J., Sevcik, K.C., Eager D.L., and
Galler, B. Balanced Job Bound Analysis of
Queueing Networks. Journal of Communications
of the ACM, Vol. 25, No. 2, pp. 134-141, 1982.

ISBN 80-86943-11-9

Towards Effective Runtime Trace Generation
Techniques in the .NET Framework *

Krisztian P6cza Mihaly Biczé Zoltan Porkolab

E6tvos Lorand University E6tvos Lorand University E6tvos Lorand University

Fac. of Informatics, Dept. of Fac. of Informatics, Dept. of Fac. of Informatics, Dept. of
Programming Lang. and CompilersProgramming Lang. and CompilersProgramming Lang. and Compilers

Pazmany Péter sétany 1/c. Pazmany Péter sétany 1/c. Pazmany Péter sétany 1/c.
H-1117, Budapest, Hungary H-1117, Budapest, Hungary H-1117, Budapest, Hungary

kpocza@kpocza.net mihaly.biczo@axelero.hu gsd@elte.hu

ABSTRACT

Effective runtime trace generation is vital for emstanding, analyzing, and maintaining large-saglgications.
In this paper two cross-language trace generatiethods are introduced for the .NET platform. Th&-no
intrusive methods are based on the .NET Debuggiddraofiling Infrastructure; consequently, neitadditional
development tools, nor the .NET Framework SDK guieed to be installed on the target system. Bagithods
are applied to a test set of real-size executatsidscompared by performance and applicability.

Keywords

Runtime trace generation, .NET, Debugger, Profflesgram slicing

1. INTRODUCTION the development machines. What makes things even
more complicated is that incompatibility issues Imig
also arise in the case of programs and components
that run on a deployment server or a client compute
Further problematic situations include cases when t
deployment servers are in a Network Load Balancing
(NLB) Cluster, or the isolation level on the IIS lwe

In order to prepare reliable applications, it is server is too restrictive.

impo_rtar_1t to investigat_e programs _usir_lg a debuggerThe most common research area where low level
application, and examine the application log or the runtime traces are used in the academic world is

ﬁwvs?::fclt?fns;%evgﬂgbﬁggggest)t/isntgT]f;rghc?thT;;geoude”am'c program slicing [Agr9la, BesOla,_ PécOSa,
be detected. However, there are many situationsTlp%a’ Zha03§1]. The. result of program slicing can
where a simble debugg,er fails to find the erroneousaISO be usgd in the industry. The orlglna_l goal of
instructions and variables. One common example isprogram slicing was .to map meptal abstractions made
when the error occurs in.a production environment by programmers during debugglng to a reduced set of

statements in source code. With the help of program

;V:\i:ﬁnvr\;zn&:re '?oOt a(;lg:gﬁ? toth|gstatl)lua de[VMe[a?gg]ae]m slicing programmers are able to identify bugs more
g " precisely and at a much earlier stage.

Furthermore, multithreaded applications or
applications producing incorrect behavior only unde In this article we show two different methods for
heavy load often may not be debugged correctly ongenerating source code statement level runtimesrac
for applications hosted by the Microsoft .NET

; : . Framework 2.0. In their current form our solutions
this work for personal or classroom use is gramtébout
fee provided that copies are not made or distribute are incompatible with older versions (1.0, 1.1ytw
profit or commercial advantage and that copies bemr -NET Framework but they can be ported back. None
notice and the full citation on the first page. Topy Of our methods requires the modification of the
otherwise, or republish, to post on servers oethistribute ~ original source code nor the Runtime. Consequently,
to lists, requires prior specific permission andidee. these solutions do not depend on either Rotor (the
Shared Source implementation of the .NET

Generating and analyzing runtime traces for large
scale enterprise applications is a common task to
investigate the cause of arising malfunctions and
accidental crashes.

Permission to make digital or hard copies of alpart of

.NET Technologies 2006

Copyright UNION Agency — Science Press, Framework), Mono, or any other open source
Plzen, Czech Repubilic. software.
.NET Technologies 2006 Short papers 9 ISBN 80-86943-11-9

* Supported by GVOP-3.2.2.-2004-07-0005/3.01

None of the methods requires the installation ef th

development tools or the Microsoft .NET Framework I\i;rr?;;;r
SDK on the target machine, and since .NET is a

cross-language programming environment, they can ¢

be used to generate trace for programs writtemyn a o
.NET programming language. DESIE e
The first trace generating method uses the .NET ¢

Debugger which we presented in [P6c05] in order to
utilize it in our dynamic slicing algorithm, whildne
second approach exploits the capabilities of tHET.N Figure 1: CLR Debugging architecture

Profiling APl and IL code rewriting [MIkO3]. It Wil into applications through Active Scripting [Pell.
clear up that only the second method is suitable fo NET Debugging Services is not only able to debug
large scale multithreaded applications, and thet fir every code compiled to IL written in any high level
method is sufficient only for toy programs. language, but it also provides debugging capadsliti

In the next section we describe the main concepts a for all modern Object Oriented languages.

the architecture of th&lET Debugging and Profiling The .NET CLR supports two types of debugging
Infrastructure. In the 3" section we will describe the modes: out-of-process and in-process.

method that uses theéNET Debugger to generate
trace, while in the 4 section the second solution
based on theNET Profiler and IL code rewriting .)
technique will be presented. In thd Section we In-process debuggers are used for inspecting e ru
compare these methods and present performancdme state of an application and for collecting
figures with different applications. We primarily Profiling information. These kinds of debuggers
focus on tracing statements of the original source (Profilers) do not have the ability to control the
code that appear in the execution path, and will no Process or handle events like stepping, breakpoints
give detailed description on how to identify vatey ~ ©tC.

However, in the last section we show how the The CLR Debugging Services are implemented as a
prepared solutions can be complemented to identifyset of some 70+ COM interfaces, which include the

Profiler

Out-of-process debuggers run in a separate process
providing common debugger functionality.

variables. design-time application, the symbol manager, the
publisher and theprofiler.
2. .NET DEBUGGING AND The design-time interface is responsible for handling
PROFILING INFRASTRUCTURE debugging events. It is implemented separated from

the CLR while the host application must reside in a
different process. The application has a separate
thread for receiving debugger events that run é th

context of the debugged application. When a debug
event occurs (assembly loaded, thread started,

All 20+ .NET languages compile to an intermediate
language code called Common Intermediate
Language (CIL) or simply Intermediate Language
(IL). The compiled code is organized into assemblies. X e
Assemblies are portable executables - similar ite di Préakpoint reached, etc.) the application haltstaed

- with the important difference that assemblies are dePugger thread notifies the debugging service

populated with .NET metadata and IL code instead of rough callback functions.

normal native code. The .NET metadata holds The symbol manager is responsible for interpreting
information about the defined and referenced the program database (PDB) files that contain data
assemblies, types, methods, class member variablessed to describe code for the modules being
and attributes [ECMA]. IL is a machine-independent, executed. The debugger also uses assembly metadata
programming language-independent, low-level, that also holds useful information described earlie
assembly-like language using a stack to transfex da The PDB files contain debugging information and are
among IL instructions. The IL code is jitted by the generated only when the compiler is explicitly fexic
.NET CLR (Common Language Runtime) to to do so. Besides enabling the unique identificatib
machine-dependent instructions at runtime. program elements like classes, methods, variables

With the release of .NET, a new Debugging API has and statements, the metadata a_nd the_ program
also been introduced in the Microsoft world. Script database can also be used to retrieve their ofigina
engines can now compile or interpret code for the POSition in the source code.

Microsoft Common Language Runtime (CLR) The publisher is responsible for enumerating all
instead of integrating debugging capabilities digec running managed processes in the system.

.NET Technologies 2006 Short papers 10 ISBN 80-86943-11-9

The profiler tracks application performance and In the implementation first we create the process t
resources used by running managed processes. Thee run but do not start it. A Debugger event isedi
profiler runs in-process of the inspected applarati at every module load. When the module containing
and can be used to handle events like module andhe user entry point (Main method) is loaded weaset
class loading/unloading, jitting, method calls, ®ge breakpoint at this entry point. After loading the
related to exceptions and garbage collection process and setting the breakpoint we let the

performance. application run. At this point the process is altyua

created and th@©nCreateProcess event is raised by

3. .NET DEBUGGER WAY TO the Debugger. In the handler of this event we Iset t
INSTRUMENT APPLICATIONS state of the application being debugged to running

and start a while loop which is allowed to run whil

' . the application is alive. When the breakpoint
To employ theDebugger first we set a breakpoint to previously set is encountered th@nBreakPoint

the entry point of our application and we step glon debug event is raised. In the handler of this debug

e? ch.exedcutt)lng statement tgntll the encli. The step (0 event anAutoResetEvent called eventComplete is set
S e_p-ln) ebugging operation goes along SEqUeNce,,y \ve wait foeventModState to be set. The handler
points in the original source code. Sequence points

f lete D t tly th
which can be identified using metadata and the0 OnStepComplete Debugger event does exactly the

L o same.
program database divide the statements in high-leve])
programming languages. Afterwards the while loop does the following three

The CLR Debugger API callellCorDebug [Stall] is things:) o
implemented by native COM interfaces. It can be 1. Waits for theeventComplete event which is
directly reached from managed or unmanaged code set by the Debugger event handlers

but there are also higher level managed wrapper 2. doSepln operation is called as described later
classes used by MDbg [Stall], the managed debugger

part of the Microsoft .NET Framework 2.0 SDK with) N
full source code. Between setting theventComplete event and waiting

. . for the eventModState event thedoSepln method
Using these interfaces we can start a process for

. . uns which requires/sets the following informatimin
debugging and register our managed or unmanageciavery step:
callback functions. As mentioned earlier, querying - .)
run-time information of program variables is anothe 1. The IL instruction pointer

3. Sets theeventModState event

important application. 2. The current function token and module
The structure of our solution: 3. Which sequence point belongs to the current IL
1. Low level managed COM Wrapper instruction
2. High level managed API of the previous 4. The target of the next step
3. Application employing the previous to generate The IL instruction pointer, the function token ahe
runtime execution trace module can be easily queried from tBerFrame

object which can be queried from the current thread
The sequence points are required to output theakctu
source line and source column to the trace and to
define the next step using tiSepRange method of
The low level managed COM Wrapper®(layer) CorSepper. The sequence points and the target of the
represents a COM marshaling code that is usedlto ca next step are static properties, therefore we cache
native Debugging API functions and is written in IL them so that they can be queried by the
It resides in the corapi2 folder in MDbg's souroeet GetSequencePoints and GetRanges method of the

The high level managed API"layer) provides an qurrentISjmboIMethod inte'rface according!y. At the
easy-to-use higher level managed wrapper to thefirst a}nd last sequence point of.each functionaged
underlying layer and it is written in C# 2.0. function enter and leave event in the trace.
Sometimes it uses properties instead of methods, an Unfortunately, this approach is not able to colyect
dispatches native debugging events as managedtandle multithreaded application because it is not
events. It resides in the corapi folder of MDbg's possible to step from one thread to another and the
source tree. debugger does not notify us about thread switches.

Our solution based on these APIs can be downloaded
from http://avalon.inf.elte.hu/src/netdebug/

The F' and the ¥ layer of our solution is not
implemented by us rather we borrowed it from MDbg
that is freely usable and provided by Microsoft.

.NET Technologies 2006 Short papers 11 ISBN 80-86943-11-9

4. NET PROFILERWAYTO represents the unique function identifier and the

INSTRUMENT APPLICATIONS action code (1 for E(nter), 2 for L(eave)). Sinbe t
tracer is prepared for multithreaded applicatioms,

)) ~ lock on a static object and output the uniqgue managed
Basically, this approach explores all sequencetpoin thread identifier at every step. At intra-function
in all methods of all classes and all modules ef th sequence points the trace method gets only the firs

calls defined in an outer assembly at every se@ienc jgentifier or action code.

point at IL code level [Mik03].

The .NET Profiler provides a COM interface called
ICorProfilerCallback?2 exposing a set of callbacks
which can be implemented as a COM class. The
implementer is not allowed to use any managed
programming language, otherwise the Profiler would
profile itself. Consequently we have chosen the C++
language to demonstrate this approach.

We have used some other COM interfaces also like)

ISymUnmanagedReader, 1SymUnmanagedMethod, Through the DefmeAssem' nyRgf method of the
) : IMetaDataAssemblyEmit interface, the

IMetaDatalmport and ICorProfilerinfo2 while the finETYDEREBYN d the DefineMember Ref

standard classes implementing these interfaces wen!? Inelyp yName an € Ineviember

instantiated using Microsoft's ATL (Active Template methods ofMetaDataEmit2 |nte'rface we are able to
Library). add these references to the in-memory metadata of

assemblies and receive thdmken values. When

From the 70+ Profiler events provided by the adding these references they are specified simply b
ICorProfilerCallback2 interface we have used only their names, the function token is used to call the
two: ModuleLoadFinished andClassLoadFinished. belonging function at the corresponding sequence

points.

If we intend to call a method placed in an outer
module we have to reference the assembly containing
that method, the class and the method itself. We
decided not to modify the original program in any
way so we have to add these references to the in-
memory metadata of every assembly at runtime. The
best place to do this is thiloduleLoadFinished
Profiler event.

4.1. Tracing Methods. | mplementation

and Referencing 4.2. Internal Representation of Native

In this section we discuss the tracing methodsnee a .NET Primitives

using, how they log and the way we reference them. In this section we will give a general overviewtoé
internal representation of .NET methods, IL

We created a module assembl called . . . :
(Y) instructions and Exception Handling Clauses

TracerModule and placed a static class callBdcer

in it containing only static methods. [Mik03].
. . 4 . . 4.2.1. Internal representation of .NET methods
public static void DoFunc(uint startLine,
uint - startColumn, uint endLine, uint endColumn, Every .NET method has a header, IL code and may
g I, G e have extra padding bytes to maintain DWORD
try alignment. Optionally, it may have an SEH
lock (lockObj) (Structured Exception Handling) header and
. Exception Handling Clause.
phar act = E' ;
e Cton=2) Tiny method FAT method
sw.WriteLine(’ "{6}T{5H{4}HO0}:{1}-{2}:{3}"
startLine, startColumn, endLine,
endColumn, act, functionID,
Thread .CurrentThread.ManagedThreadld);
}
}
catch {}
o Heade
Listing 1: Trace method IL Code
. . SEH Heade
Listing 1 illustrates the trace method executed at Ex. Hand. Clauss
every method entry (first sequence point executed) Paddin; byte
and leave (last sequence point, which is always Figure 2: Method formats
executed unless exception has been thrown). A .NET method can be ifiiny and inFat format. A

Tiny method is smaller than 64 bytes, its stacktldep
does not exceed 8 slots, contains no local vasable
SEH header and exception handlers. Fat methods

The first four parameters represent the positiothef
sequence point in the source code, the fifth par@me

.NET Technologies 2006 Short papers 12 ISBN 80-86943-11-9

overrun one or more of these criterions. 2. Upgrading method and instruction format

3. Insertion of instrumentation code to the IL code-

4.2.2. IL instruction types
flow

IL instructions can be divided into several catéggmpor
based on the number and type of parameters they use 4.

- have no parameter (dup: duplicates the element 5.
on top of the stack; Idc.i4.-1,...Idc.i4.8: load an
integer on stack (-1,...8))

- has one integer (8, 16, 32, 64 bits long)
parameter (Idc.i4 <int>: load the integer
specified by <int> on stack; br <param>, br.s
<reloff>: long or short jump to the relative
address specified by <reloff>)

Recalculating offsets and lengths
Storing new representation in binary format

4.3.1. Parsing binary method data
At first we determine the sequence points of the
method being parsed using tiiEtSequencePoints
method ofl SymUnmanagedMethod. This procedure
determines the IL- and original source code-level
start and end offsets for every sequence point. The
first byte of the header describes whether the oteth
- has one token parameter (call <token>: calls theis tiny or fat, the function is parsed using this
method specified by <token>; box <token>: box information.
a value type with type <token> into an objeCt; The || -level offsets of sequence points were
ldfld <token>: load the field specified Dy getermined previously, now the binary data haseto b
<token> of the stack-top class on stack) assigned to them and the IL instructions have to be
- multi-parameter instructions (switch <count> identified based on the binary data at every sexpien
<reloffl>...<reloffcount>: based on the stack- point. Every category of IL instructions featured i
top value representing the relative offset 4.2.2 is able to parse itself and determine its
parameter index jumps to the chosen relative parameters (integer value, token value, multiple
offset) parameters). Furthermore it can also generate doth
human readable and a binary representation (along

4.2.3. Exception Handling Clauses with its length) of i.

Every Fat method can have one or more exception

handlers. Every EHC (Exception Handling Clause) {static bool IsFirstLess(int valuel, int value2)
has a header and specifiestitsandhandler starting if (valuel < value2)
(absolute) offset and length. An EHC can be also in Console WriteLine("Yes, first is less" X

Tiny andFat format based on the number of bytes the return - true ;

offset and length properties are used to describe.

Obviously each EH offset and length specifies a !
sequence point beginning and ending position in the

IL code-flow.

return false ;

Listing 2: Simple C# Method

Consider the simple method in Listing 2. In Table 1
4.3. Let the Game Begin: IL Code the corresponding sequence points are shown
Rewriting identified by their IL offset, the start and endsets

Our goal is to change the IL Code of methods beforePY line and column numbers.

they are jitted to native code. We have chosen the Index IL offset Start offset End offset
ClassLoadFinished Profiler event to perform this 0 0 25.1 25,2
operation because in this early stage we are able t[1 1 26,7 26,27
enumerate all methods (with th&numMethods 2 9 Oxfeefee, Oxfeefee,
method ofIMetaDatalmport interface) of the class 3 12 27,2 27,2
just loaded and rewrite the IL code of a whole thunc 4 13 28,7 28,47
of methods. The binary data of a method can be| 5 24 29,7 29,1¢
retrieved by the GetlILFunctionBody method of 6 28 31,° 31,1¢
ICorProfilerInfo2. After IL code rewriting, necessary 7 32 32,1 32,2

space for the new binary data can be allocatedyusin
the Alloc method oflMethodMalloc and the binary

Table 1: Sequence Point Offsets

Sequence point at index 2 petted FeeFee does not
have a real source code level offset just helptous
jump out if the predicate fails.
Slng]e_-method bmgry df"‘ta qperatlons and IL code The IL code in Listing 4 illustrates the internal
rewriting can be divided into five steps: representation of method in Listing 2. The numkbgrin
1. Parsing binary data and storing it in custom data on the left indicates the IL offsets while the narh
structures right to the branch instructionsbrfruess, br.s)

data can be set with tHgetILFunctionBody method
of ICorProfilerInfo2.

.NET Technologies 2006 Short papers 13 ISBN 80-86943-11-9

represents absolute target offset, relative tastjsét, and stored in the same type of container where the
target sequence point and target instruction iratex original instructions are stored.

the target sequence point. Parametetsisf andcall The parameters of the method to be called are tbade
instructions are of type string and functions taken .. ithe stack using thédc.i4 instruction (opcode
respectively. The absolute target offset of branch 0x20) in order of parameters and theken ID of
instructions identified by target IL instructionsh&o method is given as the parametercall instruction

be calculated from the instruction offset and the (opcode 0x28). The possible instruction (Idc.idbf,

relative target offset. Idc.i4.2) at index 25 surely having a one byte afgco
If exist, the EHCs are also parsed [Mik03]. (0x17 or 0x18) loads 1 for enter or 2 for leave on
stack respectively.
0: nop
1:Idarg O BYTE insertFuncinst[31];
2:|darg 1 insertFuncinst[0] = 0x20; /lidc.i4, start line
3clt insertFuncinst[5] = 0x20; /Ndc.i4, start column
5:1dc.i4 0 insertFuncinst[10] = 0x20; /Ndc.i4, end line
6: ceq insertFuncinst[15] = 0x20; /Ndc.i4, end column
8: stloc 1 insertFuncinst[20] = 0x20; /1'ldc.i4, func. id
9: Idloc 1] insertFuncinst[25] = 0x0; //'ldc.i4.1 or Idc.i4.2
10: brtrue.s 28 (16) [tsp: 6, til: 0] insertFuncinst[26] = 0x28; I/ call
12: nop *((DWORD *)(insertFunclnst+27)) =
13: Idstr 1879048193 tracerDoFuncMethodTokenlID;
18: call 167772181 o] .
gi: nop Listing 3: Binary representation of trace method call
L ldc.l
25: stloc 0 : :
26: br.s 32 (4) [tsp: 7, tl: 0] The above parameters are dynamically substituted
gg I(1|(:.|400 depending on the data of the current sequence point
30- br.s 32 (0) [tsp: 7, til: 0] and a unique function ID (generated by an own
gg lri?co counter) while the function token can be presetesin

it is module (and not function) dependent.

Listing 4: Human Readable Output of Internal In the intra-function sequence points only the ddta

Method Fepresent.atic . sequence points is substituted and the thread ID is
4.3.2. Upgrading method and instruction format queried at each step, the function ID and other

In case ofTiny method format the header is upgraded jnformation are irrelevant here. The substituted
to represent aFat format because we can easily pingry data is parsed and converted to IL instonsti
overrun the limitations ofiny format. and inserted into the beginning of the IL code
The short branch instructions (brtrue.s, br.s, lnge, container of every sequence point.

etc.) are converted to their long pairs (brtrue, br 4.3.4. Recalculating offsets and lengths
bge.un, etc.) because we cannot guarantee that thg‘. A :

. . . L ince the IL instruction flow is altered by insedi
relative -branch lengths will remain within - the extra instructions the target offsets)gf brgnch

numeric representation barriers after inserting esom . . .
instrumentation instructions between the branch |nstruct|ons. and the Stf"‘” offset and length priier
of Exception Handling Clauses have to be

instructions and their targets.
recalculated.

Tiny Exception Handling Clauses.are also upgradedA target offset of a branch instruction can pointtte
to store offset and length values in DWORD format . " .) ;
first instruction of a sequence point and can ptont

because the limitation of original WORD (offsetyian other than the first instruction. If the originaiabch

.B VTE (Iength) can be. easily overrun after target offset pointed to the first instruction of a
instrumentation code insertion. .
sequence point then we change the target offgbeto

4.3.3. Instrumentation code insertion newly created first instruction in order to run
Now we have theToken IDs of Trace methods, instrumentation after jumps also. If the original
queried the IL and source code level offsets andbranch target pointed to other then the first
lengths of sequence points and converted the binaryinstruction then we leave it to target to the same
data to upgraded IL instruction flow. Now we instruction as before.

examine how the methods callBwFunc (in Listing aAny IL instruction in our representation can caétal
1) and its pair calledDoTrace can be parameterized jts |ength, so we can easily recalculate the ndsets

and called. While DoFunc is intended to use at of || instructions and sequence points for the bhan
method enter and leave, DoTrace handles intra-targets also.

function sequence points. . .
9 b The offset and length properties of Exception

As we have mentioned earlier, IL instructions are Handling Clauses can be calculated similarly.
able to parse themselves therefore we create a BYTE
array to store binary data which can be easilyquhrs

.NET Technologies 2006 Short papers 14 ISBN 80-86943-11-9

0:ldc.i4 25 112: |dc.i4 47
5:1dc.i4 1 117: call 167772194
10: Idc.i4 25 122: |dstr 1879048193
15: Idc.i4 2 127: call 167772181
20: Idc.i4 3 132: nop

25:1dc.i4 1 133: Idc.i4 29

26: call 167772195 138: Idc.i4 7

31: nop 143: Idc.i4 29
32:1dc.i4 26 148: |dc.i4 19
37:1dc.i4 3 153: call 167772194
42:1dc.i4 26 158: Idc.i4 1
47:1dc.i4 23 159: stloc 0

52: call 167772194 160: br 197 (32)

57: Idarg O 165: Idc.i4 31

58: Idarg 1 170: Idc.i4 3

59: clt 175: Idc.i4 31
61:Idc.i4 0 180: Idc.i4 16

62: ceq 185: call 167772194
64: stloc 1 190: Idc.i4 0

65: Idloc 1 191: stloc O

66: brtrue 165 (94) 192: br 197 (0)
71:1dc.i4 27 197: Idc.i4 32
76:1dc.i4 3 202: Idc.i4 1
81:Idc.i4 27 207: Idc.i4 32
86:Idc.i4 4 212:Idc.i4 2

91: call 167772194 217:1dc.i4 3

96: nop 222:|dc.i4 2
97:1dc.i4 28 223: call 167772195
102: Idc.i4 7 228: Idloc 0

107: Idc.i4 28 229: ret

Listing 5: Altered IL code of IsFirstLess method
4.3.5. Soring the instrumented method

Now we have the instrumented method represented in

our data structures. The job is to store the dadilla
code back in binary format following the
specification. The binary data can be restoreché¢o t
CLR by using the method described in 4.3.

5. COMPARISON OF METHODSAND
TEST RESULT

In the previous sections we have presented two
different methods for generating runtime execution
trace of .NET-based applications.

None of the methods require us to modify the
applications being tested. Both methods can be
accomplished to produce trace information about the
value of accessed variables of any type, and iigenti
reference variables. With the help of the Debugger,
reference variables can be identified by their ©bje
Id, but obtaining this Id requires many time
consuming operations [Stall]. Using the Profildi’s
code rewriting capabilities it is also possible to
identify reference variables, and much faster than
with the Debugger. A value type variable is always
identifiable by the sequence point occurrence i wa
created in.

The Debugger is unable to notify us about thread
switches and the step-in operation is unable tgojum
through threads therefore it is not possible todian
multithreaded applications. To the contrary, ughng
Profiler we are able to log the thread’'s ID at gver
sequence point of the application.

In order to make the Debugger work we have to
attach it to the process we intend to instrumeot. T

.NET Technologies 2006 Short papers 15

use the Profiler, it is required to register itaa€OM
component using theegsvr32 command and set two
environment variables in the process, user or Byste
context to enable the Profiler in that context. Set
Cor_Enable Profiling to 0x1 andCor_Profiler to the
GUID or ProglD of our object implementing the
| CorProfilerCallback? interface.

We demonstrate the performance of the methods
through four applications. The first two use orgyvf
class library calls so they are intended to meathee
pure performance. The third application uses much
more but very short, while the last one uses mawdy a
long class library calls.

The character of the four applications:

1. Counter is a simple application that calculates the
sum of numbers from 1 to 10000 and prints a dot
at each step on the screen by implementing the
addition in a separate function and uses only few
class library calls, but a lot of integer operasion
which are implemented by native IL instructions.

2. ITextSharp is an open source PDF library. In our
test we created a basic PDF document. It uses
very few class library calls and a lot of string
operations which are implemented by native IL

instructions.

3. DiskReporter recursively walks the directory tree
from a previously specified path and creates an
XML report. In our test 3141 directories and
12257 files were enumerated. It uses more, but
short library calls (xml node and attribute

operations, file property query).

Mohican is a small HTTP server using multiple

threads for serving requests. In our test Mohican
served a 1.3MB HTML document referencing 20

different pictures. It uses many and long class
library calls (mainly network and file access).

4,

Profiler
trace

Debugger
trace

101:53:9200:01.34
98:11.3202:33:5(

24:04.4200:11.74

App. name [Normal run No. of SPs|

00:00.1
100:01:02

00:05.46

110,034
2,825,241

316,196

Counter
ITextShary
Disk-
Reporte
Mohican

00:01.3Y nl/a 00:01.8¢
Table 2: Test results

Table 2 shows the performance comparison of the
normal application run, the run under the control o
the Debugger and the Profiler in mm:ss.ii formdte T
last column contains the number of source code
statements executed.

D 175,434

It can be seen that applications containing fevgscla
library calls perform poor under the control of ot
the Debugger and the Profiler, while applications
containing many class library calls perform better.

ISBN 80-86943-11-9

i

Load — -
oa N 595G =

c\SourcetMohicanMohicanCoe\RequestParsercs - ©:\SourceiMohicaniMohicanCommeniResponseBase. cx ||:: 5 ource’M ohicantMohicanCore\R espor 4 | 3

TimeSpan diff = DateTine.Now.Subtract(StartTine); e

if(diff.TotalMilliseconds > ConfigInformation. SendTinedutInMilliSeconds)

return 3endRetVal.TimeOutExceeded;

t

SendSelect.Clear();
SendSelect. ddin_Socket) ;

try{Socket.Select(null, Sendielect, null, 500%1000):}
catchi{return SendRetVal.SocketException:} _J

if(%endSelect.Count == 1)
{

int zentnow = 0;

try |
catch {return SendRetVal.SocketException:;}

if(zentnow > 0)
StartTime = DateTime.Now;

Totalfent+= Sentnaow;
*

*

)

catch

{

return SendRecVal.UnknownException;
H

return SendRetVal.O0E: =
i
< | JJ

Figure 3: Visualizing the trac
Applications containing long class library callgél which we currently do not support like exceptions,
any real world enterprise application) perform well nested classes, anonymous methods, generic types
under the control of the Profiler. Unfortunatelyeth and methods, application domains.
Debugger could not be tested (because of
multithreading). 7. REFERENCES

The runtime trace generated by the Profiler can be]
visualized using a Winform application as shown in [Agr91a] H. Agrawal and J. R. Horgan. Dynamic
Figure 3 (the trace of Mohican). The code fragment ~ Program slicing. In SIGPLAN Notices No. 6,
in green (darker) shows the statement executed at a _ Pages 246-256, 1990. ;
arbitrary step of the application. Statements ifoye [Bes01a] A. Beszeédes, T. Gergely, Zs. M. Szabo, J.

(lighter) have already been executed, while white CSirk, T. Gyiméthy. Dynamic slicing method for
statements have not yet been traversed. maintenance of large C programs, CSMR 2001,
pages 105-113.

6. CONCLUSION AND FURTHER [ECMA] ECMA C# and Common Language
WORK Infrastructure Standards
http://msdn.microsoft.com/netframework/ecma/

. . [Mar03a] K. Maruyama, M. Terada, Timestamp
In this paper we have shown how to utilize the .NET Based Execution Control for C and Java

Debugging and Profiling Infrastructure to generate Programs, AADEBUG, 2003

runtime execution trace of large applications and [Mik03] A. Mikunov, Rewrite MSIL Code on the Fly
analyzed both method using programs of different ™ ., yno ' NET Framework Profiling API, MSDN
characteristic. We can conclude that although the magazine, issue September 2003,

method based on the Debugger is easier to http://msdn.microsoft.com/msdnmag/issues/03/0

implement, the Profiler is much more suitable for 9/NETProfilingAPI/

tracing large scale, multithreaded applications. [P6cO5] K. Pocza, M. Biczo, Z. Porkolab. Cross-
Therefore, we plan to advance on the Profiler way. language Program Slicing in the .NET
The first and most important thing is to extend our Framework, Journal of .NET Technologies, 2005

framework to identify variables in the order asdbc [Stal] Mike Stall's .NET Debugging Blog,
variables, method arguments and class variables http://blogs.msdn.com/jmstall2004-2006

appear. We can insert instrumentation code aftgr an [Tip95a] F. Tip, A survey of program slicing
variable load and before any variable store opmmnati techniques. Journal of Programming Languages,
The on-stack-top variables can be duplicated by the 3(3):121-189, Sept. 1995.

dup IL instruction in order to consume them in the [Zha03a] X. Zhang, R. Gupta, Y. Zhang. Precise

parameter of a trace method call. dynamic slicing algorithms. Proc. International
There are some language elements and CLR features Conference on Software Engineering, pages 319-
329, 2003

.NET Technologies 2006 Short papers 16 ISBN 80-86943-11-9

A Microsoft .NET Front-End for GCC

Martin v. LOowis

Hasso-Plattner-Institut
fur Softwaresystemtechnik GmbH
Postfach 900460
+49 331 5509 239

Martin.vonLoewis@hpi.uni-potsdam.de

Jan Moller

Hasso-Plattner-Institut
fur Softwaresystemtechnik GmbH
Postfach 900460

Jan.Moeller@hpi.uni-potsdam.de

ABSTRACT
In the past, embedded systems developers have been severely constrained in their choice of programming
languages. Recent advancements in processing power and memory availability allow for new techniques. We
present an extension to the GNU Compiler Collection (GCC) that offers the expressiveness of all Microsoft

NET languages to embedded systems.
Keywords

Common Intermediate Language, GNU Compiler Collection, GCC.

1. INTRODUCTION

Embedded systems are known for the severe resource
constraints in terms of memory size and clock speed.
For that reason, developers traditionally use
assembler language and C for such systems [Bar99].
Compared to current desktop and server
programming languages such as Java, C#, Python,
Visual Basic, and others, the typical development
environment is tedious to use, and the development is
less productive.

There are two primary aspects of the “desktop”
programming languages that we consider interesting
for embedded developers as well: object-orientation
and safety. With object-orientation, the software may
become more maintainable, as the encapsulation
mechanisms allow for better modularization and
abstraction.

By “safety”, we refer to the reliability aspects that are
typically associated with interpreters: the run-time
system of the language will make sure that invalid
operations (such as out-of-bounds accesses to arrays)
cause a well-defined program termination (typically
through an exception), instead of causing undefined
behavior (such as memory corruption). Safe
programming languages reduce the number of bugs
that remain in the software after testing, as errors are
reliably detected. They also simplify the process of
locating the source of a bug, as the error is often
detected right after it occurred.

Unfortunately, both object-orientation and safety
come at significant run-time cost. Interpreters
execute program code much slower than similar
compiled programs. Alternatively, just-in-time
compilation is used to speed-up execution [Kra98].

.NET Technologies 2006 Short papers

17

Unfortunately, just-in-time compilation is itself
expensive and causes unpredictable run-time
behavior. Furthermore, a just-in-time compiler needs
to be developed for each new target architecture.

As an alternative, we present an approach which
allows static compilation of .NET programs for
embedded targets. We briefly discuss different
aspects of this solution in the remainder of this paper.

2. GCC

The GNU Compiler Collection integrates different
programming languages (C, C++, Java, Ada, ...) for
various microprocessor architectures [GS04]. Among
the supported targets are many desktop and
embedded processors; GCC is known for relatively
easy extensibility to new architectures [Sta95]. While
it originally focused on the C language only, it has
recently been extended to object-oriented and safe
languages, such as Java [Bot97].

In GCC, the source code of the input language is
transformed into an intermediate representation',
which is then processed in optimization passes. The
result of the compilation is then output as an
assembler source code file for the target machine.
This assembler file is processed with assemblers,
loaders, etc. for the target system to produce an
executable program.

The design of GCC is engineered towards
extensibility. Support for new microprocessors can

! More precisely, there are two internal representations: the
tree structure, and the Register Transfer Language
(RTL).

ISBN 80-86943-11-9

be added relatively easy by describing the processor
in a machine definition. Using this machine
definition, the compiler can convert the internal
representation (RTL) into assembler code of the
target system. This assembler code is then further
processed in an assembler to object files, and
eventually combined with a linker into executable
files and libraries.

A] A]
c GCC X86
\A f f asm

A] A]
Cet > »| mips
asm

Java/v Front-Ends Back-Ends ™[am
asm

Figure 1. GCC Architecture

In the last few years, the focus in extensibility moved
towards integration of new languages into GCC, and
into integration of new optimization algorithms. To
support a new front-end, several aspects have to be
considered in the compiler framework:

e Integration of the front-end into the build
process,

e Integration of input and output file handling,

e Management of symbol tables,

e Representation of the actual code of the
program,

e Debugger support, and

e Optimization.

For each of these aspects, GCC defines interfaces
which a new front-end must use. For example, to add
a new front-end to the build process of the compiler
itself, one must create a subdirectory in the source
tree, and add files such as Make-lang.in and config-
lang.in. This will automatically result in another
option for the GCC --enable-languages switch, so that
an administrator can enable or disable the build of
this front-end. Likewise, by adding a file lang.opt to
the source directory, the GCC command line option
processing framework will automatically support
language-specific compiler options.

To integrate a front-end into the actual processing
flow in the compiler, the compiler framework defines
certain hook functions which might be filled out by
the front-end. For example, the compiler framework
will invoke a parser call-back, which then should
process all input files for the source language.

To support symbol tables and code representation
uniformly across languages, GCC defines a set of
data structures and utility functions. In the parser, the
front-end will use the utility functions to build a
program representation, which is then passed to the

.NET Technologies 2006 Short papers

18

back-end passes of the compiler. As an example, the
function build_decl is used to create a function
declaration object. This object is enriched, through
further function calls, with the actual body of the
function. Eventually, rest_of compilation must be
called, which performs the optimization (if
requested), and output the assembler code.

Both optimization and debugger support in the
compiler need the help from both the front-end and
the back-end. The front-end needs to annotate the
tree with programming-level knowledge (e.g.
whether the address of an object was ever taken), and
the back-end needs to specify how many cycles each
instruction consumes, so that the instruction
scheduler can pick the most efficient of several
alternative instruction sequences.

3. The CIL front-end

The Common Intermediate Language (CIL)
[ECMO02a] is a platform-independent representation
of object-oriented programs. It was designed to
support a wide range of languages. It focuses on the
C# language [ECMO02b], but also supports variants of
Java, C++, Visual Basic, Eiffel, and other languages.
CIL builds the core of the Microsoft .NET
environment.

Our front-end transforms CIL code into the internal
representation, which GCC then optimizes and
outputs for the target system. Similar to the Java
front-end, we use symbolic execution to convert the
stack machine that CIL assumes into the tree
structures of GCC.

W

x86
asm

.Net IL
—> .
Compiler Assembly|

GCC
A
h8/300
asm

™~

Figure 2. Integration of the Common
Intermediate Language into GCC

Unlike the Java front-end, we have no plans to
process source code directly. Instead, we use the IL
library from the DotGNU Portable NET framework
[Dot05] to load IL assembly files into memory, and
traverse the meta-data structures in the assembly. As
a result, we do not have a traditional parser in our
front-end. Instead, we define our own traversal
algorithm, which processes all classes in the
assembly in sequence. For each class, we build the
layout of the class and the structure of the virtual
method table, and emit code for each method.

The IL front-end can, in principle, support all aspects
of the semantics of .NET programs, except for the
dynamic loading of additional assemblies which had

ISBN 80-86943-11-9

not been compiled through this front-end. In the
current implementation, only a subset of the .NET
concepts is available; see section 5 for details.

4. Target Systems

In principle, it is possible to support all features of
the .NET platform that don’t require dynamic
insertion of behavior. That is, all instructions of the
intermediate language can be converted into
sequences of assembler instructions of the target
system. Through generation of data structures into
the resulting assembler code, introspection of objects
is possible, using the standard APIs. Even dynamic
loading of assemblies is possible, as long as the
assembly to be loaded was compiled using GCC in
advance.

For the remaining features, we plan to support
interoperability with the Mono software [DB04]. To
achieve an integration of Mono, we need to use the
same application binary interface (ABI) that mono
uses, with respect to calling conventions, and
representation of meta-data in memory.

At the same time, we also like to target embedded
systems. At the moment, our primary target is the
Lego Mindstorms hardware [Sat02], which uses the
Renesas H8/300 processor [Ren03]. On this system,
memory is limited. For our .NET implementation,
this means primarily that we have to be very
selective in the subset of the .NET library that we can
support — the entire platform library just won’t fit
into 32k of main memory. In this environment, we
may also have to accept further limitations. However,
depending on the application’s needs, we believe that
all features of the virtual machine can be supported.
The more challenging features are floating point
computations (which require emulation in software,
as the chip has no hardware floating point support),
exception handling, and garbage collection. At this
point, we cannot yet predict what costs in terms of
memory and processor cycles these features will
require.

In addition to the Lego Mindstorms, we also target
Windows CE; in particular CE PC.

5. Current Status
Currently, only a small fraction of the CIL features
are supported, namely

e primitive data types (bool, byte, short, int, float,
double)

e classes, including static and instance attributes
and properties, as well as inheritance,

e static and instance methods, including
parameters, local variables, and constructors,

e arrays and strings,

e delegates

.NET Technologies 2006 Short papers

19

e arithmetic operations, and

e control flow operations (conditional
unconditional branch instructions).

Using this subset, we have been able to develop

small control programs for the Lego Mindstorms

platform.

and

On the Windows CE system, we were able to create

control programs which meet hard real-time
constraints.
Work to provide additional features, such as

interfaces, and exception handling, is in progress.
Our current implementation is available from
http://www.dclLhpi.uni-potsdam.de/
research/lego.NET/release.htm.

6. Conformance

This implementations of the CLI aims to comply
with the Kernel Profile of the ECMA specification
335. Support for the Compact Profile would be
largely possible through integration of library
implementations, such as the ones provided with
Mono. To support the Compact Profile, the biggest
challenge is the support for reflection, in particular,
for the dynamic loading of assemblies. For that to
work, a byte code interpreter or just-in-time compiler
is needed in addition to the statically-compiled code.

With respect to the Kernel Profile as specified in
[ECMO02c], section 4.1 (Features Excluded From

Kernel Profile), our implementation has the
following properties:
e Floating Point is supported if the target

processor supports it or an emulation library is
available.

e Non-vector Arrays are not currently supported;
adding support would be straight-forward,
though.

e Reflection is currently not supported, but work
to add support for reflection is in progress. Due
to the overhead of reflection, support for
reflection will be selectable on a per-application
basis. See above for a discussion of dynamic
assembly loading.

e Application domains are currently not
supported; however, concepts needed to support
them (e.g. per-appdomain static class variables)
are already implemented.

e Remoting is not supported; no support is
planned.

e Varargs functions, frame growth, and filtered
exceptions are currently not supported; no
support is planned. Code that tries to use these
features is rejected in the compiler

ISBN 80-86943-11-9

As shown in section 5, many features of the CLI are
currently unimplemented. Most notably, there is no
support for verification: We assume that all
assemblies passed to the compiler are verifiable.
However, at this point, we don’t foresee any aspects
of the CLI metadata or instruction semantics that are
unsuitable for our implementation approach. For
example, verification would be implemented most
naturally in the compiler itself, causing no run-time
overhead.

7. Related Work

Cygnus Solutions (now Redhat) has developed a
Java front-end [GCJ05], supporting both Java source
code and byte code. The CIL front-end has taken
much inspiration from the latter.

Microsoft currently develops the Phoenix framework
[Lef04], which appears to be similar in architecture
to GCC, and also appears to contain a .NET front-
end. Very little information about Phoenix has been
published so far.

8. REFERENCES

[Bar99] M. Barr. Programming Embedded Systems
in C and C++. O’Reilly, 1999.

[Bot97] P. Bothner. A Gcee-based Java
implementation. IEEE Compcon’97.

.NET Technologies 2006 Short papers

20

[DB04] E. Dumbill, N.M. Bornstein. Mono: A
Developers Notebook. O’Reilly, 2004.

[Dot05] DotGNU Portable.NET.
http://www.dotgnu.org

[ECMO02a] ECMA-335. Common Language
Infrastructure, Partition III: CLI Instruction Set.
Dec. 2002.

[ECMO02b] ECMA-334. C# Language Specification.
Dec. 2002.

[ECMO02c] ECMA-335. Common Language
Infrastructure, Partition IV: Library. Dec. 2002.

[GCJ05] The GNU Compiler for the Java™
Programming Language.
http://gcc.gnu.org/java

[GS04] B.J. Gough, R.M. Stallman(Forword). An
Introduction to GCC. Network Theory Ltd, 2004.

[Kra98] A. Krall. Efficient JavaVM Just-in-Time
Compilation. PACT, 1998.

[Lef04] J. Lefor. Phoenix as a Tool in Research and
Instruction. July, 2004.

[Ren03] Renesas Technology Corp..H8/300
Programming Manual. 2003.

[Sat05] J. Sato. Jin Sato’s Lego Mindstorms. No
Starch Press, San Francisco, 2002.

[Sta95] R.M. Stallman. Using and Porting GNU CC.
Free Software Foundation, 1995.

ISBN 80-86943-11-9

Architecture and Design of Customer Support
System using Microsoft .NET technologies

Asen Rahnev
PU Paisii Hilendarski
236 Bulgaria Blvd.
Bulgaria, Plovdiv 4003

assen@pu.acad.bg

Nikolay Pavlov
PU Paisii Hilendarski
236 Bulgaria Blvd.
Bulgaria, Plovdiv 4003

npaviov@kodar.net

ABSTRACT
This paper describes the four-tiered architecture, technologies, functionality and electronic services for the
participants in the process of customer support with a software system for customer support — Integrated Help-
Desk Center (IHDC), based on an object-oriented framework for development of distributed applications.

There exist multiple solutions for customer support management. Many of them do not provide services to end-
clients, do not support vertical organizational structure or lack relevant multi-language support for international
clients.

The participants in the process of customer support in IHDC are: clients, local partners, local branches, central
office and development department. Multilingual support is provided to enable operation over different
counties. IHDC consists of: Customer Relationship Management; System for registering and management of
tickets; Management of application known issues; Management of application updates.

The system is developed with Microsoft .NET Framework. Its infrastructure is build upon Microsoft Windows
Server 2003, Microsoft SQL Server 2000 and Microsoft Information Server. The four tiers are: database server,

application server, functional objects and thin client interface — Windows-based and browser-based.

Keywords

Four-tiered architecture, object-oriented framework, customer support, Microsoft .NET Framework.

1. INTRODUCTION

High-quality customer support services have been
always identified as an important element of the
overall package of software services for customers,
crucial for the mission of every software company.
Therefore, successful software companies strive to
provide increasingly higher quality services to their
customers, and seek ways to achieve this by
automating and optimizing their processes. One of
the necessary elements is to have a centralized
repository of all customer-related issues, and to have
an established process for handling those issues, to
ensure that no problem is neglected or processed
inadequately. The dynamic of the modern world

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency — Science Press,
Plzen, Czech Republic.

.NET Technologies 2006 Short papers 21

creates new economic and cultural environments,
thus putting further difficulties before companies,
which operate across country boundaries. Some of
those problems include multi-level company
hierarchical structures and multi-national fields of
operation.

There exists a wide range of software solutions for
customer support. Many of them are not suited for
the latest requirements for quality customer support,
because they lack support of certain features.
Common disadvantages are:

e Support of horizontal company structure only.
e No multi-language support.

e Insufficient integration with existing office
packages.

e Insufficient functionality for Customer
Relation Management (CRM), or integration
with third-party CRM systems.

e Cannot operate in a distributed environment,
for example - over the Internet.

e Do not support built-in declarations of hours
and costs.

ISBN 80-86943-11-9

This paper describes a Customer-Support System
(CSS), which is aimed to enable multi-national
companies provide high-quality support services to
their customers by offering an affordable and flexible
solution, which overcomes the limitations stated
above.

A major advantage of the proposed CSS is the
automated translation-request system. This system
monitors and assigns translation tasks to appointed
personnel, when information is crossing language
boundaries within the organization. For example, a
call from the client needs attention from a higher
level of support, where responsible employees do not
speak the client’s language. In this case the system
assigns all the information, as provided by the client,
to a translator. Also, all information, which is to be
communicated back to the client, is translated before
being made available to the client.

The architecture of the Customer Support System is
four-tiered and is based on an object-oriented
framework for development of distributed
applications. The system infrastructure and is build
upon Microsoft Windows Server 2003, Microsoft
SQL Server 2000 and Microsoft Information Server.
The four tiers are: database server, application server,
functional objects and thin client. The system is
implemented using technologies, based on Microsoft
NET Framework.

2. ROLES IN CSS

The design of CSS identifies the following roles for
participants in the process of customer support:

e Central office (management).
e Branches

e Partners
e Development
e (Clients

Central office represents the management of the
company, providing the services. This role performs
the highest level of support and supervision of the
performance of all other levels. Central office is the
only instance, which communicates with
development, thus providing a centralized and
controlled information flow towards development.

Branches are head offices for countries. There is
only one branch per country. Branches provide
support for all customers from the corresponding
country. Branches also serve as a bridge between
clients and the Central Office, and enhance
communication flow to and from the Central Office
by providing translations whether necessary.

Partners are agents within one country, and
subordinates of the corresponding branch. Partners
provide first level of support, education and other

.NET Technologies 2006 Short papers

22

services like installations, configuration on-site,
demonstrations. They communicate most actively
with existing clients and potential clients.

Development is a department, which provides
software services like bug fixing, product extensions,
new versions, etc. Issues, which cannot be solved
otherwise, are ultimately sent to development by the
Central Office. Development never has a direct
contact with clients and other levels.

The following diagram represents the structure of the
roles, as defined by CSS.

Caniral
Ciffics
Branch 1 Branchi Devekprisznl
I
Parinar 1 Parinar 2
|
[
Client 1 Client 2 | | Client 3 Client 4

Figurel. Roles Structure in CSS

Figure 1 gives an example of the relations between
different roles in CSS. The direct link between
Branch 2 and Client 4 means that the role of a
Partner is not required and can be skipped in certain
cases. For example, in a relatively small market
partners may not contribute to the efficiency of the
organization and, therefore, will not be established.

Clients are the end-customers of the organization.
They contact with the organization always via a
Partner or a Local Branch.

3. SERVICES FOR PARTICIPANTS IN
CSS

Services for Clients

Clients in CSS are provided with a browser-based
Internet application — thin client, with which they can
do the following:

o Enter new issues (tickets).

e Attach documents and files to tickets.

e Review status of tickets.

e Provide additional information on existing
tickets on request.

o Close tickets when solved.

e Review existing known issues.

e Review new releases, fixes and release notes.

ISBN 80-86943-11-9

Tickets are entered under pre-defined categories, and
with different urgency level. Clients enter a
description of their problem / question, and can
attach an external file — office document, screenshot,
etc to a ticket. Clients can check existing known
issues and their solutions to determine if there is a
ready answer to their problem. Clients can monitor
the progress on each of their tickets, and provide
additional information if the customer support asks
for it. Certain actions the customer support produce
an e-mail to the client to emphasize on issues that
would need quick attention. Clients can also see all
new releases, patches and fixes, to determine if they
should upgrade their software.

Services for Partners

Partners use the desktop-based client of CSS.
Partners can see all tickets, entered by their clients,
and take actions on them. Partners can provide
solutions, request additional information, or send
tickets to branches for higher level of support if the
solution is beyond their competency.

Partners are provided with access to the database
with all their clients, including contact and address
information, plus all application releases, fixes, and
special consultancy documentation, which is
provided by the central office.

Services for Branches

Branches use the desktop-based client of CSS. They
see all tickets, entered by clients in the corresponding
country. In this way branches can monitor the
performance of all their subordinate partners and take
necessary measures. Branches see tickets, received
directly from their clients, and tickets, for which
partners cannot provide a timely solution. Branches
can provide solutions, request additional information,
or send tickets to the central office, if the solution is
beyond their competency. Branches have tools to
provide translated information to the central office, if
necessary.

Just like partners, branches are provided with access
to the database with all their clients, including
contact and address information, plus all application
releases, fixes, and special consultancy
documentation, which is provided by the central
office.

Additionally, branches have access to a database
with all their partners.

Services for Central Office

The Central Office uses the desktop-based client of
CSS. They see all tickets, and thus can monitor the
performance at any sub-level. There is an automated

.NET Technologies 2006 Short papers

23

system, which automatically escalates tickets, which
are not processed timely by the responsible sub-level.

The Central office has all necessary facilities to
provide solutions and request additional information.
It can also assign tickets to development department,
if the problem cannot be solved with other means.
There are tools for on-line discussions and solution
design. Other tools exist for authoring of release
notes, and creating known issues from similar tickets.
The Central office can also monitor the performance
of the development department.

There is a special tool, which provides summarized
information about the status at any level within the
organization, with special emphasis on overdue
work, or work, approaching its designated deadline.
This tool enables management to quickly spot
problematic nodes in the company structure and take
the necessary measures to resolve the issues.

When a client is updated to a new version of the
application, and the update is actually a new
application, not simply an upgrade of the old one, all
its existing information has to be converted. This
includes all tickets, installation information, etc.
There is a special tool, which facilitates this process.
It archives all data, relevant to the previous version,
and creates the necessary structures for the new
application.

Services for Developers

Development department uses the desktop-based
client of CSS. They see only tickets, assigned to
development by the central office. Developers can
use the tool for on-line discussions to receive logged
additional information. Developers report their work
to the Central Office, which is responsible for testing
their work before delivering the solution to the
customer, and for authoring the necessary release
notes for both clients and other levels of support.
Development department is isolated from clients, and
direct communication between these two parties is
not allowed.

Other Services

CSS contains a system for automatic escalation of
tickets. It monitors if a ticket is not processed timely
at any level below the central office. In such a case,
the ticket is escalated automatically to the higher
level. This system also monitors ticket deadlines. If
a deadline is approaching, the system sends
notifications by e-mail to the responsible employees
at the current level of support and the central office.

There is and integrated Customer Relation
Management system, available to partners, branches
and the central office, is. It provides an extensible

ISBN 80-86943-11-9

data structure for storing client-related commercial
information. This system focuses on development of
new clients, and management of sales.

Another integral part of CSS is the system for
registration of visit reports. Visit reports summarize
all agreements and arrangements, negotiated during
meetings between clients, company personnel and
representatives, and external consultants.
Information includes all participants in meetings.
The system prepares report documents for each
meeting and sends those by e-mail to all participants.

4. PROCESSES IN CSS
CSS defines a schema of sequential processes for
handling tickets. It goes in following steps:

1. Ticket is entered by client.

2. The appropriate partner sees the ticket. The
partner can solve the problem, and notify the
client to approve the solution, or, escalate the
ticket to the branch. If no partner is available,
this step is skipped.

3. The branch sees the ticket. They can provide
a solution, or escalate the ticket to the central
office, if they cannot handle the ticket. If a
solution is found, the branch can directly
implement the solution, or send the ticket
back to the partner for implementation. Before
escalating the ticket, the branch should
translate the ticket into the language of the
central office, if necessary.

4. Ticket is received at the central office. If the
central office can provide a solution, the ticket
is sent back to the branch for localization and
implementation. If the problem requires
programming, the ticket is assigned to
development with additional description and
translation, where necessary.

5. Development department receives a ticket
with a detailed description, and scheduled
dates for start and completion of work on
every ticket. When work is completed, the
ticket is sent back to the central office for
approval.

6. A completed ticket is sent back to the central
office. They test the solution and depending
on the result, can sent it to the branch for
implementation, or revert it back to
development.

At every level, except for development, support can
request client to send more information, suspending
the ticket. The ticket is reopened automatically,
when the client gives an answer.

.NET Technologies 2006 Short papers

24

When a ticket is solved, the client is notified and the
ticket is suspended. It is the client who does close
the ticket.

Suspended tickets are automatically reopened if no
action is taken on them for a specified period of time.
This logic prevents tickets from being forgotten and
stalled.

5. ARCHITECTURE

CSS is developed through the use of an object-
oriented framework for distributed business
applications. This section describes the key features
of the framework.

Four-tier Application Architecture
The architecture of the framework is presented on
figure 2.

3

The four-tiers (Figure 2) are: database server,
application server, functional objects, and client.

The database is responsible for storing the
application data, as well as the internal framework
data - application dictionary, security, and customer
preferences. Application and framework data are
stored within one logical database, which improves
encapsulation.

Netwark

Application

Server Thin Client

Functional
[] Objects

Figure 2: Four-tier architecture

The application server is an intermediate layer
between the database and the functional objects. It
does not implement business logic; in stead, it
provides a number of services to the other layers —
services for data access and modification, security
services, communication services and system
services for initialization, multi-language support and
maintenance. It is the only layer that communicates
directly with the database server, which enables
development of applications for various database
platforms by changing only the application server.
Access to the database is realized with ADO.NET.
The application server is multithreaded — each client
is served by a separate thread, which improves the
performance on SMP and Hyper-threading systems.

The functional objects are specially designed
program modules, which are integrated at run-time
within the process of the client application. They
provide the functional core of the client application.
The functional objects software components, which
accomplish a certain task. They realize the business
logic of the application and a part of the user
interface.

ISBN 80-86943-11-9

The client application is an environment for
execution of functional objects under a common user
interface. It provides a number of services for:

e Common graphical user interface
e Load, execute and release functional objects

e Translate all user interface text items
(commands, menus, and static texts) towards
the active functional object

e Data exchange between running functional
objects

The choice of desktop-based architecture for the
client application is motivated by the significantly
richer features for building of the graphical user
interface (GUI), which desktop-based GUI
technologies present. The strong support of various
infrastructures for distributed applications in
Microsoft .NET Framework enables desktop-based
applications to access resources and components
over local networks and over the Internet - NET
Remoting, SOAP (Simple Object Access Protocol)
based web-services, TCP/IP sockets, robust COM
(Component Object Model) integration. These are
strong foundations for easily building applications
with fully-featured, convenient and aesthetic user-
interface, while not being limited to client-server
application architecture.

Another significant benefit of desktop-based
applications is that they make it possible to
implement “push” callbacks — events. Such events
may be triggered when a user modifies a record in
the database, thus notifying all the users, working in
the same logical sub-domain, that a relevant data

modification has taken place.

The application framework, employed to develop
CSS, is using .NET Remoting to realize the
communication between the client and the server
application. .NET Remoting may be used over the
Internet, though its callback features are not suitable
for wide-area networks, due to technical and security
restrictions. Therefore the application framework
implements callbacks via proprietary TCP/IP
connections, established by the client application to
the application server. This is necessary to resolve
issues with firewalls and NAT (network address
translation), which “hide’ the clients from the server.

Scaling

The architecture of the framework defines two
execution environments — servers and workstations.
It is possible to run the database and application
server on a single server, or scale the environment
and have database(s) and the application server
running on different server computers. For example,
one way to scale up is to run the application server

.NET Technologies 2006 Short papers

25

and the database with system data on one box, and
the application user data on a separate box. Further
scaling is possible by wusing more than one
application servers, each running on a separate
computer. This, however, has its drawback —
callbacks (events) are not possible across multiple
application servers. Proper organization of work may
overcome the negative effect, because in large
organizations each department has its own area of
operation and it is less critical for immediate view of
all data modifications, made across the organization.
Additionally, in stead of using callbacks, the client is
able to use “pull” technology to acquire events from
the application server.

Standard Functional Objects

Targeting enhanced code reuse, the framework
includes a set of functional objects, which implement
security, data browsing and searching, data
modifications, reporting, document integration with
Microsoft Office and other external documents, and
database integrity administration. They are versatile
and function according to the specific definitions in
the application dictionary.

Data overview: browsing, and sorting data, search
for data, filtering data on user-selected criteria. Data
is displayed in table format, with options for
additional information in addition to the table.
Searching and filter can be performed on fields from
the table, as well as on other related data — both one-
to-many and many-to-many relationships are
supported.

Data entry and modification: entry of data, with
built-in facilities for client-level data validation.
Additional services include copy of data, and edit of
multiple records with a single operation.

Reporting services: preview and print of reports.
Custom reports can be created on any level, with a
What-Y ou-See-Is-What-Y ou-Get (WYSIWYG)
editor. Reports can be exported into popular formats
like Abode Portable Document Format (PFD),
Microsoft Excel (XLS), and HTML.

Integration with Microsoft Office (Microsoft Word):
creation, storage and retrieval of Microsoft Word
documents, which contain data from the database of
the client application. Active links between the
documents and the data is maintained. Microsoft
Word document files are stored on an especially
designated storage folder, which allows access to
them even in case of system failure, and provides an
organized depository of office’s files.

Attachment of external documents (files) to existing
application data. An essential part is the descriptive
definitions of relevant application data, which

ISBN 80-86943-11-9

external files can be attached to. Links between
application data and the files attached are created.
Attached files are stored on an especially designated
storage folder, which allows access to them even in
case of system failure, and provides an organized
depository of office’s files.

Security management: application administrators can
assign access policies to application users and user
groups. There are two types of access policies: on
application level, and on data level. Application
level security policies determine which screens and
functions are available to a user, while data level
access policies determine which data is accessible by
a user.

Data Integrity management: application
administrators can overview all modifications, made
by users, and take necessary actions to sustain the
logical integrity of the application data.

Those functional objects allow development with
minimum, even no code pre-compilation by using the
application dictionary. The application dictionary is
the “heart” of the framework — it is a centralized
repository of logical, functional and business
definitions. It describes the hierarchical structure of
the application, the user interface — icons, menus,
toolbars and forms, and the access security roles on
both application and data level. It contains all
parameter definitions for the functional objects and
thus determines their behavior in every part of the
application.

Application dictionary is created in a special
descriptive language, based on Extensible Markup
Language (XML). The application dictionary is
stored in the database of the application and is
always interpreted on application startup. The client
application parses only the structure, to build the
menus and screens, and the security policies for the
current user. Functional object parse their designated
parameters on loading.

An integral part of the framework is the special tool

.NET Technologies 2006 Short papers

26

for authoring of application dictionary contents. It
features a schematic presentation of the application
structure, plus syntax-highlight editor for the
parameters. Authoring of application dictionaries
requires understanding of the client database
structure, Structured Query Language (SQL), and of
the specifics of parameter definition schemas for
every functional object used. As a result, application
development and support can be performed by non-
programmers.

Multi-language support is handled with a tool, which
enables the application administrator to translate all
text items in the application into virtually any
number of languages. It provides convenience
facilities: incremental searching, filters for not-
translated items, searching for similar translations,
etc

CSS is developed on Microsoft .NET Framework.
The communication between the database server and
the application server is done via ADO.NET. The
communication between the application server and
the functional objects and the thin client is done via
NET Remoting over TCP/IP. Client front-end is
realized as a ASP.NET, installed on Microsoft
Information Server; it uses .NET Remoting to
communicate with the application server.

Microsoft SQL Server 2000 is used as a relational
database server for CSS.

6. REFERENCES

[1] Object-Oriented Application Frameworks, Fayad
M., Schmidt D., Communications of the ACM,
Special Issue on Object-Oriented Application
Frameworks, Vol. 40, No. 10, October 1997

[2] Ralph Johnson and Brian Foote, “Designing
Reusable Classes”, Journal of Object-Oriented
Programming. SIGS, 1, 5 (June/July. 1988), 22-35
[3] Pavlov N., Rahnev A., Framework for
Application Development, Scientific works of
Plovdiv University, Bulgaria, vol. 35, book 3 -
Mathematics, 2006

ISBN 80-86943-11-9

http://www.acm.org/cacm

Design and Implementation of a Grid Architecture
over an Agent-Based Framework

Christian Vecchiola, Alberto Grosso, Roberto Podesta, Antonio Boccalatte
DIST — University of Genoa
Via Opera Pia 13
16142, Genova, ltaly

{christian, agrosso, ropode, nino}@dist.unige.it

ABSTRACT

Agent based programming presents several features appearing to be interesting for Grid and distributed
computing needs. The typical environment required by Grid computing is complex, heterogeneous, and highly
dynamic. The autonomous and flexible behavior provided by software agents meets various Grid requirements.
In this paper we present the design and the implementation of a Grid architecture built over an agent based
framework called AgentService. In this work we highlight the advantages in using the services of an agent

oriented framework to develop a Grid application.

Keywords

Agent Mobility, Load Balancing Policy, Agent Framework, Grid computing

1. INTRODUCTION

Resource sharing through the Internet has become in
the last years a paramount instrument for scientists,
not only because it offers great advantages in
distributed computing, but also because data sharing
is becoming more and more useful in many scientific
fields. Resources can be classified in three different
groups: data, services, and computational power. By
following this classification we can distinguish three
types of grids [FosOla]. Data Grids manage huge
collections of geographically distributed data, which
can be generated in many different ways, for
example data streams are daily sent from satellites
for weather forecast and climatic changes analysis;
large collections of data generated from scientific
experiments allow geographically distributed
researchers to collaborate to the same research
project. Service Grids provide services that could not
be obtained from a single platform: for example
streaming multimedia services or collaborative
applications. Computational Grids provide the
aggregate power of a collection of processors spread

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency — Science Press,
Plzen, Czech Republic.

.NET Technologies 2006 Short papers 27

over the network as a unique, meta-computer.

In general, grid computing system are intended to
replicate in the computing world the notion of a
distribution grid fostered by utility networks such as
the electrical power grid. In the vision of grid
computing, computational power, memory, and disk
space should be obtained “on demand” from a
network of “suppliers”, potentially belonging to the
entire Internet.

In the last decade, distributed high performance
computing has been built mainly on cluster
computing systems where the communication among
the different components of an application is
performed using the message passing model
implemented by systems such as MPI [MPI] and
PVM [Gei94a]. Current trends in the grid community
aim at providing frameworks not more strictly tied to
the classical parallel computing programming model.
However, is very hard to migrate this model to a
dynamically changing environment such as the
Internet, thus, in order to cope with the new
challenges, a more structured, service and object
oriented approach has to be adopted. The evolution
toward a heterogeneous, dynamic, distributed over
multiple domains environment has brought to the
definition of the Open Grid Service Architecture
[FosO2a] (OGSA), which proposes the convergence
between grid computing and Web Services
technologies in order to get over the classical parallel
programming paradigm. The main, world-wide
known Grid project, namely the Globus Toolkit
[FosO5a], in its latest release implements the OGSA

ISBN 80-86943-11-9

specification, and leverages on Web Services
technologies and on the most widely known Internet
standards. With this choice Globus is able to make
available cluster-based high performance computing
services to simple clients and end users without a
specific parallel programming know-how too.

Moreover, starting from analogue considerations was
conceived the Alchemi project [Luth05a]. Its authors
aim at involve into the grid community the unused
computational power provided by the almost
ubiquitous Windows-based desktops. The Alchemi
platform is a .Net-based framework providing the
runtime machinery and the programming
environment required to construct enterprise/desktop
grids and to develop grid applications. Alchemi is
able to interface with a Globus grid too, leveraging
on a Web Services interface. Another effort trying to
port the grid computing towards an object oriented
programming model is the H20 [H20] project. This
project provides a platform independent Java-based
framework able to build meta-computing application
leveraging on various remote method invocation
protocol, such as SOAP, Java RMI, and TCP-based
RPC [Kur03a].

It is our opinion that moving from the parallel
computing programming model to a services and
object oriented model, built on top of widely known
technologies, can not be considered the last step of
the Grid programming paradigm evolution. For
example, Agent technology [Jen99a] and the agent
programming model could be very useful to build
virtual, highly dynamic, and distributed environment
such as the context where typically operates a Grid
framework. Agents are autonomous software entities
with some level of intelligence; agents work better if
they belong to a community such as a multi-agent
system (MAS) [Wei99a]. Agents act in a distributed
manner, cooperate, compete, and negotiate to solve a
problem or to perform a task. These features make
the agents an interesting technology to implement
Grid infrastructures.

In this paper we present the design and the
implementation of a Grid Computing architecture
over an agent based framework. The Grid
infrastructure has been built leveraging on the
capabilities of the .Net based AgentService
programming platform [Boc04a].

The paper is structured as follows: in section 2 we
provide a brief overview on agent technology and
multi-agent systems, and we describe the related
synergy with grid computing; section 3 includes the
description of AgentService programming platform;
in section 4 we provide a detailed description of our
agent-based Grid Computing architecture; section 5
shows a case study where our framework has been

.NET Technologies 2006 Short papers

28

adopted; finally in section 6 we provide some
concluding remarks, and we depict possible future
works.

2. AGENT TECHNOLOGY AND GRID
A software agent is an autonomous software entity
able to expose a flexible behavior. Flexibility is
obtained by means of reactivity, pro-activity and
social ability [Wei99a]. Reactivity is the ability to
react to environmental changes in a timely fashion
while pro-activity is the ability to show a goal
directed behavior by taking the initiative. Social
ability, that is the ability to interact with peers by
means of cooperation, negotiation, and competition,
is one of the most important features of agent
oriented programming: agents do their best when
they interoperate. Interaction is obtained by
arranging agents in communities called multi-agent
systems (MAS). MAS are generally decentralized
open systems with distributed control and
asynchronous computation:; they provide a context
for agents’ activity with the definition of interaction
and communication protocols. In addition they are
scalable, fault-tolerant, reliable, and designed for
reuse.

An abstract architecture specification of a generic
multi-agent system has been proposed by the
Foundation of Intelligent Physical Agents (FIPA), an
international organization that promotes standards for
agent technologies. The proposed architecture
[FIPOla] is implemented by different multi-agent
systems and has been taken as reference model in the
comparison of different implementations of MAS.

Agents are reliable components to build flexible and
fail safe systems, since autonomy and reactivity
allow recovering from fault conditions. Agent and
multi-agent technologies provide a promising
approach to make Grid technologies smarter, more
flexible, and adaptable. To support Grid computing,
agents can offer different roles, be organized into
dynamic groups, and be able to migrate between
groups to support load balancing. Therefore, agents
could play an important role in Grid computing, and
Grid computing can offer useful test-beds for
investigating Agent services. The social ability, the
autonomous and flexible behavior could play an
important role for the communication and the
interaction with different nodes, for example, in
exchanging information about the resources available
on each node. The intrinsic nature of Agent
technology, explicitly oriented to model high
dynamic and complex systems [Wo099a], seems to

be well suited to meet the Grid computing
requirements. Moreover, the adoption agent
technology could bring to Grid users and

administrators more friendly and understandable

ISBN 80-86943-11-9

interfaces to interact with the system. Some projects
have already proved that the agent oriented approach
could be adopted for Grid computing. The Agile
Architecture and Autonomous Agent [Cao02a,
Cao01a] (A4) is an agent based methodology for grid
resource management. The computational power of
the Grid is managed with a hierarchy of identical
agents used to provide an abstraction of the system
architecture. Each agent is able to cooperate with
other agents to provide service advertisement and
discovery to schedule applications that need to use
grid resources. The Bond Agent System [BOND] is a
FIPA project on top of which is possible to build
agent based applications able to manage the state of
the nodes and the coordination of a distributed
system such a Grid [Kha03a].

3. THE AGENTSERVICE

PROGRAMMING PLATFORM
AgentService [Boc04a] is a framework designed to
develop multi-agent systems. It provides a class
library to implement agents, an agent platform
hosting multi-agent systems and a set of monitoring
and design tools supporting either the development
or the management of the MAS. The framework does
not enforce particular agent architectures, but
provides developers with a flexible agent model
based on the concepts of knowledge and behavior.
An agent is modeled, and implemented, as a software
entity whose state is defined a set of knowledge
objects, and whose activity is carried out by a set of
concurrent tasks known as behavior objects. A
knowledge object is a shared object containing
related items which together define a unit of
information. Knowledge objects can be shared
among behaviors objects which model the different
capabilities of an agent. AgentService comes with a
set of extensions to the C# programming language
that simplifies the development of agent applications.
The AgentService object-oriented model is hidden by
the APX [Vec03a], so that a clear agent-oriented
interface is offered to the developers with slight
changes to the C# syntax.

The platform provides a complete environment to
execute agent instances which rely on the advanced
services of the platform: repository, communication,
and directory services. Some of these services
become strategic when platform instances constitute
the nodes of a computing grid. In particular directory
and communication services are discussed in detail.

Directory Service

AgentService has been designed following the
architectural specifications provided by FIPA which
states that a set of basic services are required on each

.NET Technologies 2006 Short papers

29

agent platform. These are implemented as agents and
are:

- Agent Management Service (AMS) -
supervisor and controller of the platform
services;

- Directory Facilitator (DF) - providing yellow
pages service;

- Message Transport Service (MTS) - managing
communication service.

Directory services are fundamental in dynamic and
distributed environments due to the fact that a single
entity needs to know if, when, and where a specific
service is available. For these reasons DF is a
compulsory component for an agent platform. In
AgentService each platform provides a directory
service to agents. By registering to the DF agents can
specify the services they offer and their
communication profile. Directory Facilitator agents
scattered on AgentService platforms can join
together to form a federation, hence if an agent
registers to the local DF, it becomes visible, and
advertises its services, to all the platforms of the
federation. When deregistration occurs the
information is spread on all the nodes of the
federation. DF agents maintain a distributed database
of all the services available on the federation: each
agent by interacting with the local DF gets access to
an entire net of services. DF agents according to the
service profile advertise it on all the nodes of the
federation or just to a subset of it. The ability of
controlling the advertising policy allows a better use
of the network resource.

Communication Infrastructure

A dedicated agent, the MTS (Message Transport
Service) is responsible of managing the platform
messaging subsystem. The messaging subsystem is
implemented within a module and by default
AgentService provides a communication service
based on message exchange and conversations
(connected communication between two agents).
The ability of changing the implementation and the
communication channel among platform nodes in a
transparent manner for agents is remarkable
advantage of this architecture: the implementation of
the module is hidden to the MTS, and then to the
agents, which interacts with the module through the
IMessagingModule interface. The messaging module
creates and maintains a specific message queue for
each agent hosted in the platform and can choose the
best technology solution to store this information (a
database, a file system, or a message queuing
service). Messages exchanged among agents are
compliant to the FIPA specifications and need to
contain only serializable items, since messages may

ISBN 80-86943-11-9

trespass the boundary of the single machine. The

default messaging module provided with the
AgentService installation comes with two
fundamental services: conversations and inter-

platform message dispatching. Conversations are
connected message exchange services and provide a
useful abstraction to model interaction protocols.
Inter-platform message dispatching allows the
community of agents to extend beyond the single
platform instance boundaries. The communication
among different AgentService installations is based
on the Web Service infrastructure provided by .NET
framework. Hence soap messages are exchanged
among platforms and a specific format of the xml
content is defined by AgentService to ensure the
secure and correct delivery of the messages. The
.NET automatic serialization process for the soap
messages has been customized to allow the
serialization of agent messages and to decrease the
amount of the transferred data without loss of
information.

Additional Services

The platform has been designed to be an extensible
software environment: the community of agents
hosted in the federation of platforms evolves and
additional features may be required when the system
is installed. Hence the ability to extend the proper
capabilities becomes a requirement. The architecture
of the platform allows third party modules to be
integrated into the platform core and to offer services
to either the other modules or the agents. By using
this technique the platform has been extended by an
FTP service available to all the other platform
components. Agents and other modules can require a
folder space or just send files by using the service as
a simple FTP client.

The directory service, the communication
infrastructure and additional services, together with a
set of dedicated agents constitute the core of the grid
infrastructure provided with AgentService.

4. DESIGN OF A GRID
INFRASTRUCTURE OVER THE

AGENTSERVICE PLATFORM

The elements defining the grid infrastructure are
agents, platform components, and additional
services. Agents encapsulate the logic of the system
while platform components and additional services
maintain its structure. This organization is replicated
on each installation of the platforms participating in
the grid.

Figure 1 gives an overview of the entire system. The
federation of the platforms defines the boundary of
the grid. The structure of the systems is dynamic

.NET Technologies 2006 Short papers

30

since AgentService instances can dynamically join
the federation by sending a message to the agent
managing one of the nodes. In the same way nodes
can detach from the system. This is a fundamental
feature for grid systems that are dynamic by nature.
According to the configuration of the node each
platform can act as a computational node, provide
access to the system, or perform both the two roles.

The System’s Logic: the Agents

The logic of the system is composed by a community
of specific agents deployed on each installation of
the AgentService platform. In this section we will
describe the tasks delivered to each agent and how
they take advantage of the services offered by the
platform to deploy and to manage the infrastructure
of the computational Grid.

Each node which is part of the grid infrastructure is
equipped with an installation of the AgentService
platform. On each node the platform hosts the
following agents:

- NodeManager: the NodeManager is the
maintainer of the node, it coordinates all the
activities required to implement the grid
service. The NodeManager maintains a registry
of the platforms which constitute the
computational grid and manages the dynamic
registration of platform instances. The
NodeManager is responsible of assigning a task
to a specific node by looking at the topology of
the grid, at the computational load of each
node, and at the services offered by that node.

Authenticator VVorker

NodeManage« Carrier
+ FTP

A R f 1
_ Agen ervice ii&

Figure 1. A graphical overview of the Grid
Architecture based over the AgentService
Framework

- Carrier: the Carrier agent is responsible of
transferring on the selected node of the grid all
the resources required to perform the task. The
Carrier relies on the file transfer service offered
by the platform, by which it delivers to the
selected node the object code containing the
task and all the related input or data files.

ISBN 80-86943-11-9

- Authenticator: an instance of the Authenticator
agent manages the security of the node; it
maintains a registry of user profiles, checks the
user credentials when a task is submitted to the
grid, and applies the security policies defined in
the user management module.

- Worker: multiple instances of the Worker
agent are hosted on each node and take care of
tasks execution. On the selected node, the
NodeManager contacts the worker agent every
time a new task needs to be executed; the
worker agent sets up the computing
environment required for the task, executes the
task, and eventually communicated the results.
The NodeManager agent can limit the
maximum number of concurrent Worker agent
instances in order to control the computational
load of the node. Worker agents can perform
many tasks concurrently thanks to agent model
adopted by AgentService. The tasks partition
criteria among worker agents can be defined as
configuration parameters of the node or
dynamically decided by the NodeManager; a
simple selection criterion could be dividing the
tasks according to the permission of the users
they belong to.

Tasks are submitted to the grid and NodeManager
agents cooperate to identify the candidate node on
which the task will be executed. Since cooperation,
negotiation, and competition are natural activities in
multi-agent systems this functionality is naturally
obtained by using the agent oriented approach. In the
same way localization of services and coordination
within a single node are obtained with less effort.

The Grid Structure

The community of agents that is distributed on the
nodes constituting the grid gives a high level view of
the entire grid. The implementation of the
infrastructure strongly relies on the core services of
the platform. In particular, communication services,
file transfer, and localization. These features are
respectively implemented by using the messaging
subsystem, the FTP service, and the DF agents
spread on each node.

The messaging subsystem is one of the core elements
of both the multi-agent system and the grid
infrastructure implemented on it. Software agents
interact with peers by exchanging messages; hence
the coordination of the elements defined in the
logical layer is based on the messaging subsystem.
The ability to communicate with peers hosted on
other nodes is a requirement to distribute
computation; hence, the installation of AgentService
has been customized with a messaging module that

.NET Technologies 2006 Short papers

31

uses the web services technology to deliver messages
on other platforms. The use of web services provides
a solid, well known standard allowing
interoperability and integration with other
applications. Agent messages are required to be
serializable but not to be represented by using a
SOAP message. The platform replaces the default
XML serialization provided by the .NET framework
with a custom technique that reduces the body of the
SOAP message and allows the transport of any
serializable managed type. The messaging module
attaches the description of the type to the binary
serialization of each item in the agent message; the
binary instance is encoded into a base64 string and
transmitted as an attribute of the XML element
representing the item. On the target node each item is
reconstructed according to the type information
attached to the item: the full name of the type, its
assembly name, and the public key token of the
assembly are used to de-serialize the instance into the
original object. This solution speeds up the
transmission of any complex object via web services,
avoids type mismatch, and is completely transparent
to developers which are not required to provide an
XML serializer for every type they define.

The ability to transfer objects among platform nodes
is a requirement for distributing the computation.
The messaging subsystem provides a simple way to
transport messages but it cannot handle efficiently
the transfer of large amount of data. Moreover, the
communication infrastructure has been designed to
send .NET instances and not for large files. For this
reason, the installation of AgentService has been
enriched with an additional module that handles the
FTP protocol. The module integrates into the
platform and provides this feature as service. The
FTP service can be exploited either by software
agents or platform modules and it is mainly used to
move on the target node all the assemblies containing
the code executing the task and the required data
files. Modules and software agents can dynamically
check the availability of the service and eventually
require a personal folder or just submit a file to
transfer. When files are uploaded to the server the
owner of the folder is notified about the transfer. In
this case the FTP service is mainly used by the
Carrier agent who is responsible of transferring the
assemblies containing the task to be executed on the
target node. Carrier agents ask for a personal folder
to the FTP service and the FTP service creates the
corresponding directory in the root folder of the FTP
server. When a task is moved to a node of the grid
the Carrier agent on the source platform instruct the
FTP service to upload the file on the target platform.
When the upload is finished the FTP service of the
target platform notifies the Carrier agent about the

ISBN 80-86943-11-9

transferred files. The same interaction pattern is used
by modules if they need to send or receive files.

Localization and discovery of services play an
important role in distributed systems. The ability to
discover agents and the services they offer is a
requirement for agent communities which are
dynamic by definition. These are requirements for
Grid systems too: nodes should be able to obtain
information about other nodes in order to distribute
the load. Within AgentService a distributed directory
service is responsible of advertising and retrieving
services available in the multi-agent system.
Directory Facilitator agents constitute a federation
sharing all the information about published services.
DF agents provide information to NodeManager and
Carrier agents: the first ones query the local DF in
order to know all the other NodeManager agents and
set up the topology of the grid; the second ones look
for Carrier agents when they need to transfer files on
a selected node. DF agents are also useful for
connecting agents within a single node: each of the
previously defined agents register its service profile
to the local DF. Directory Facilitator agents can be
instructed for a local search: in this way the agents
defining the logical layer of the grid connect each
other.

Many of the elements constituting the infrastructure
of the grid are provided by the environment hosting
the agent. These elements are commonly required by
the agents to perform their activities; hence the use of
a multi-agent system for grid computing can strongly
simplify the development of grid system. In addition,
the modular architecture of the AgentService
platform and its natural extensibility allows the
simple implementation of the missing features as in
the case of the FTP service.

5. CASE STUDY

A common computing task submitted to the grid can
be taken as a case study since it is useful to describe
the interaction among the agents modeling the logical
layer of the grid and their connection with system
components.

Users that want to submit a job to the grid have to
contact those nodes which are configured as access
points to the grid. These nodes are the starting point
of the entire process. The user authenticates by
sending a message containing tis credentials to the
Authenticator agent of the access point. Installations
of the AgentService platforma provide a
communication channel that can be used by GUIs or
web applications for remote management and access:
the common scenario involves a web application
connecting to the access point through a web browser
submitting a task by uploading all the required files.

.NET Technologies 2006 Short papers

32

The web application connects to the platform with
the credentials provided by the user and queries the
DF for the Authenticator agent which checks the user
permissions and validates the request of the user. The
Authenticator agent sends a message to the
NodeManager agent of the same platform which
selects the best node of the grid according to:

- the user profile;
- the type of task to execute;

- the availability of processor cycles on each
node.

In order to select the best node NodeManager
interacts with the other NodeManager agents hosted
on the other platforms. The NodeManager agents
maintain updated the state of the entire grid by
exchanging messages when interesting events occur
(a task is finished, a task is started, a task has been
aborted); hence, each NodeManager agent is always
aware of the status of the grid.

Source Node Target Node
Sourcetlode SourceCarrier TaroetCarrier Taroetiode Targetiorker
Manager Manager
| SEIEd‘TﬂrgE{NUdE{TESk) | | | |
H<:| | | | |
	2 assin(Task)		
	1		
3: Transfer(Resources & der)			
4 Upload{Resources)			
u 5 Ready()			
‘ T j 6: Execute(Task)			
		7: Wark()	
‘			& FinishedTask)
\		0	
‘		9. Upelate()	
\			
\			

Figure 2. Sequence diagram describing the
protocol for task execution

Once the node has been selected the local
NodeManager is contacted to start the task. The
target node could require additional resources to
perform the task and in that case the NodeManager
agent instructs the local Carrier agent to accomplish
the transfer on the target site. The local Carrier agent
by querying the DF looks for the remote Carrier
agent and then sets up the transfer by using the local
FTP service. On transfer completion the Carrier
agent on the selected node notifies the local
NodeManager that all the resources required to
perform the task are available. This is the final step
of the activation process: the NodeManager agent
according to the computational load of the node
requires a new Worker agent or submits the work
request to an active Worker agent. The number of

ISBN 80-86943-11-9

active Worker agent can change on each node and
the NodeManager itself can dynamically decide the
best policy to apply. Figure 2 depicts the sequence
diagram describing task execution after the credential
of the user have validated.

The Worker agents picks up a new work request
inspects the information describing the task to
execute and by means of reflection creates a new
instance of the type defining the tasks, starts its
activity by using a configuration files transmitted
along with the resources. Assemblies containing the
tasks can be cached on the nodes in the platform
storage and useless transfers can be avoided. The
types must implement the following interface:

interface 1Task

{
bool IsReusable { get; }

Exception Error { get; }

bool Prepare(string configFile);
void Execute();

bool Abort();

bool Dispose();

}

In order to execute a task the Worker agent creates
an instance of the required type and invokes the
Prepare method that configures the task to execute. If
the method returns true the task will be executed by
invoking the Execute method and upon completion a
call to Dispose finalizes the execution and eventually
communicates the results. Exceptions occurred
during execution are obtained by looking at the Error
property while, while IsReusable is true if the same
instance can be used to perform many tasks of the
same type in sequence. Two additional interfaces are
provided to make tasks execution more flexible:
IControllableTask and IlterativeTask. The first one
adds facilities to control task execution with a pause-
resume pattern while the second one allows the
execution of tasks one step at time.

When the task is finished, the Worker agent notifies
the NodeManager about completion which update
the status of the grid.

6. CONCLUDING REMARKS AND

FUTURE WORKS

Agent technology seems an interesting solution to
implement distributed and dynamic computational
environments: agents confer a certain degree of
autonomy to the system components and simplify the
creation of dynamic relations among them. Hence,
the use of such technology in the field of grid
computing is a reasonable and interesting approach.
This paper has presented the design and the
implementation of an infrastructure for grid
computing which relies on agent technology and

.NET Technologies 2006 Short papers

33

takes advantage of the AgentService framework. The
community of agents defines the logic of the system
while the extensible core of the agent platform
implements the low level services required by a Grid
architecture. This approach has two main advantages:

- the coordination and task distribution policies
can rely on the interaction capabilities of
agents: they are high level system components
which naturally embed negotiation, competition
and cooperation capabilities;

- the default services provided by multi-agent

system meet typical grid computing
requirements; hence the use of a modular and
extensible multi-agent system, like

AgentService, as a backbone simplifies and
improves the efficiency in the Grid architecture
development.

The structure of the system is based on a net of
platform instances connected together by using the
web services technology. Web services are used only
for communication and AgentService implements
custom technique which allows the transfer of any
.NET serializable and complex object, keeps the
SOAP packet small, and speeds up the transfer. The
use of web services could lead to possible
performance bottlenecks but message exchange
among agents should have a small cost if compared
to the time required to perform tasks submitted to the
grid. In addition, AgentService uses web services
only for communication and has been enriched with
an FTP service that is used to move object code and
data files among node.

The architecture described in this paper is
specifically designed for computational Grids, but
the underlying model can be applied also to other
types of grids. A possible extension of the presented
architecture could be the ability to move agents
which are performing a task in order to apply load
balancing policies. This service could be provided by
adding a mobility module in order to provide a task
migration service. This module allows agent
instances to cross the platform boundaries and move
among AgentService platform instances.

7. REFERENCES

[FosOla] Foster, I., Kesselman, C., and Tuecke, S.
The Anatomy of the Grid. Enabling Scalable
Virtual Organizations. International Journal of
Supercomputer Applications, 2001

[MPI1] Message Passing Interface Forum. Message
Passing Interface, documentation available on
line at www.mpi-forum.org

[Gei94a] Geist, A., Beguelin, A., Dongarra, J., Jiang,
W., Mancheck, B., and Sunderam, V. PVM:
Parallel Virtual Machine a User’s Guide and

ISBN 80-86943-11-9

Tutorial for Networked Parallel Computing. MIT
Press, Cambridge, MA, 1994

[FosO2a] Foster, I., Kesselman, C., Nick J., Tuecke
S., The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems
Integration, Global Grid Forum, June 22, 2002

[FosO5a] Foster, 1., Globus Toolkit Version 4:
Software for Service-Oriented Systems, IFIP
International Conference on Network and Parallel
Computing, Springer-Verlag LNCS 3779, pp 2-
13, 2005

[LutO5a] Luther, A., Buyya, R., Ranjan, and
R.,Venugopal, S., Alchemi: A .NET-Based
Enterprise Grid Computing System, Proceedings
of the 6th International Conference on Internet
Computing (ICOMP'05), June 27-30, 2005, Las
Vegas, USA.

[H20] H20 Project,
http://www.mathcs.emory.edu/dcl/h20/

[Kur03a] Kurzyniec, D., Wrzosek, T., Sunderam, V.,
and Slominski, A.. RMIX: A Multiprotocol RMI
Framework for Java. In Proc. of the International
Parallel and Distributed Processing Symposium
(IPDPS'03), pages 140-146, Nice, France, 2003

[Jen99a] Jennings, N.R., and Wooldridge, M.,
Agent-Oriented Software Engineering,
Proceedings of the 9th European Workshop on
Modelling Autonomous Agents in a Multi-Agent
World : Multi-Agent System Engineering
(MAAMAW-99), 1999

[Wei99a] Weiss, G., Multi-agent Systems — A
Modern Approach to Distributed Artificial
Intelligence, G. Weiss Ed., Cambridge, MA, 1999

[Boc04a] Boccalatte, A., Gozzi, A., and Grosso, A.,
Una Piattaforma per lo Sviluppo di Applicazioni
Multi-Agente, WOA 2003: dagli oggetti agli
agenti — sistemi intelligenti e computazione
pervasiva, Villa Simius, Italy, September 2003

.NET Technologies 2006 Short papers

34

[FIPO1a] FIPA Abstract Architecture Specification,
http://www.fipa.org/specs/fipa00001/

[Wo0099a] Wooldridge, M., Intelligent Agents, in
Multi-agent Systems — A Modern Approach to
Distributed Artificial Intelligence, G. Weiss Ed.,
Cambridge, MA, 1999, pp. 27-78

[Cao023] Cao, J., Spooner, D. P., Turner, J. D.,
Jarvis, S. A., Kerbyson, D. J., Saini, S., and
Nudd, G. R., Agent-Based Resource Management
for Grid Computing, Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID’02)

[Cao01a] Cao, J., Kerbyson, D. J., and Nudd, G. R.,
Performance Evaluation of an Agent-Based
Resource Management Infrastructure for Grid
Computing, Proceedings of 1st IEEE/ACM
International Symposium on Cluster Computing
and the Grid (CCGrid '01), Brisbane, Australia,
May 2001

[BON] BOND Project, http://bond.cs.ucf.edu/

[Kha03a] Khan, M.A., Vaithianathan, S.K.,
Sivoncic, K., and Boloni, L. Towards an Agent
Framework For Grid Computing, CIPC-03
Second International Advanced Research
Workshop on Concurrent Information Processing
and Computing, Sinaia, Romania, 2003

[Boc04a] Boccalatte, A., Gozzi, A., Grosso, A., and
Vecchiola, C. AgentService. The Sixteenth
International Conference on Software
Engineering and Knowledge Engeneering
(SEKE’04), Banff Centre, Banff, Alberta, Canada
20-24 June 2004

[\Vec03a] Vecchiola, C., Coccoli, M., and Boccalatte,
A. Agent Programming Extensions relying on a
component oriented infrastructure, Proceedings
of the 2003 IEEE International Conference on
Information Reuse and Integration (IRI - 2003),
Oct. 26-29, Las Vegas, NV, 2003.

ISBN 80-86943-11-9

A lightweight infrastructure to support
experimenting with heterogeneous Transformations

Wolfgang Lohmann Gunter Riedewald Thomas Zihlke
Rostock University Rostock University Rostock University
Albert-Einstein-Str. 21 Albert-Einstein-Str. 21 Albert-Einstein-Str. 21
18051 Rostock, Germany 18051 Rostock, Germany 18051 Rostock, Germany
wlohmann@informatik.uni- gri@informatik.uni- thomas.zuehlke@uni-
rostock.de rostock.de rostock.de
ABSTRACT

We report on a class library called Trane, whichvfites an infrastructure to support experimentiitfy wans-
formations interactively. Transformations here makgorithms, which take software artifacts as ingud output
manipulated artifacts. Trane supports easy combimaif transformations available in different laages, li-
braries and tools. Several combinations can beepted at the same time, parameters can be vistiaiyged,
and results can be compared. New transformatiom$ezeasily added. Generated transformations foquere
ments can be integrated into the experiments atiman

The paper presents the general model of the dlarssy. We show how the class library profits bg fleatures
provided by .NET, such as language interoperabiiitseign language interface, shell access, reflecand web
services by demonstrating five variants to integragw transformations.

Keywords
Transformations, .NET, Language interoperabilitpss-language inheritance, visual programming, corapt-
based transformation systems, platform independence

1. INTRODUCTION test with representative examples shows that the de
We report on a lightweight infrastructure developed Velopment might be on the desired way. Examples
to support experimenting with transformations inter Vary from combinations of UNIX command line tools
actively. Here, transformations mean algorithms, Such as sed, awk, grep to extract and manipulate in
which take software artifacts as input and Outpat m formation in text files to more SOphiSticatEd exam-
nipulated artifacts or results of an analysis. Ve u Ples, such as refactoring, where there are mang way
NET, as it facilitates integration and combinatisfn ~ t0 achieve an improvement of the source code, or to
heterogeneous transformations, i.e. transformationsachieve software evolution by transformations
available as programs in different |anguages1 mgst [Lam04, Set04] Another example is the collectidn o
command line tools, web services, libraries throagh individually changes for maintenance in batch files
foreign language interface, and dynamic compilation for later reuse in [KIuO5].

and loading of DLLs resulting from a transformation We intend to use Trane to experiment with transfor-

. . . mations on language components, e.g. grammars,
EXpe”.mentSWIth Transforma‘glon Nets semantic descriptions, and language processors,
Some kinds of complex transformation are developed

; lorati here th tended aft though it is not restricted to those applicationse
In-an explorative way, where they are extended alte - \yant to extend languages stepwise during their de-

Permission to make digital or hard copies of alpart of ~ Velopment, explore several possibilities, how a

this work for personal or classroom use is gramitdout grammar could be changed, compare the variants,
fee provided that copies are not made or distribtioe extract parts of existing grammars and adapt treem t

profit or commercial advantage and that copies tidar ~ form a sublanguage DSL, and directly connect the
notice and the full citation on the first page. @apy generated output to front end generators to teshex

otherwise, or republish, to post on servers oethistrib- ple programs. There are tools, but they are availab
ute to lists, requires prior specific permissionl/an a fee. in different formats, e.g. command like tools like
.NET Technologies 2006 yacc and GDK [Kor0_2], left-recursion removal for
Copyright UNION Agency — Science Press, attributed grammars in Prolog and TXL [Loh04],
Plzen, Czech Republic. grammar representations in XML, BNF etc.

.NET Technologies 2006 Short papers 35 ISBN 80-86943-11-9

However, to the user, it should not matter, whether to Prolog by an XSLT based transformation. A
transformation is a command line tool like yaccanr Prolog-based transformation now analyses the inher-
analysis written in Prolog, and should be represgnt ent graph and generates a program for robot maves t

uniformly modulo their parameters. control its way through it. The program is savew t
filename is delivered to the generated compiler
Using .NET RunLisaCode for the robot language. The result of

We were interested in an implementation on .NET the execution, the final position of the robot teka
mainly because it comes with the promise of languag to start position (0, 0), is delivered to the Teuxti@t.
interoperability and crodanguage inheritance. With -
C# as main implementation language, we could make — teacu]
use of properties, generics, delegates, reflectiod, — .]

. . . & swprolog PiniDebuglRobot. s | Browse | 0 Lisabh'S .
web services. The implementation was also an ex- =™ = JJLJ j ¥

Eile

LisalavaCampile

periment in platform independence wrt. the avalabi ==, | o A

ity of .NET on Linux as well as Gtk# on Windows. I Ny LT
. E [T::Sr::" | LabKMLzPL PathFinder Snave " /F’)

Resulting Prototype s ol Jobyol | ol pafFet s o

We designed a simple class model. Transformations :

are represented by automatically generated or self- wa
designed boxes to be placed on a workspace, which i ey
itself part of a box. The boxes have typed input an iemee ,
output ports, which can be connected using convert-Figure 1. Tranein action
ers to describe dataflow. Boxes can provide faedlit

to control transformation parameters. Several se-

guences of transformations can be presented simulta
neously, parameters are visually changeable, and respond to input and output positions of the tramstor
sults can be compared. tions. Output ports can be connected to input pafrts
Trane can be extended easily with new transforma-other nodes by directed edges, assumed the types
tions. New boxes can be any program, a web serviceassociated to the ports are equal. This way, the ca
an encapsulated command on shell level, etc.,enritt graph of a composite transformation is modelled.

in any .NET language, as long as the box interface ~qnnections between ports of different types can be

implemented. Thus, the user creates transformatlonobtained indirectly by converters. These are specia

nets without paying attention to the implementation transformations, which map values of a given type
of a transformation. Due to reflection, no extra-co onto values of a related type. In the graphicateep

figuration files are necessary. Trane can alsog@®'S onation, they are hidden behind connections to al
as a wrapper architecture or an interpreter for cal |, 5 simplified view on the net. For example, it

graphs of complex functions. It is a lightweight-im 4,14 not matter that the result of a transforomeis

plementation, because .NET already encapsulates, grammar in XML format, but the next transforma-
much work for the integration of transformations. tion expects it in a BNF style. An XML2BNF con-

. nection can transport the grammar and hide the nec-
Remal_nder of the Paper essary format conversion. The user simply chooses
In Section 2 we present the concept of Trane. 0t Se {he connector with the desired type combination.
tion 3 we discuss the model and the computation paty transported can be text as in UNIX-pipescstru

strategy. In Section 4 we show five categories of yreq data such as grammars, or file names fottsesu
transformation and how they are integrated. Sedion i, fijes.

discusses some related work. Finally, the paper fin
ishes with concluding remarks.

The underlying structure is a directed graph with
nodes representing transformations. Nodes have inpu
and output ports, which possess types, and corre-

Transformations can be added at run time, e.gstran
formations created with Trane. Providing a new
2. TRANE CONCEPT transformation means to embed a transformation into
a node such that input and output ports are pradvide
with data. To create a new converter means to pro-
vide a new transformation, which implements the
desired type mapping. This requires knowledge about
the structure of data.

Trane provides facilities to moddiransformation

nets with heterogeneous transformations. In Figure 1,
for example, an attribute grammar of a robot move
language is sent to the Lisa web-service, which gen
erates a compiler for that language. Using Lisa-
JavaCompile (wrapper for Java at command line), theThe order of computations is determined by the de-
Lisa generated code is compiled. In the second sefpendencies between transformations in the graph.
guence, a description of a maze in XML is converted Cycles are not considered, as their role is natrdle

.NET Technologies 2006 Short papers 36 ISBN 80-86943-11-9

2
Edge Node 0..1 | Representation
- 0.* 0.* :Li
P1: !nt Graph Inputs : L.|SF<P0rt>
P2 :int Outputs : List<Port>
init_port_lists() : void
connect(N : Node,N : Node) : void init_representation(T : Node) : void
Interpreter TransformationGraph Transformation GtkRepresentation
1.*
views : List
traverse() : void execute() : void
connect(T : Transformation,P : int, own_intern_execute() : void
T2:Transformation,P2:int) : void intern_execute() : void
init_representation(T : Transformation) : void
Backward | | Forward | TransformationNet | Box Converter | GtkBox | GtkConverter
2
connect(B1 : Box,P1 :int,C : Converter,P2 : int,B2 : Box) : void
DllLoader r | | |
Workspace | Hierarchy | | Cmd | | WebService | | I1dC | | IntC | | XML2BNF |

Figure 2. Classmodel of Trane

this setting. The computations are performed alwaysA subclass has to overridsecute, where the actual
once, when a result is demanded and the requirednapping from values of input ports to values of-out
input data for the transformation is available. iRiss put ports is defined or the embedded transformation
can be queried at any output port at any transforma is called. The computation can depend on several
tion, thus, comparing the values of different trans conditions, such as the actual computation strategy
formations is possible. The intermediate results ca or lazy computation (do not compute if input values
be investigated, which is helpful, if the result @f have not changed). To save the user from uninterest

transformation delivers unexpected values. ing management worlexecute is wrapped by meth-
ods intern_execute and own_intern_execute, which

3. OBJECT-ORIENTED MODEL take care of the conditions, and at a suitabletgdnin

Figure 2 shows the UML class diagram of the infra- the computation callexecute. init_representation

structure, which largely mirrors the concept. associates a representation to an instancerafs-
formation.

First Level: Combination Infrastructure The difference between common kinds of transforma-

The classTransformation defines minimal require- ion nodes and converters is expressed by classes
ments of transformation nodes. As can be seerein th gox which box a desired transformation, a@dn-

class diagram, it provides lists for input and @ltp yerter, whose main task is to provide some kind of
ports. These ports manage edges connected t0 port§pe conversion. The provider of a converter viiitif

of other transformations, data, and a type anmtati it nice to implement it like any other transfornoati
which constrains data accepted. Data is packed in arney only differ from boxes through their represent
separate object, which provides its value and &.typ tjon and arity. This enables converters of all kind
This allows for a subtype concept, i.e. the valas h simple converters or arbitrary complex computations

to be a subtype of the type of the port. The vaares from which the user would like to abstract in a @lod
used as input and output values for a transformatio

and the object representing the transformation. To
define the port lists of a special transformatibmas

to override methodnit_port_lists to configure the
ports (e.g. with type annotations). Port lists are We decided for overriding of sonmeit-methods over
tendable dynamically at run-time. Ports of transfor configuration inside of a constructor, becausehi t
mation objects are connected using the metturd chosen implementation language C# constructors of
nect/4 of TransformationGraph, which tests on type super classes are evaluated first before that @f th
conformance, creates an edge between the ports, andctual class. For some tasks provided in the super
keeps track of transformation objects and their-con class, e.g. for the generation of graphic represent
nections. Edges store the nodes and indices of thdions, it is necessary that the actual class i§igared
ports connected. already at least partially.

The TransformationNet provides a methodonnect/5
to connect two objects of tyfgox using aConverter
at the ports specified with the port index each.

.NET Technologies 2006 Short papers 37 ISBN 80-86943-11-9

Second Level: Interactivity and Views

required results and calls thewn_intern_execute.

The second level provides graphical representationsWith indirect data transport a separate objectassc

for transformations. In the standard representation TransformationNet controls the traversal process, e.g.
rectangular boxes are generated for transformationscalls intern_execute. Note, that byconnect/5 the ob-
(e_g_ most representations in F|g 1 are genebated. jeCt keeps book about created transformations and

Lists of buttons, which also activate the executién
the associated box, represent input and outpus.port

connections. This allows intercepting and changing
values for experimenting.

Converters are represented as a line, which cosinectBackward computation is initiated by requesting the

two boxes. This simplifies the view on the transfor
mation net.

If desired, the provider of the transformation cae-

output port of the last transformation of a chajn b
initiating own_intern_execute /intern_execute, which
then determine missing input values for the computa

ate own representations for boxes and converters bylion of the embedded transformation, and activiage t

inheriting GtkBox and GtkConverter respectively.
Their instances are associated to the specificstran
formation class by overridingnit_representation.
Objects of clas$tkBox can be provided with addi-
tional buttons, fields, sliders, and other kindsirof
put/ output support for users to control the transf
mation.

preceding transformations. When all values arel-avai
able, the wrappedxecute is called. This strategy will

be used mostly to compare several transformations a
the end of a common sequence.

The forward computation strategy is thought for ex-
periments to investigate the effect of a changedtin
E.g. a composite transformation can be attacheal to

Objects of transformation nodes can provide severaltext editor, and show the results of a transforomati

views at them. The first level can already be abnsi

chain immediately while typing e.g. a new part of a

ered as the most basic view. The main view used isgrammar (or delay start until a save-command is
the graphic representation on a workspace to caebin fired). Forward computation is simulated on top of

them. In addition, more information and controlling
facilities are possible, e.g. a description of ttzans-
formation represented by the object, a descriptibn
its input/output, complex tables for the user te de
scribe or influence the way the transformation is

the backward computation by calling the output port
of following transformations. This can be very enxpe
sive, though. Cycles are not allowed in the computa
tion though we have not included a check to avoid
them yet (we could think of a graph analysis based

working, status messages, and logs. Note, the work-2 term generated from the net).

space in Fig. 1 is just another view on a speal, b
allowing to create a hierarchical subnet interastyiv

Providing a New Box

4. VARIANTS OF BOXES
Many transformations will only inherit from the cem
mon box type, configure the input and output ports,

To create a new box, the following steps are fol- and define a mapping between them to create

lowed: 1) Choose a box to inherit from. 2) If desdir
overrideinit_port_lists to redefine input and output
ports by simply adding new ports to a generic B3t.
Override execute to describe, how values of input

different kinds of boxes. However, using .NET, sev-
eral different kinds of special box categories re
able, e.g. hierarchy boxes (to provide subnets and
workspaces), web service boxes, command line tool

ports are used by the transformation to compute val Wrappers, compilers, foreign libraries wrappers, or
ues and copy them into Output ports_ 4) If a nepy re DLL loaders Here we show five variants to integrate
resentation is desired, create a new subclass oflifferent transformations in boxes.

GtkBox and redefine components or add new features

to the inner frame, e.g. a button to show a newyvie
which can be any graphical object. Override
init_representation in the box to assign it to the box.

Computation Strategy
There are several variants to initiate computatbn

the transformation net: backward and forward compu-

tation (similarly to demand-driven vs. data-driven)
and direct vs. indirect data transport. The chasce
realised through an instance loterpreter, who per-
forms/initiates the traversal.

With direct data transport, a transformation itself

Web Services

As an example for a web service transformation we
show in Fig. 3, how to implement the compiler gen-
erator box LisaWS used in Fig. 1. Lisa [Mer99] is a
compiler generator system also available as web ser
vice. When sending an attribute grammar, it geesrat
and delivers Java code of a compiler. The code can
be compiled and the resulting compiler can be used
for the programs of that language.

LisaWS gets an input port for a string value, the a
tribute grammar. An output port is configured to{pr
vide a string for a path (to store the generatied)i

informs its successors / predecessors about resultsand further ports, where the generated lexer, srann

.NET Technologies 2006 Short papers 38

parser, and evaluator can be requested separately.

ISBN 80-86943-11-9

public class LisaWSBox : Box { added a transformation browser for choosing boxes

public override void init_port_lists(){ and converters. This browser makes use of reflectio
:ﬂpﬂgié]dgéta— new Port ("String”)); to analyse DLLs in a chosen directory and to create
P " new ValueData (null , "String"): instances of provided classes.

Outputs.Add(new Port ("String"));
Outputs[0].data =

——— . public class HierarchyBox : Box {

/l Sg?%"é \nﬂilrueeoDLitaut(gl;t”s » "String) public IdBox InputBox = new ldBox ();

} putp public IdBox OutputBox = new ldBox ();
.) . /I Hide Inputs of this box by pointing
pgbshgrviceSggrrwnsde?vicevmd eii)géjé?\%e = /I to corresponding interface box
: o . public override List <Port > Inputs {
new CServiceBeanService 0s set { InputBox.Inputs = value ;}

System.Net. CookieContainer container= get { return InputBox.Inputs: }

new System.Net. CookieContainer ();
lisaService.CookieContainer=container;
lisaService.mkdir(wlohmann™); public override List <Port > Outputs{ ... }

/I read file with lisa specifications public override void init_port_lists(){

String path = Inputs[0].data.value; b e .)
i - : . ase .init_port_lists();
FileStream fs= File .OpenRead(path); S s S .
StreamReader r= new StreamReader (fs); InputBox. Double_PortLists();

String Spec = r.ReadToENd(); OutputBox.Double_PortLists();

lisaService.clearError();

public override void execute(){
OutputBox.ownlinternExecute();
/I Input execute not necessary

/I compile and save specifications
bool OK = lisaService.compile(Spec);
if (IOK){... [* error */ } else {
String scanner =
lisaService.getScanner();
Outputs[0].data.value = scanner;

/I save hierarchy in a separate subnet

private TransformationNet _TraNe =
new TransformationNet 0;

public TransformationNet TraNe {

}} get { return _TraNet;}
public override void
Figure 3. A web service box init_representation() {
this .Representation = new ‘
We find it especially charming to integrate remote Gtk_HierarchyBox_Representation (this);

applications into transformation nets from locally }}

existent algorithmsProblems might be that connec-
tions are unavailable, or slow. Depending on timel ki Figure4. A plain hierarchy box
of service boxed, the transformation could reqtare
re-compute always, even if no input values have
changed.

Use of Native Libraries

As an example for the use of existing DLLs outside
of .NET we choose SWI-Prolog [Wie06], mainly
because we want to use Prolog for experiments with
transformation tasks similar to [Loh04, LohO3h

Fig. 1, the PathFinder-box is based on Prologe# d
termines a path through a labyrinth and generates a
control program in the Robot language for it.

Hierarchical Transformations

Hierarchy in transformation nets means to hide a
transformation subnefSN behind a boxBy, which
looks and behaves like other boxes with input and
output ports. Note, there are different types efdui-
chy boxes. They can differ in the number of input/
output ports, or in the way they are to be usedirigi

[Dllimport (DlIFileName)]

requires mapping inputs and outputsBpfto inputs internal static extern uint
and outputs necessary foGN. This can be easily PL_new_term_ref();
done by providing two identity boxed and By as Il make a PITerm from a C# string
interface for inputs and outputs, between whi€\ public PITerm(string text) {
is constructed. Since transformations use propertie | m term_ref=_ libpl .PL_new_term_ref();
. libpl .PL_put_atom_chars
to connect to ports, .NET helps to redirect poceas (m_term_ref text);
to the input ports oBy to input ports oB, as well as } /I SwiCs.cs by Uwe Lesta
output ports oBy to those oBg by simply overrid-
ing the definition of the properties (see Fig. e Figure 5. Snippet from SwiCs.cs

graphical representation is extended by a button,

which when pressed provides a second view, namely NET offers the attribut®llimport to define access
the workspace of the hierarchy box. Figure 1 shows, foreign libraries. We created a DLL based on

the inner view of a hierarchical box. We additidpal gpicscs (cf. [Les03]) where for each exported func-

.NET Technologies 2006 Short papers 39 ISBN 80-86943-11-9

tion in the library its name is declared after &tieib-

ute (Fig. 5). The DLL provides .NET programs with
methods and types to model Prolog terms and to
query a SWI-Prolog engine; and is used by the box.

public override void execute(){
String [] param = { @"H:\\ Projects" +
... "\Application.exe"
PIEngine e= new PIEngine (1, param);

/I Get query as Text, call it, e.g.
/I (tell('log"),write("HiWorld"),told);
string goal=(string)
(Inputs[0].data.copy().value);
PlQuery q= new PIQuery ("call" ,
new PITermv (new PICompound (goal)));
bool b = qg.next_solution(); g.free();

}

Figure 6. Providing direct Prolog access

Figure 6 shows how to interpret a string input as
Prolog term directly and to call it. Combined with
text boxes it can serve as interactive Prolog inter
preter. Also, a Prolog box can provide programs tha
are more complex or initiate loading of a rule base

A problem is, in our opinion, that the attribudd I m-

port expects a static string, which has to be known at
compile-time. This makes replacing different vensio

of the Prolog DLL impossible without recompilation
of the interface DLLSwiCs.cs, thus, reducing plat-
form independence (the name of the dynamic librar-
ies differ between e.g. Windows and UNIX systems).

XSLT Boxes

.NET comes with good XML and XSLT support.
This offers a good basis to provide boxes to trans-
form XML documents. Fig. 7 gives an example for
the contents oéxecute.

String xml_input = (String)
((Inputs[0].data.copy()).value);
StringReader xml_reader =
new StringReader (xml_input);

XPathDocument xpath_document =
new XPathDocument (xml_reader);
XslCompiledTransform transformation =

new XslCompiledTransform 0;
StringReader xsl_script_reader =
new StringReader (Xslt_Script());

XmlITextReader xsl_script =
new XmlTextReader (xsl_script_reader);
transformation.Load(xsl_script);
StringWriter xml_output_writer = ...
XPathNavigator document_navigator =
xpath_document.CreateNavigator();

transformation. Transform(
document_navigator,
xml_output_writer);
Outputs[0].data.value =
xml_output_writer. ToString();

null

Figure7. Apply XSLT script to input

The example takes some XML data from an input
port and delivers transformed data to the output po

.NET Technologies 2006 Short papers 40

Note, that the XSLT script in this case is providgd

a return value oKdlt_Scipt, a method to be overrid-
den by subclasses to specify a concrete transforma-
tion. Other variants of XSLT boxes might expect the
script itself, or a filename for the script as ihpat a
port, or configured in another box view. A subclass
of this box is used in Fig. 1 to transform the digsc

tion of a labyrinth into Prolog notation.

Command Line Tools

Many transformations are available as command line
tools. Examples are compilers, but also yacc, lex,
awk. Additionally, there are tools like grammar de-
ployment kit [Kor02], which could be made available
through the integration in Trane. Figure 8 shows ho
to use the Java-compiler for Lisa-generated cofle (c
Fig. 1). Here, the tool represented is hard codédl i
the box, but could also be provided through extra
views with input fields or from input strings asrpaf

the transformation.

System.Diagnostics. Process p=

new Process ();
p.Startinfo.UseShellExecute = false
p.Startinfo.CreateNoWindow = true ;
p.Startinfo.RedirectStandardOutput= true ;
p.Startinfo.RedirectStandardinput= true ;

p.Startinfo.FileName = "ecmd" ;
p.Start();
StreamWriter sw = p.Standardinput;
StreamReader sr = p.StandardOutput;
sw.AutoFlush = true ;
/Isw.WriteLine("dir /AD");or any cmd/tool
sw.WriteLine(@ "javac —classpath lisa.jar"
+path+ "* java"
sw.Close(); p.WaitForExit();
Outputs[0].Data.Value=TextBuffer.Text;

);

Figure 8. Wrapping command linetools

The problem with this kind of boxes is that platfor
independence is restricted to the availability foé t
integrated tools on the platform.

Dynamic Compilation and I ntegration

The command line tool approach can be used to
compile a transformation for Trane and make it us-
able at run-time. Depending on given options, the
resulting executable can be started as command
(maybe again wrapped in a box, as in Fig. 8), er th
DLL can be examined/loaded and classes instantiated
using reflection, if it is written in a .NET langye. If

the compiler generates .NET code itself, the regylt
class can be directly instantiated instead of geimey

a DLL first.

F# and Other Languages

Though the above examples can use transformations
written in other languages, the boxes themselves ha
been specified using C#. It is better to use tme la
guage of choice itself to define a box. This reggiiit

is implemented on .NET. The resulting DLL can be

ISBN 80-86943-11-9

used in Trane, as if C# had been used due to crossstructured data. For compositions of complex trans-
language inheritance. Only thdhe real benefit of formations they provide the XTC model. A repository
.NET occurs in our opinion, as the still existinglp- registers locations of tools. An abstraction laiyar

lems of data conversion in approaches like commandplemented in Stratego supports transparent access,
line tools or foreign libraries could be avoided. allowing to call and use a tool like a basic transf

With F# [Fsh06] we were able to inherit from C# Mation step in Stratego programs. Additionally,
classes of Trane (the box), to create a new boi-(wr Stratego provides a foreign language interfaceatb c

ten in F#) and to instantiate from it in Trane ag#&# C funptions. Trane is_designed main_ly to reusetand
is functional and thus, similar to Prolog, suitakde combine transformations for experiments. The XT

describe transformations. tools could be wrapped in boxes, and used for ex-

]] periments. We cannot generate stand-alone toats fro
Several languages on .NET are differently Su'table-composite transformations.

We had not the expected success with P#, but this .
might be our fault. With Eiffel# it is necessarytaxke | he Meta-Environment [Bra01] also allows the com-
care of the naming scheme during compilation. J# isPination of different tools, but separates stridily-

not portable on Linux as it requires DLLs available tWeen coordination and computation. Basis is the
on Windows only. We would be interested in a TOOLBUS coordination architecture, a programma-

smooth integration of Haskell. There are some at- P& Software bus based on process algebra. Coerdina
tempts, but there is still a way to go. tion is expressed by a formal description of thepzo
eration protocol between components, while compu-

5. RELATED WORK tation can be expressed in any language. Meta-

Several tools provide a plugin structure and irtera Environment is qsgd to produce rea! I!fe produats,
tive placement of components. They are either |arge (e Other hand, it is complex, and difficult to ptla

or provide a proprietary language to extend theth wi €W 100l to the tool bus.

new objects. Trane has mainly been inspired by Can-In Trane, coordination and computation are tangled.
tata, the graphical user interface for the Khorngs s Evaluation of a transformation net is just travegsio

tem to analyse and manipulate graphics [You95]. each node and computing as given by the inherent
Cantata allows to interactively construct suchefilt dependencies between transformation nodes. Trans-
pipelines. formations can be added easily by providing a wrap-

[Spi02] considers UNIX tools as components. A GUI per, where only two methods have to be overridden.

builder is used to create the visual programming-en In Eclipse, GEF allows to create similar models and
ronment. The placing relation of the components de-associate semantics to them. However, for new parts
scribes dataflow, which is text. UNIX tools have to of the model (e.g. similarly to a new box in Traite)
encapsulate as ActiveX components with much man-requires a new compilation, while Trane nets are
ual work. Connectors are simply a visual encapsula-open. We do not need to compile the net. It isatliye
tion of the operating system pipe abstraction. Con- executable. New transformations can be added
nector and glue-type components still need to ie wr dynamically. Like other plugin systems, in Eclipse
ten by hand. Trane is not restricted to one kind of plugin needs configuration files to add a new compo
data, though it is intended to be applied mainly to nent, while we use reflection to extract necessary
artifacts of language processors, i.e. data armgra information. The language plugins for Eclipse are
mars, specifications, rewrite rules, parts of parse Java classes in a JAR archive. Transformations in
etc. We provide among others a system call box, Trane do not need to be written in one specific-con
which can take the command call directly as striag. figuration language, as long it is supported by TNE

new wrapper box for a special command can be eas{sangg] also try to spread transformation system
ily written on top of the system box, which canéak technology over a set of reusable heterogeneous
even the options at input ports. Our converters cancomponents. Using Java, CORBA and HTTP, they
transport structured data of any kind, they jusefia have instantiated a communication layer. To config-
inherit from a general converter class and implgmen .o components, a description in a hybrid architect
additional treatment. description language is necessary.

Stratego/XT [Vis04] uses mainly ATerms [Bra00] 1o cajling functionality from foreign DLLs is not new.
provide input and output for terms in Stratego, d owever, usually the calls are determined at coenpil

exchange terms between transformation tools. NeWijme. \We offer to combine functionality, which migh
created transformations are wrapped into standealon ¢ome from different DLLs without recompilation.

components, which can be called from the command- = . L o
line or from other tools. Those tools can be used YSING Trane is similar to programming in dataflow

similarly to Unix pipes, but can additionally wook languages. We refer to [Whi94] for further reading.

.NET Technologies 2006 Short papers 41 ISBN 80-86943-11-9

6. CONCLUDING REMARKS [Bra00] v. d. Brand , M.G.J., and de Jong, H. Ad lint,
P., and Olivier, P. A., Efficient annotated terr8gft-

SUMMARY ware- Practice & Experience, 30, pp. 259-291, 2000
We have presented a lightweight infrastructurecthi [Fsh06] F# Home Page (Feb.2006)
allows to provide heterogeneous transformationk wit http://research.microsoft.com/fsharp

a uniform facade to combine and interact with them. [Kju05] Klusener, S., and Lammel, R., and Verhdgf;
The model has been given and the essential classes Architectural Modifications to Deployed Software.
have been explained. We presented five categofies 0 Science of Computer Programming 54, pp.143-211,
transformations such as integration of web seryices 2005

or command line tools. Integration of new transfor- [Kor02] Kort, J. and Lammel, R., and Verhoef, C.eTh
mations is simple. Due to reflection, no extra con- Grammar Deployment Kit, ENTCS 65, 3, Elsevier Sci-
figuration files are necessary. Trane is lightweigh ence Publ., 2002

a large part of the work for integration is encapsu [Lam04] Lammel, R.: Evolution of Rule-Based Progsam
lated in .NET. The biggest advantages have lan- Journal of Logic and Algebraic Programming, Special
guages that are implemented on .NET directly, but Issue on Structural Operational Semantics, 2004

we still wait for more pure .NET languages, without [Les03] Lesta, U.. C# Interface to SWI-Prolog.

name scheme or inheritance problems. http://gollem.science.uva.nl/twiki/pl/bin/view/Foga/
CSharplnterfacevVersion Aug. 2003

FUTURE WORK [Loh03] Lohmann, W., and Riedewald, G. Towards auto

We are aware that Trane is rather a proof of cancep matical migration of transformation rules afterrgraar

than a tool yet. The type system is currently vaxaly extension. In Proc. 7th European Conference on- Soft

hoc. There are still conceptual. It is still mattsfr ware Maintenance and Reengineering (CSMR'03),

research, what types mean in our context. For exam- Bénevento, ltaly, March, 2003

ple, for some transformations grammars of different [Loh04] Lohmann, W., and Riedewald, R. and Stoy, M.
languages are of the same type, if they are isdnee Semantics-preserving migration of semantic rules du
format such as BNF. On the other hand, grammars ing left recursion r_emoval in attribute grammars,
can be considered as different types despite their ENTCS 110 C, Elsevier, 2004

format, if the algorithm using it is language sfiieci ~ [Mer99] Mernik, M., and Zumer, V., and Lenic, M.véi-

We want to design an extensible type hierarchy. causevic, E. Implementation of multiple attribute
. . .) grammar inheritance in the tool LISA. ACM SIGPLAN
The Visitor pattern might help with flexible compuit not., June 1999, Vol. 34, No. 6, pp. 68-75.

tions; also, to generate _cc_)mmand line tools f_rcmma [San99] SantAnna, M., do Prado Leite, J.C.S., Auhk

as well as te_rms describing nets _for analysis. is a tectural Framework for Software Transformation,-Pro
other way to integrate transformations sockets lshou ceedings of the International Workshop on Software
be examined. The usability has to be increasedyvast Transformations: STS'99', ICSE'99, 1999
It might be interesting to initiate the evaluatioh http://www.dur.ac.uk/CSM/STS/

transformations in separate threads. A classifoati [set04] Proceedings of the Workshop on SoftwarelEvo
of boxes would be nice. We need more transforma-- tjon through Transformations: Model-based vs. Imple

tions with grammar typical support to perform the mentation-level Solutions (SETra 2004), ENTCS 127
experiments. We are new to F# and need more ex- (3), April 2005

periments with it and with other .NET languages. [Spi02] Spinellis, D. Unix tools as visual prograing
components in a gui-builder environment. Software -

7. ACKNOWLEDGMENTS Practice & Experience. 32, pp.57-71, 2002

We thank the reviewers for their comments, which [visp4] visser, E., Program Transformation with

provided answers, literature, and suggestions der f Stratego/XT: Rules, Strategies, Tools, and Systems

ture directions of the work, though we were noteabl StrategoXT-0.9., in C. Lengauer et al., editors,- Do

to implement most of them in this paper. We thank ~ main-Specific Program Generation, LNCS 3016, pp.
Damijan Rebernak for help with the Lisa web service 216--238. Spinger-Verlag, June 2004.
[Whi94] Whiting, P. G., and Pascoe, R. S. V. A Higtof

8. REFERENCES Data-Flow Languages, |EEE Annals of the History of
[Bra01] v. d. Brand , M.G.J., and v. Deursen, Ad &leer- Computing, Vol.16(4), pp.38-59, 1994
ing,J, and de Jong, H.A., and de Jonge, M., and Kui [Wie06] Wielemaker, J. SWI-Prolog Home Page
pers,T., and Klint,P., and Moonen,L., and Olivier, http://www.Swi-Prolog.org

P.A., and Scheerder,.J., and Vinju,J.J., and Vidser [You95] Young, M., and Argiro, D., and Kubica, SaiG

?;nd Visser,\llé Thde I:A‘SF+SDF I;\/Ieta}-environmEent_: A tata: Visual programming environment for the Khoros
omponent-Based Language Development Environ- system. Computer Graphics 29, 1995

ment, Procs. of the 10th International Conference o
Compiler Construction, p.365-370, April 02-06, 2001

.NET Technologies 2006 Short papers 42 ISBN 80-86943-11-9

Sampling profiler for Rotor as part of optimizing
compilation system

Sofia Chilingarova
St-Petersburg State University
28, Universitetskiy pr.,
Petrodvorets
Russia 198504, St-Petersburg

sofie-chil@hotmail.ru

Vladimir O. Safonov
St-Petersburg State University
28, Universitetskiy pr.,
Petrodvorets
Russia 198504, St-Petersburg

v_o_safonov@mail.ru

ABSTRACT

This paper describes a low-overhead self-tuning sampling-based runtime profiler integrated into SSCLI virtual
machine. Our profiler estimates how “hot” a method is and builds a call context graph based on managed stack
samples analysis. The frequency of sampling is tuned dynamically at runtime, based on the information of how
often the same activation record appears on top of the stack. The call graph is presented as a novel Call Context
Map (CC-Map) structure that combines compact representation and accurate information about the context. It
enables fast extraction of data helpful in making compilation decisions, as well as fast placing data into the map.
Sampling mechanism is integrated with intrinsic Rotor mechanisms of thread preemption and stack walk. A
separate system thread is responsible for organizing data in the CC-Map. This thread gathers and stores samples
quickly queued by managed threads, thus decreasing the time they must hold up their user-scheduled job.

Keywords

SSCLI / Rotor, Just-in-time compilation, sampling-based profiling, de-virtualization, inlining.

1. INTRODUCTION

Optimization techniques based on profile data
obtained at run time form the essential part of
optimization strategy in modern dynamic compilation
frameworks.[Arn02][Sug01][Jav02] Static analysis
alone cannot provide sufficiently full information by
sufficiently low cost to make optimizations pay for
themselves in dynamic compilers. Managed
environments have the distinguishing capability to
provide feedback and use it in compilation at the very
time the program executes, and runtime profilers are
designed to utilize this capability. With profile data
enabling selective optimization of the “hot” pieces of
code we gain much more.

There are two main types of profile data optimizing
compiler may be interested in: individual methods
“hot counts”, i.e. precise or approximate estimation
of method execution frequency, and some kind of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency — Science Press,
Plzen, Czech Republic.

.NET Technologies 2006 Short papers 43

“call graph” which can provide information about the
frequency of calls from one method to another. The
former is used to pick up the individual “hot”
methods for recompilation, the later helps to plan
optimizations in the broader context taking into
account the hot paths through the whole application.

Many techniques have been developed to collect and
store runtime profile data. But the key point has
always been a balance between the accuracy of
profile data and low overhead of profiling facilities,
which have to do their job at run time thus adding to
compilation overhead. Experiment results show that
strictly accurate profile is not necessary to make a
good recompilation decision, so sampling profilers
turned out an excellent tool to get rather complex
information about program behavior with low
overhead.

Typical sampling profiler working as a part of a
dynamic compilation framework acts as follows:
periodically it launches a task that looks up a stack
for managed methods frames, then forms collected
data into some structure reflecting dynamic call
context and stores it for the subsequent use. [Arn02]
[Wha0O] Our profiler developed for SSCLI (Rotor)
also utilizes this classical schema. It uses the
mechanism for exploring stack that Rotor already has
(we will cover it later) and stores data in Call Context

ISBN 80-86943-11-9

Map structure that contains counters for individual
methods calls, total count for every call done by one
method to the other, and detailed information about
the context in which the call occurs.

Contributions
This paper makes the following contributions:

e Data structures. It describes a Call Context
Map (CC-Map) data structure used for encoding
runtime profile information. It shows the
advantages of the Call Context Map: its
capability to provide the full information needed
for recompilation decisions quickly and with
minimum effort remaining at the same time a
rather compact structure. It describes the
algorithm for filling CC-Map from a raw stack
samples containing references to managed
methods metadata and offsets in code.

e Profiling Techniques. The paper presents a
profiling technique based on profiler and
managed threads cooperation and background
processing of raw samples data, which allows
maintaining a complex structure of profile data
storage not causing the managed threads to
postpone their jobs for a long time. The bunch
processing of samples helps to minimize
synchronization on the global samples cache.

e Experience using SSCLI features. The paper
shows how the SSCLI core functions and
structures were used to help collecting stack
samples and organizing profile data. It also
describes the utilization of core SSCLI
mechanism for threads cooperation and
synchronization to provide cooperative behavior
in gathering samples.

e Evaluation of overhead and accuracy of
profiling. The paper presents evaluation of
accuracy and overhead of the profiler ran on the
SSCLI quality test suit using simple execution
counters statistical correlation and Arnold &
Ryder overlap percentage measure[Arn02].

2. RELATED WORK

Many papers published in the last years show the
benefits of profile-driven optimizations and the ways
profile data may be used in compilation decisions.
Arnold[Arn02] in his PhD thesis paper describes in
detail several kinds of profile-driven optimizations
implemented in Jikes JVM. Suganuma et. al.
[Sug0O1] in their review of IBM DK optimizing JIT-
compilation framework give a full picture of how
instrumentation and sampling based profiling is used
to collect profile data from interpreted and compiled
code, respectively. They provide experiment results
showing the evident advantages of profile-based

.NET Technologies 2006 Short papers

44

selective optimizing compilation over both
optimizing non-selective and fast non-optimizing
non-selective compilation.

Several studies show the practical use of dynamic
profile data in such optimizations as inlining
[Sug02] and devirtualization[IshOO]. These two types
of optimization are very important for managed
environments with intrinsic support of object-oriented
languages where most method calls are virtual and
many levels of indirection often present. Suganuma
et. al. [Sug03] introduce an interesting optimization
technique, Region-Based Compilation, that allows
more effective use of profile data.

Whaley[Wha00] describes several different
approaches to profile data organization: Dynamic
Call Graph (DCG), Calling Context Tree (CCT),
Partial Calling Context Tree (PCCT). Arnold et. al.
[Arn00] shows in more detail how the DCG is
constructed. We’ll look closer at these structures in
the next section where we describe our data
representation choice, Call Context Map (CC-Map),
and compare it with the other options. CC-Map is in
many respects similar to CCT and PCCT, but
provides easier ways to retrieve full context
information. Also we don’t place such restrictions on
the length of a sample, as PCCT-based approach
described by Whaley. In our profiling framework we
allow sample buffers to grow when needed, although
we define some rather high limit for the cases of
incredibly deep stack, which are rare.

Arnold and Grove [Arn05] propose an interesting
variation of samples collection technique. Instead of
taking one sample at a time, their profiler takes a
bunch of samples: when profiling is requested, stack
walk is performed several times over a short interval.
Authors show how this approach helps eliminate
inaccuracy in some situations.

3. PROFILER DESIGN

In this section we describe an overall structure of the
profiler: how the sample data storage is organized
and how the samples gathering mechanism works.
We introduce a Call Context Map (CC-Map) that
allows easy retrieving of many kinds of data needed
for compilation/recompilation decisions. We present
a sampling strategy that helps to maintain a rather
complex CC-Map structure and at the same time not
cause the user threads job to be postponed for long
intervals. In the next section we’ll take a closer look
at the Rotor-specific issues and show how the profiler
uses intrinsic mechanisms of the SSCLI virtual
machine to do its job.

ISBN 80-86943-11-9

Call Context Map

3.1.1 Previous approaches

The common way to represent the sequences of calls
with their relative frequency in runtime profile data is
using some kind of call context tree. Call context tree
consists of nodes correspondent to the method calls
and directed edges, which denote caller-callee
relations. The examples are Dynamic Call Graphs
(DCG, DCG-E) described by Arnold et. al.
[Arn00] and Calling Context Tree/Partial Calling
Context Tree (CCT, PCCT) described by
Whaley[Wha00] . Dynamic Call Graph is shown on
the Figure 1b. Nodes represent method calls, edges
mark associations between caller and callee, and
weights assigned to edges mean the number of calls
from the specified caller to the specified callee
encountered in samples. This is rather compact
representation but the information we can retrieve
from it is limited. We can estimate how often one
method calls the other, but with DCG alone we
cannot determine, for example, that call chain ACD
has never been encountered in samples, ABC has
been encountered 2 times, and BCD — only once.
Thus DCG can effectively represent only one-level-
depth profile.

2 1
c o
al
o i B
£ c 3]
E
3
a E , C
c - e
1 1]
o
bl cl

Figure 1. DCG and PCCT structures: a) samples
collected from stack; b) correspondent DCG; c)
correspondent PCCT

Partial Calling Context Trees (CCT) shown on Figure
1c provides more context information. Details of
PCCT construction are covered in [Wha0O]. They
build PCCT using the fixed length buffer for samples,
so that a delay does not be very long when the stack
is extremely deep. When a sample is got and a PCC-
Tree with the outer caller as a root is found, profiler
updates counters for edges in this tree, otherwise a
new tree is created. Here we can point out longer call
sequences, but still cannot know, without additional
analysis, that calls from B to C have been
encountered 4 times, totally. To retrieve this
information we should examine all the trees looking

.NET Technologies 2006 Short papers

45

for edges BC and adding the counters to the total
sum.

One more problem is illustrated by Figure 2a. Let we
have a call graph shown at the left side of the figure.
A and E call B and in both cases B calls C. Then C
calls D or F. Also the samples with B as the outer
frame are found, as shown on the figure. Let we build
the Call Context Trees form these samples. We get
three of them, with A, E, and B as roots.

Figure 2. More complex call context

Here the hottest path is actually BCD, which executes
8 times. But we cannot retrieve this information
automatically having only the CC-trees in hand. We
cannot queue BCD path for possible recompilation
automatically when the total counter exceeds
threshold because we haven’s such a total counter.
The solution might be to construct/update CCT for
every caller in the chain when a sample is got, but
this way we fail to distinguish the frequencies of call
to BCD in different contexts. For example, if the
situation is like the one shown on Figure 2b, we’ll fail
to know that BCD path (executes 8§ times totally) is
actual only for calls from A. For E call site the path
EBCEF is really hot. The PCC-trees for this case (3
trees shown at the right side of the Figure 2b) reveal
it clearly. If we update counters for BC and CD in the
tree with B root every time the path is encountered in
a sample, at any place, we capture the information
about the total number of execution of BCD, but
loose the important context information. So we need
some combination of the described approaches.

3.1.2 Call Context Map Structure

Call Context Map (CC-Map) structure is designed to
address issues depicted in the previous subsection.
The higher level of the CC-Map is a hash-table
containing references to MethodProfile nodes.
MethodProfile node stores a total counter for the
method executions and references to the nodes

ISBN 80-86943-11-9

MethodrroTile
A

Callsiteret

Calleeref F

@ MethodProfile
B

Gt

MethodProfile
Z

o__

Context

CDﬂtE}Ct

Calleeref

Figure 3. Call Context Map fragment

representing information about calls from this method
to the others.

The Callee nodes contain accumulated counters for
the total number of calls from the concrete caller to
the concrete callee, in any context. Additionally, the
tree of reference nodes is constructed for every call
sequence. These Ref nodes contain counters for calls
done in the given context and references to the nodes,
which store general information about the call.

A fragment of CC-Map structure is shown on Figure
3. Let method A calls method B, B calls C, and C
calls D. Every caller profile refers to CallSite node
that contains general information about the call site —
offset, reference to the caller profile, etc. CallSite
node refers to one or more Callee nodes, which store
call counters and, in turn, refer to the profiles of
callees. CallSiteRef and CalleeRef nodes refer to the
general CallSite and Callee nodes and CalleeRef
nodes store the context counters. Every node
representing general call information has Context
references to the nodes, which describe a context of
the call.

3.1.3 Advantages of CC-Map structure

CC-Map accumulates a total call count for every
caller-callee pair and at the same time it allows
retrieving information concerning calls in the specific
context. This information is easily available: a
compilation controller may lookup contexts by the
Context references when some counter exceeds a

.NET Technologies 2006 Short papers

46

threshold, as well as move up and down through a
call chain.

From the CallSite and CallSiteRef nodes a controller
can know whether the call has probably one target
(and so consider devirtualization). CallSite node
provides this information for all calls from a given
site, CallSiteRef — only for calls done in a given
context.

CC-Map is a rather compact structure. Nodes don’t
store duplicate data. CC-Map allows quick updating,
as well as rather quick removing of nodes, which
appear cold. Compilation controller need not perform
additional analysis of trees to get information
necessary for good decision: it can only follow
references.

Figure 4 shows an example: a simplified view of CC-
Map for the calling sequences presented on Figure 2a
and 2b. The CallSite nodes are omitted for simplicity,
as there is only one call site for each method in this
example. You can see that a bi-directional association
exists between a node with general information about
method call and nodes representing the same call in
the different contexts. When an event of a total
counter exceeding threshold takes place, a
compilation/recompilation controller can quickly
look through the contexts to make an appropriate

ISBN 80-86943-11-9

aj

bl

Figure 4. CC-Map for Fig. 2 examples. Bold arrows indicate references from nodes describing call in a
given context, thin arrows indicate references form a general information node to call-in-context nodes
(this association is represented by ‘“Context” items on Fig. 3). The roots of the trees are MethodProfile
nodes containing the total counters for method executions

compilation decision (for example, consider the
common callers for de-virtualization or inlining too,
especially if only one callee has been detected at the
correspondent call sites so far). When analyzing a
frequently executed call sequence a controller can
browse all general call information nodes and access
other contexts from them. It can move up and down
the call sequence representation (see Fig. 3) to gather
all the information about callers and callees that
might affect a recompilation strategy choice.

3.1.4 CC-Map filling and updating

When a sample is being taken, all the data initially is
written into a buffer. The stack lookup starts from the
top of the stack and ends at the outermost frame or at
the first managed method activation record that has
already been visited by profiler. The profiler marks
managed method activation records when looks them
up (the JIT-compiler is configured to push the
additional slot on the stack for this purpose), so
during the following passes it can distinguish the new
frames from the old ones. When the profiler
encounters an old (marked as already visited) frame,
it records this frame data (as it is needed to register a
new call from the frame) and stops looking up the
stack.

So, at the start of the buffer we have a reference to
the method correspondent to the activation record at
the top of the stack (i.e., most inner call), and at the
end of the buffer — the outer caller (or the innermost

.NET Technologies 2006 Short papers

47

call that hasn’t returned from the previous lookup)
reference.

The pseudocode for sample buffer processing looks
as follows:

For (int 1 =

{

0; i < end_of_sample; i++)

update MethodProfile(buf[i]);
if (i > 0)
{

update Callee(buf[i],buf[i-1]);
}
for (j =
{

i-2; 3>=0;3--)

update CalleeRef (buf([j]);

}

The real code is a little more optimized and a little
more complicated, but the underlying algorithm is the
same.

Profiling Algorithm

Maintaining such a complex structure as the CC-Map
requires some effort. Algorithm described in the
previous section may take a long time to complete.
But we cannot afford to stop user threads for
observable intervals because of profiling.

The solution we have chosen is to separate taking
sample from thread stack from storing the sample
data in the CC-Map. For this purpose we use two
profiler worker threads, as well as thread-local and

ISBN 80-86943-11-9

global queues for samples waiting for the profiler to
process them.

Profiling job is launched by the MarkThreadsWorker
system thread which marks every live managed
thread to make it know that it should take a sample
when reaches a safe point. Every live managed thread
has its own sample buffer and its own short samples
queue. The sample is written into the thread local
buffer and pushed into the thread local queue. When
local queue length exceeds a threshold (rather low,
now 10) all its contents is pushed to the global queue.
This schema is aimed to decrease the need to grab a
global queue lock, and thus to decrease possible
pauses caused by waiting for the lock. Little delay in
samples processing is not critical because only large
numbers are considered when making compilation
decisions.

The CC-Map manager thread periodically grabs the
global queue lock, takes out a bunch of samples and
put them into its own queue. Then it releases the lock
and proceeds with processing samples without hurry.
Global queue hashes samples by thread id so the CC-
Map manager thread can return the processed sample
buffers back to their thread so that it need not to
allocate new memory. Local thread buffer grows
automatically when needed, queued samples buffers
grow then they need to adapt to local buffer size. So
when threads get back their own buffers, previously
queued, these buffers are likely to have appropriate
size. If the thread is already finished when CC-Map
manager returns processed sample buffers for it, this
chain of buffers is put aside to be used by next new
thread.

Tuning Sampling Interval

The profiler is, self-tuning, it adapts an interval of
taking samples to the characteristics of environment
where it runs. To do this it uses a simple heuristics: it
tracks how often the same activation records appear
on the top of the stack. It doesn’t take much effort or
time: as the profiler already distinguishes between
visited and not visited frames and stops at the first
visited, we need only to reflect this condition in a
sample and check whether this frame is the first in a
sample (i.e. it is taken from the top of the stack) when
processing the sample. If so, a special counter is
incremented.

There are two threshold values defined: maximum
percentage of repetitions and minimum percentage of
repetitions. CC-Map manager thread evaluates actual
percentage of repetitions (of activation record
appearance on the top of the stack) every 1000
samples (more precisely, than processed samples
portions is more than 1000, because the manager
thread handles a bunch of samples in every pass). If

.NET Technologies 2006 Short papers

48

percentage of repetitions is lower then minimum
threshold, it is considered too low and sampling
interval decreases. If percentage of repetitions is
higher than maximum threshold, the sampling
interval increases.

4. INTEGRATION WITH ROTOR

Rotor has a built-in mechanism for walking the stack,
which is used for such purposes as exception
handling and security checks[Stu03]. It involves
several methods and functions of virtual machine and
among them the StackWalkFrames method of the VM
Thread class, which we use to take samples.
StackWalkFrames takes a function to execute on
every encountered stack frame as a parameter, so its
work is easily customizable. The advantage of using
it is that it already knows how to distinguish managed
method frames from unmanaged method frames, can
recognize context transitions (e.g. across application
domain boundaries), encapsulates calls to Rotor
facilities to get metadata references and offsets, and it
provides a convenient interface to do jobs on the
stack.

We make managed threads call StackWalkFrames
method at, so called, “safe points”, building upon the
other intrinsic Rotor mechanism — trapping threads
when they know that it is safe to suspend now. This
mechanism has been originally used to trigger
garbage collection. Checks for a suspension request
have been inserted by the JIT-compiler at back edges
and everywhere where the next piece of code may
take long time to execute[Stu03]. Such checks are
also performed by some of runtime helper functions
extensively used in Rotor. We utilize this mechanism
and add additional check points at the entry of every
method. At that new check points we test only for the
need to take sample.

We also used the SSCLI core HashMap class to
construct the CC-Map in Rotor. SSCLI HashMap
class implements a hash table used by VM for its
internal needs. It hashes pointer type values by the
pointer type keys (so allows storing profile objects by
the pointer-to-metadata keys), implements locking for
insert, delete and lookup, and takes care of cleaning
up itself. It is just what we need. So we choose
HashMap as a hash table to store MethodProfile
references at the highest level of CC-Map and as a
hash table to hold queues of samples waiting for
processing in the global samples store.

5. RESULTS

We tested our profiler on SSCLI 1.0. To measure
overhead and accuracy of profiling we used tests
from a suite supplied with SSCLI. To estimate
overhead we chose a set of base tests from bcl\system

ISBN 80-86943-11-9

and bvr subdirectories and tests from bcl\threadsafety
subdirectory of Rotor tests directory. To estimate
accuracy we used tests from bcNhreadsafety
subdirectory, where multiple threads execute the
same code. As measures we used statistical
correlation of the total executions counters stored in
MethodProfile nodes and Arnold & Ryder overlap
percentage[Arn02] for the whole tree comparison.
Overlap percentage of trees T1 and T2 is computed
as follows:

2NinTir2 [min (Weight (Nt;), Weight(Nr,)]
where Weight (N1y) is:
Value(NTx)/ZN in Txvalue(N)5

N is a node holding a counter, value is a value of the
counter. When N is not found in Tx (thought it exist
in Ty and thus in TxTy set), it is assumed that
value(Nr,) = 0.

For performance test the low threshold for repetitions
(cases when the same method appears on the top of
the stack) was set to 1%, high threshold for
repetitions was set to 15%. For the correlation and
overlap measurement tests the self-tuning was turned
off, because it can affect the correlation results
distinctly for short-running tests, as those we used.
However the great deal of these differences is
produced at the interval when the profiler is tuning,
so such results do not reflect the real picture in steady
state. Logging of sample interval changes in the
process of tuning revealed that the sample interval
becomes stable after 1-2 changes. We measured
correlation and tree overlap with different sample
intervals (with self-tuning turned off) and the best
results (95-99%) were obtained with the same
interval that the profiler found automatically.

In accuracy test we recorded and compared
executions counters and the whole CC-Maps from 10
subsequent runs. The results of every run were
compared with results of every other and an average
value was computed.

To make the CC-Map accessible even after the VM
was stopped running, we dumped the CC-Map (in the
fastchecked mode) to an XML file at VM shutdown.
Then original CC-Maps were restored from XML
representation and compared (in XML dump of CC-
Map managed methods are identified by the full name
and signature to make comparison possible, though at
runtime they identified only by pointer to metadata).

Table 1 shows the average correlation for 10
subsequent runs of the same test and average tree
overlap percentage. All the tests are from
bcl\threadsafety suite.

.NET Technologies 2006 Short papers

49

Test Name Correlation, | Overlap,
% %
co8545int32 99 97
co8546int16 99 92
co8547sbyte 99 94
co8548intptr 99 98
co8549uint16 99 95
c08550uint32 99 95
co8551byte 99 97
c08552uintptr 99 97
co8553char 99 96
co8555boolean 99 96
co855%9enum 98 75
co8788stringbuilder 99 67
co8827console 99 77
co8830single 99 98

Table 1. Average correlation for total executions
counters and overlap percentage extracted from
comparison of results of 10 subsequent runs

We can see that though the correlation of simple
execution counters is always good (98-99%), overlap
percentage sometimes appears lower than 80%. We
think, however, this can be probably explained by the
fact than the tests themselves were very short.

Tests were run on Celeron433 processor, 256M
RAM. Sampling interval was set to 10ms. This is
rather short interval for this hardware configuration
and for long-running programs in may be longer.
However, the tuning mechanism can adjust the
interval well. When testing we started from interval
50ms, and for the tests, which performed bad with
such an interval, the profiler made it less. For the
tests, which performed well, the interval remained
unchanged. We see also in Table 1, that for some
tests accuracy is even redundant. 95-97% would be
enough to consider results statistically significant. For
the cases when we can get such accuracy with longer
interval, it will not decrease (or it can even increase if
the initial interval appears too short).

The profiling overhead was measured on the free
build against unchanged Rotor free build, on the same
hardware configuration, on the tests from bcl\system,
bvt, and bcl\threadsafety subsets of Rotor core test
suit. Initial sampling interval was set to 50ms. Tuning
was turned on. Tests were run 2 times, and the total
overhead did not exceed 3%. In the future we intend
to consider automatic turning off tuning after a
certain period of time so that to lower overhead.

ISBN 80-86943-11-9

6. REFERENCES

[Arn00] Arnold, M., Fink, S., Sarkar, V., Sweeney,
P. A comparative study of static and dynamic
heuristics for inlining. In ACM SIGPLAN
Workshop on Dynamic and Adaptive Compilation
and Optimization, Jan. 2000.

[Arn02] Arnold, M. Online Profiling and Feedback-
Directed Optimization of Java. PhD thesis,
Rutgers University, October 2002.

[Arn05] Arnold, M. and Grove, D. Collecting and
Exploiting High-Accuracy Call Graph Profiles in
Virtual Machines. In Proceedings of the
international Symposium on Code Generation and
Optimization, March 20 - 23, 2005.

[Jav02] The Java HotSpot™ Virtual Machine, v1.4.1,
d2, A Technical White Paper. Sun Microsystems,
September 2002.

[Ish00] Ishizaki, K., Kawahito, M., Yasue T.,
Nakatani, T. A study of devirtualization
techniques for a Java just-in-time compiler. In
ACM Conference on Object-Oriented
Programming Systems, Languages, and
Applications, Oct. 2000.

.NET Technologies 2006 Short papers

50

[Stu03] Stutz, D., Neward, T., Shilling, G. Shared
Source CLI Essentials. O’Reilly, 2003.

[Sug01] Suganuma, T., Yasue, T., Kawahito, M.,
Komatsu, H., Nakatani, T. A dynamic
optimization framework for a Java just-in-time
compiler. ACM Conference on Object-Oriented
Programming Systems, Languages, and
Applications (OOPSLA), October 2001.

[Sug02] Suganuma, T., Yasue, T., Nakatani, T.: An
empirical study of method inlining for a Java Just-
In-Time compiler. In: Proceedings of USENIX
2nd Java Virtual Machine Research and
Technology Symposium (JVM'02), pp. 91-104,
2002.

[Sug03] Suganuma, T., Yasue, T., Nakatani, T., A
Region-Based Compilation Technique for a Java
Just-In-Time Compiler, ACM SIGPLAN 2003
Conference on Programming Language Design
and Implementation (PLDI 2003), pp. 312-323,
June 9-11, 2003.

[WhaOO] Whaley, J. A portable sampling-based
profiler for Java virtual machines. In ACM 2000
Java Grande Conference, June 2000.

ISBN 80-86943-11-9

State Machine Design Pattern

Anatoly Shalyto

Head of Programming
Technologies Department

St. Petersburg State University of
Information Technologies,
Mechanics and Optics
14 Sablinskaya Street
Saint-Petersburg, Russia 197101

shalyto@mail.ifmo.ru

Nikita Shamgunov

Software Design Engineer, SQL
Server Engine, Microsoft,
11407 183rd PI NE #M1071
USA 98052, Redmond, WA

u04921@mail.ru

Georgy Korneev
Assistant Professor of
Programming Technologies
Department

St. Petersburg State University of
Information Technologies,
Mechanics and Optics
14 Sablinskaya Street
Saint-Petersburg, Russia 197101

kgeorgiy@rain.ifmo.ru

ABSTRACT
This paper presents a new object-oriented design pattern — State Machine design pattern. This pattern extends
capabilities of State design pattern. These patterns allow an object to alter its behavior when its internal state
changes. Introduced event-driven approach loosens coupling. Thus automata could be constructed from
independent state classes. The classes designed with State Machine pattern are more reusable than ones designed

with State pattern.

Keywords

design, pattern, automaton, automata, finite automata, finite state machine, behavior, state, transition, state chart

1. INTRODUCTION

Finite automata have been widely used in
programming since the appearance of [Kle56] which
introduced regular expressions and proved an
equivalence of a finite automaton and of a regular
expression.

Another area where finite automata are widely used is
object oriented programming, in which they are used
to design object logic. In this area states that have
major impacts on object’s behavior (control states)
are being extracted. Note that these automata are
significantly different from those used for regular
expression matching. In particular, objects are
designed in terms of interfaces and methods (terms
that don’t exist in classical automata) not in terms of
recognizable strings. This paper discusses automata
that are used in OOP.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency — Science Press,
Plzen, Czech Republic

.NET Technologies 2006 Short papers

In OOP, when people think of object behavior, they
consider the functionality of its methods. But in many
real world applications this definition is insufficient
— the internal state of an object should also be
considered.

The most famous implementation of an object whose
behavior depends on its state is the State pattern
[Gamma98]. However, pattern description is far from
being complete, in different sources [SterO1, Gra02]
it is implemented in different ways, sometimes even
too verbose. Another disadvantage of the pattern is
that the implementation of states in different classes
causes distribution of the transition logic among these
classes. This adds dependencies between the state
classes which lead to different issues in class
hierarchies design. In spite of these issues State
pattern is used in many practical projects including
JDO [IDOO01].

This paper addresses issues of State pattern by
introducing a new pattern named State Machine. Note
that [San95] introduced a pattern with the same name
for parallel system programming in Ada95 but still
the authors have chosen this name.

To make reuse of state classes possible we introduce
an event mechanism. Events are used to let the
automaton know that the state should be changed.
This allows centralization of the automaton transition
logic and loosens coupling between state classes.

ISBN 80-86943-11-9

More than twenty possible implementations of
State pattern are described in [Ada03]. State Machine
pattern might continue this list. The closest pattern
from the list is a combination of State and Observer
patterns [Odr96]. However, this pattern is too
complicated and it also introduces a new abstraction
layer: ChangeManager class. In contrast to
relatively verbose Observer implementation, in State
Machine transitions between states are based on
event-based mechanism. In [San95] another
implementation of State was introduced. State classes
coupling was loosened through a state change
mechanism based on a state name. This
implementation doesn’t reduce semantic
dependencies between classes and doesn’t provide
type safety.

2. Pattern Description

Intent

An intent of State Machine is the same as an intent of
State: to make it possible for an object to alter its
behavior when its internal state changes (it looks like
an object has changed its class). More extensible
design is required, than one provided by State.

Note that in the intent description so called control
states are considered. The difference between control
and evaluation states can be illustrated in the
following example. In an imaginary bank
management system it might make sense to identify
two modes: normal mode and bankrupt mode. This
modes would be control states. On the other hand
particular amount of money on the clients’ accounts
would be an evaluation state.

Motivation

Consider a class Connection that represents a
network connection. A simple connection has two
control states: Connected and Disconnected. A
transition between these states occurs either in case of
an error or intentionally — via execution of methods
connect or disconnect. In the Connected state a user
can call methods send and receive of a
Connection object. In case of an error
IOException is thrown and connected breaks. If an
object is in the Disconnected state, send and
receive methods will throw an exception as well.
Consider an interface, implemented by Connection
class.

public interface IConnection {
public void connect();
public void disconnect();
public int receive();
public void send(int value);

}

The basic idea of State Machine is to separate classes
which implement transition logic (Context) and state

.NET Technologies 2006 Short papers

classes. To provide an interaction between Context
and state classes we use events which are basically
objects that state objects pass to Context. A difference
from the State pattern is the way the next state is
determined. In State next state is explicitly pointed
out by the current state. In the proposed pattern it is
done by notifying the Context with an event. After
that it’s a Context’s responsibility to react and
possibly change the state. This is done according to
the state chart.

The advantage of this design solution is that state
classes may be designed independently. They don’t
need to be aware of each other.

Note that the state charts that are used in State
Machine are different from those described in
[Aho85].

They consist only of states and transitions marked
with events. Transition from the current state S to the
next state S* occurs on receiving event E if there is a
corresponding transition in the state chart.

State chart for the Connection class is shown on
figure 1.

DISCONNECT

DisconnectedState

ConnectedState

Figure 1. State Chart for class Connection

State classes are called ConnectedState and
DisconnectedState. Event CONNECT is used to
establish a connection and event DI SCONNECT is used
to break it. ERROR is used to indicate an i/o error.

To illustrate the work of the network connection let us
take a closer look at its breach in case of an i/o error.
If it were implemented through Srate its
ConnectedState would tell context to switch to
DisconnectedState. In the State Machine case it
notifies the context through ERROR that an i/o error
has occurred and the context changes its current state.
Thus in State Machine case ConnectedState and
DisconnectedState classes are not aware of each
other.

ISBN 80-86943-11-9

Application

State Machine could be applied wherever State is
applied but it also provides additional level of
flexibility allowing to reuse the state classes in
different automata. It also allows building state class
hierarchies.

Structure
Figure 2 shows a structure of State Machine.

cinterfaces
IEventSink
[+castEvent(in event : Event)
I
T

Context

cinterface;
1Automatonlnterface
fffffffffffffffff ~Dr+operationt()
[voperation2()

-0

|-state : |Automatoninterface
[+operationt ()
[+operation2()

Event

-0
[tcastEventin event : Event)

>
,

ConcreteState1
eventi_1 : Event
-event1_2: Event

i
|
|
|
|
|
, | \
|
|
|
|
|
|
|

Event

-eventSink : [EventSink c \
\

-automaton eventz_1 Event \

[+operation () l-event2_2 : Event

+operation2() Event

[+-0 -eventSink : IEventSink \

-automaton

(+operationt ()
[+operation2()

[-.. - Event
eventSink : IEventSink

l-automaton : [Automatoninterface|
[+operationt ()

1+operation2()

-0

DataModel T

Figure 2. Structure of State Machine

IAutomatonInterface is an interface of an object
to implement, operationl, operation2, ... are the
methods of this interface. This interface is
implemented by the main class Context and by the
state classes ConcreteStatel, ConcreteState2,
.... Events eventl_1, event2_1, ..., event2_1,
event2_2, ..., are used to change state. They are
instances of the Event class. The Context class has
references to all of the state classes
(ConcreteStatel and ConcreteState2) and a
reference to the current state. The state classes have a
reference to the data model (dataModel) and to the
event notification interface (eventSink). For the
purpose of brevity, relations between the state classes
and the Event class are not shown in the figure.

Members
State Machine consists of the following parts.

® Automata interface (IAutomatonInterface)
— is implemented by the context and is the only
way of interaction between the automata and a
client. This interface is also implemented by state
classes.

e (Context (Context) is a class that
encapsulates transition logic. It implements the

.NET Technologies 2006 Short papers

53

automata interface and holds an instance of the
data model and the current state.

o State classes (ConcreteStatel,
ConcreteState?, ...) — determine behavior in
a particular state. Each of them implements the
automata interface.

e FEvents (eventl_1, eventl_2, ..) — initiated
by the state classes and passed to the context that
does a transition depending on the event and the
current state.

e Event notification interface (IEventSink) —
implemented by a context. This is the only way
of interaction between the state classes and the

context.

e Data model (DataModel) — is a class to
provide a shared storage between the state
classes.

Note that automata interface in the proposed pattern
is implemented by the context and by the state
classes. This allows making certain compile-time
consistency check. In the State pattern such a check is
impossible because the context interface doesn’t
match state classes’ interfaces.

Relations

During its initialization the context creates an instance
of data model and uses it to create instances of states.
It passes the data model an event notification
interface (which is a this pointer).

During its lifetime an automaton delegates its
methods to the current state class. While executing a
delegated method the state object might generate an
event and notify the context using event notification
interface.

The next state is determined by the context on the
basis of the current state and the event.

Results

e As in the State pattern, the state-dependent
behavior is localized in the state classes.

e Unlike the State pattern in the proposed pattern
transition logic is separated from the behavior in
a particular state. The state classes should only
notify a context of a particular event.

¢ Implementation of an automata interface is trivial
and could be generated automatically.

e Transition could be implemented as a simple
index lookup.

e State Machine provides pure (no unneeded
methods) interface to a client. To prevent a client
from using IEventSink we could use private
inheritance (in C++) or define a private
constructor and a static method that creates an
instance of Context.

ISBN 80-86943-11-9

e State Machine, unlike State, doesn’t contain
redundant interfaces for the context and the state
classes — they all implement the same interface.

e [t is possible to reuse state classes; moreover,
state classes’ hierarchies can be created. Note
that it is mentioned in [Gam98] that new
subclasses are easily added to the state classes. In
fact, adding a subclass to a state class causes
modification of all the rest of the state classes
because the transition logic should be changed.
Thus extension of a particular automaton
implemented using State is being problematic.

Code Sample

The following sample in C# implements
Connection class described in 2.2. It is a simplified
model that allows transmitting and receiving data.

First let’s describe interfaces and base classes that are
used in this example. These classes are implemented
in an assembly ru.ifmo.is.sm. Class diagram is
shown on figure 3.

«interfacey
ru.ifmo.s.sm: 1EventSink

Event(t Event)
automaton : Al §

A

I

|

I

I

|

I

|

I

I

Event

StateBase name

-eventSink : [EventSink i
[ovemone. Evenenk !
+StateBase(in automaton : Al, in eventSink : [Eve «usesy| |

T |

+castEvent(in event : Event)
[#addEdge(in source : Al, in event : Event, in target : Al)

Figure 3. Class diagram for assembly ru.ifmo.is.sm

Let us describe all classes and events from this
package:

® TIEventSink — event notification interface:

public interface IEventSink {
void castEvent (Event ev);

}

® Event — event class:

public sealed class Event {
private readonly String name;

public Event (String name) {
if (name == null) throw new
NullReferenceException () ;
this.name = name;

}

public String getName () {
return name;
}
}

® StateBase — base class for all state classes.

public abstract class StateBase<AI> {
protected readonly AI automaton;
protected readonly IEventSink
eventSink;

.NET Technologies 2006 Short papers

54

public StateBase (AI automaton,
IEventSink eventSink) {

(automaton == null || eventSink
== null) {

throw new
NullReferenceException () ;

if

}
this.automaton
this.eventSink =

automaton;
eventSink;

}

protected void castEvent (Event ev) ({
eventSink.castEvent (ev) ;

}

® AutomatonBase — base class for all automata.
It provides a method addEdge for its subclasses.
In addition implements
IEventSink:
public abstract class AutomatonBase<AI>
IEventSink {
protected AI state;

private Dictionary<AI,
Dictionary<Event,

AutomatonBase

AI>> edges
new Dictionary<AI,
Dictionary<Event, AI>>();
protected void addEdge (AI source,
Event ev, AI target) {
Dictionary<Event, AI> row =
edges [source];

if (null == row) {
row = new Dictionary<Event,
AI>();

edges.Add (source, row);

}

row.Add (ev, target);

}

public void castEvent (Event ev) {
state = edges|[state] [eV];
}
}
Classes created according to the State Machine
pattern form an assembly Connection. Class
diagram is shown on a figure 5.

ISBN 80-86943-11-9

Connection «uses»

«interface»

+connect()
+disconnect()
+receive() : int
+send(in data : int)

+connect()
+disconnect()
+receive() : int
+send(in data : int)

in socket : Socket)|

’ \
4 \

ConnectedState \
+DISCONNECT : Event \
-socket : Socket \
+connect()

return socket.receive();

} catch (IOException e) {
eventSink.castEvent (ERROR) ;
throw e;

}

public void send(int value) {
try {
socket.send(value) ;
} catch (IOException e) {

+disconnect() DisconnectedState

+receive() : int

+CONNECT : Event
+send(in data : int)

-socket : Socket

eventSink.castEvent (ERROR) ;
throw e;

+connect()
+disconnect()
+receive() : int
+send(in data : int)

}

Socket

+connect()
+disconnect()
+receive() : int
+send(in data : int)

Figure 4. Class diagram for assembly connection

We use class Socket as a data model. It implements
IConnection interface in this example. Control
states of the automaton are ConnectedState and
DisconnectedState. In ConnectedState we can
expect ERROR and DISCONECT events and in
DisconnectedState we can expect CONNECT and
ERROR (figure 1).

The code of the state classes follows.

public class ConnectedState <AI>
StateBase<AI>, IConnection
where AI IConnection

public static readonly Event
DISCONNECT = new
Event ("DISCONNECT") ;
public static readonly Event ERROR =
new Event ("ERROR") ;

protected readonly Socket socket;
public ConnectedState(AI automaton,

IEventSink eventSink, Socket
socket)

base (automaton, eventSink)
{
this.socket = socket;
}
public void connect () {
}
public void disconnect () {

try {
socket.disconnect () ;
} finally {

eventSink.castEvent (DISCONNEC
T);

}

public int receive() {
try {

.NET Technologies 2006 Short papers

55

Note that state classes only partially specialize
generic parameter of StateBase. It is used to
support inheritance.

Class DisconnectedState

public class DisconnectedState <AI>
StateBase<AI>, IConnection
where AI IConnection {
public static readonly Event CONNECT
= new Event ("CONNECT") ;

public static readonly Event ERROR =
new Event ("ERROR") ;

protected readonly Socket socket;

public DisconnectedState (AI
automaton, IEventSink
eventSink, Socket socket)
base (automaton, eventSink)
{
this.socket = socket;

}

public void connect () {

try {
socket.connect () ;

} catch (IOException e) {
eventSink.castEvent (ERROR) ;
throw e;

}

eventSink.castEvent (CONNECT) ;

}

public void disconnect () {

}

public int receive() {
throw new IOException("Connection
is closed (receive)");

}

public void send(int value) {
throw new IOException("Connection
is closed (send)");

}

Note that state classes define only event generation
logic — transition logic is defined in the context.

ISBN 80-86943-11-9

3. Pattern extensibility

An extension of Connection will demonstrate how
we can extend automata interface. Let’s extend
automata interface in the following way.

public interface IPushBackConnection
IConnection {

void pushBack (int value);
}

When calling pushBack the value passed as an
argument is pushed on top of the stack to be popped
in the next call of receive. If the stack is empty at
the moment when receive is called, then the value is
being pulled from the socket as in the previous
example.

In this case the number of control states doesn’t
change but the state classes and the automaton must
implement an extended interface. Let’s call a context
of the new automaton PushBackConnection and
the new state classes PushBackConnectedState
and PushBackDisconnectedState. Here is an
implementation of PushBackConnectedState
Note that this class extends ConnectedState
inheriting its logic.

public class PushBackConnectedState <AI>

ConnectedState<AI>,

IPushBackConnection
IPushBackConnection

where AT

Stack<int> stack = new
Stack<Integer>();

public PushBackConnectedState (AI
automaton, IEventSink
eventSink, Socket socket)
base (automaton, eventSink,
socket) {

}

public int receive() {
if (stack.empty()) {
return base.receive();

}

return stack.pop();

}

public void pushBack (int value) {
stack.push(new Integer (value));
}
}

PushBackDisconnectedState class is
implemented in the same way. So we’ll only show the
PushBackConnection code.

public class PushBackConnection
AutomatonBase<IPushBackConnec
tion>, IPushBackConnection ({
private PushBackConnection() {
Socket socket = new Socket();

.NET Technologies 2006 Short papers

IPushBackConnection connected =
new
PushBackConnectedState<PushBa
ckConnection>(this, this,
socket) ;

IPushBackConnection disconnected =
new
PushBackDisconnectedState<Pus
hBackConnection>(this, this,
socket) ;

addEdge (connected,
PushBackConnectedState<IPushB
ackConnection>.DISCONNECT,
disconnected) ;

addEdge (connected,
PushBackConnectedState<IPushB
ackConnection>.ERROR,
disconnected) ;

addEdge (disconnected,
PushBackDisconnectedState<IPu
shBackConnection>.CONNECT,
connected) ;

state = disconnected;

}

public static IPushBackConnection
createAutomaton () {
return new PushBackConnection();

}

public void connect () {
state.connect (); }

public void disconnect () {
state.disconnect (); }

public int receive() { return
state.receive (); }

public void send(int value) {
state.send(value); }

public void pushBack (int value) {
state.pushBack (value); }

A class diagram for PushBackConnection is
shown on figure 5.

«interfacen
connection: IConnection

e A +send(in data - inf) ~
e N
ConnectedState DisconnectedState
+DISCONNECT : Event +*CONNECT : Event
-socket : Socket |-socket : Socket
+connect() _ +connect()
+disconnect() nterfacen) [+disconnect(
+receive() : int [push_back_connection:IPushBackConnection| +receive() - int
+send(in data : int) in value - inf) +send(in data - inf)
S
, i N
. | N
. N
L ! ~
. \
PushBackConnectedState PushBackConnection PushBackDisconnectedState
-stack -state : IConnection

+pushBack(in value - inf) +pushBack(in value - int) +pushBack(in value - int)
+connect() +connect() [+connect()
+disconnect() +disconnect() +disconnect()

+receive() int +receive() :int +receive() : int

[+send(in data : inf) +send(in data : int) [+send(in data : int)

(in socket : Socket)

Figure 5. Class diagram interface extensibility example

ISBN 80-86943-11-9

In a similar way we can reuse state classes when
creating a new automaton.

4. Conclusion

State Machine pattern improves State and inherits its
main idea — to encapsulate the state-dependent
behavior in a separate class.

The new pattern improves State in the following
aspects.

e When using State Machine it is possible to
design state classes independently. Thus the same
state class could be used in several automata.
This eliminates the major disadvantage of State
— reuse issues.

e In State transition logic is distributed throughout
state classes which introduces coupling between
them. State Machine addresses this issue. It
separates transition logic and the behavior in a
particular state.

e As opposed to State, State Machine doesn’t
cause interface redundancy.

In State Machine you still need to implement trivial
delegation of the automata interface methods to the
current state. Such a delegation could be done
automatically with the aid of CASE tools. Another
option is to modify a programming language to
support automata in a natural way. The authors are
working on such language.

.NET Technologies 2006 Short papers

57

5. REFERENCES

[Aho85] Aho A., Sethi R., Ullman J. Compilers:
Principles, Techniques and Tools. MA: Addison-
Wesley, 1985, 500 p.

[Ada03] Adamczyk P. The Anthology of the Finite
State Machine Design Patterns.
http://jerry.cs.uiuc.edu/~plop/plop2003/Papers/Adam
czyk-State-Machine.pdf

[JDO01] Java Data Objects (JDO).
http://java.sun.com/products/jdo/index.jsp.

[Kle56] Kleene S. C. Representation of Events in
Nerve Nets and Finite Automata, 1956 //Issue [6]. —
P. 341

[Gamma98] Gamma E., Helm R., Johnson R.,
Vlissides J. Design Patterns. MA: Addison-Wesley
Professional. 2001. — 395

[Gra02] Grand M. Patterns in Java: A Catalog of
Reusable Design Patterns Illustrated with UML.
Wiley, 2002. — 544 p.

[Odr96] Odrowski J., Sogaard P. Pattern Integration
— Variations of State // Proceedings of PLoP96.
http://www.cs.wustl.edu/~schmidt/PLoP-
96/odrowski.ps.gz [San96] Sandén B. The state-
machine pattern // Proceedings of the conference on
TRI-Ada '96
http://java.sun.com/products/jdo/index.jsp.

[San95] Sane A., Campbell R.. Object-Oriented State
Machines: Subclassing, Composition, Genericity //
OOPSLA °95.
http://choices.cs.uiuc.edu/sane/home.html.

[SterO1] Steling S., Maassen O. Applied Java
Patterns. Pearson Higher Education. 2001, P. 608

ISBN 80-86943-11-9

.NET Technologies 2006 Short papers 58 ISBN 80-86943-11-9

Building .NET GUIs for Haskell applications

Beatriz Alarcon
DSIC, UPV, Camino de Vera s/n,
46022 Valencia, Spain
balarcon@dsic.upv.es

Salvador Lucas
DSIC, UPV, Camino de Vera
s/n, 46022 Valencia, Spain

slucas@dsic.upv.es

ABSTRACT

.NET is an emerging Microsoft’s project which promotes a new framework for Software Development emphasizing the use of
Internet resources and the interaction between components written in different programming languages. Whereas functional
programming languages such as Haskell are well-suited for developing tools to analyze, verify and transform programs, typical
Haskell compilers do not provide sophisticated capabilities such as support for XML-Web services, assisted GUI development,
HTML processing, etc., which are frequent in most .NET development frameworks. We show how to integrate software
components developed in a functional language as Haskell together with (graphic) components developed in C# or another
.NET language. To achieve our objective we use the facilities offered by .NET to import COM components, on the one hand,
and the technology developed to generate COM components from Haskell modules, on the other.

Keywords:

1 INTRODUCTION

International efforts to develop a global framework to
use software resources have in Java and .NET their
most well-known exponents. .NET is an emerging Mi-
crosoft’s project which promotes a new framework for
Software Development emphasizing the use of Inter-
net resources and the interaction between components
written in different programming languages [Cha02].
Within the .NET platform we can integrate already ex-
isting technologies and products as well as new ele-
ments. The XML project promoted by the WWW con-
sortium' is also related to this effort through the use
of XML to document programs in .NET, the support of
Web services based on XML, etc.

The scientific communities that develop languages
and declarative software technology are carrying out
an important effort to make use of this kind of initia-
tives. Functional languages like Haskell® offer many
programming features and resources which make them
powerful tools for developing software projects and
rapid prototypes. However, typical Haskell compilers
(e.g. GHC, Hugs,...) do not provide visual tools for eas-
ily defining graphical user interfaces (GUIs), as, on the
contrary, many other programming languages have. Al-
though there are several libraries and systems which can
be used to develop GUIs in Haskell (e.g., wxHaskell®,
Gtk2Hs*, HToolkit>, etc.), a Haskell programmer can
waste too much time in giving form to his application if
he make use of such tools due to the lack of a graphic
assistant which makes easier the design of a GUIL. With
an Integrated Development Environment (IDE) like Vi-

' http://www.w3c.org

COM, Haskell, Interoperability, .NET, Programming environments.

sual Studio .NET, this is pretty simple. The support
to define Web services offered by the .NET platform is
a second aspect of Haskell applications for which we
could argue similarly.

Of course, having graphic libraries for functional lan-
guages is very interesting and useful. Unfortunately,
we can not affirm that such libraries (e.g., wxHaskell,
which we have used to develop a large Haskell appli-
cation like the termination tool MU-TERM [Luc04]) be-
haves like a completely stable and handy system (yet)
since you have to make sure that you have the same
version of the GHC compiler installed that requires the
version of wxHaskell you want to use. The design, de-
scription, and use of forms and graphic controls is not
very easy and it can take time to obtain what one is
looking for. Moreover, it is necessary to get a grip on
three basic concepts: widgets, layout and events.

This gave us a first motivation to start the research in
this paper. Another (more general) motivation comes
from the frequent need (in software development) of
combining software pieces of code written in different
programming languages. Of course, this is the well-
known problem of interoperability of software compo-
nents in sofware engineering and there are a number
of middleware solutions available for dealing with this
(also for Haskell applications, as we will see below).
However, as far as we know, no attempt to use the NET
technology in practice (i.e., with a real Haskell appli-
cation) has been reported yet. We have also tackled
this task: In 1999, Finne et al. [FLMP99] explored
the possibility of encapsulating Haskell programs like
COM objects (Microsoft’s Component Object Model
[Rog97, COMO04]). Why couldn’t we take a step fur-
ther and achieve our goal by means of COM and .NET

2 http://www.haskell.org

3 http://wxhaskell.sourceforge.net
4 http://haskell.org/gtk2hs/

S http://htoolkit.sourceforge.net/

interoperability? Microsoft has left opened the possibil-
ity of using already existing COM components in .NET;
thus, a Windows programmer does not need to rewrite

.NET Technologies 2006 Short papers 59 ISBN 80-86943-11-9

all his applications to run them under .NET. In our case,
we show how to take advantage of this to pack Haskell
programs as software components and integrate them
into applications written in other languages, for exam-
ple in C#, the most popular .NET language. Let’s give
a brief overview of our approach.

Our starting point is HaskellDirect (HDirect [Fin99,
FLMP99, HDi99]) a framework for Haskell FFI (For-
eign Function Interface) based on the standard IDL (/n-
terface Definition Language) which allows to specify a
programming interface in a programming language in-
dependent manner. There are many possibilities that
HDirect offer to the programmer: Creating Haskell
bindings to external libraries, creating external bindings
to Haskell libraries, creating Haskell client interfaces to
COM objects, and creating Haskell COM objects. In
our case, starting from a Haskell component, we build
a COM component which is encapsulated into a Dy-
namic Link Library (DLL), making it able to interoper-
ate with Windows applications and, in particular with
.NET applications. Our particular interest is furnishing
Haskell applications with .NET GUISs, but most of the
discussion is completely general and independent from
this concrete goal. HDirect implements in Haskell all
the required functionality to build a COM component
and exempts the programmer from the knowledge of the
COM specification since it is generated automatically.
Next, we make use of the .NET facility to import COM
components which can be used as external functions to
implement the C# event handlers for the controls in the
.NET GUL

The paper is organised as follows: Section 2 briefly
describes .NET graphic controls. Section 3 introduces a
simple case study which we use to illustrate our devel-
opment. Section 4 explains how to build a COM com-
ponent from a Haskell module. Section 5 addresses the
problem of its integration into .NET. Section 6 reports
on the results obtained on a concrete (realistic) appli-
cation of our technique. Section 7 displays our conclu-
sions and lines of future research.

2 OVERVIEW OF .NET GRAPHIC
CONTROLS

When a Windows programmer writes a .NET applica-
tion (in, e.g., C#), he or she can take advantage of the
System.Windows.Forms namespace, which provides a
variety of control classes for developing rich user in-
terfaces. Some controls are designed for data entry
in the application (e.g., TextBox and ComboBox con-
trols). Other controls display application data (e.g.,
Label and ListView controls). The namespace also
provides controls for invoking commands within the
application, such as the Button and MainMenu con-
trols. In this paper we are specially interested in show-
ing how Haskell applications can take advantage from
.NET technology, specially from .NET GUIs. Thus,

.NET Technologies 2006 Short papers

60

we only consider the information (or data) that graphic
controls and Haskell components should (usually) ex-
change. Although other control properties (e.g., con-
trol labels, colors, etc.) could also be managed through
Haskell components, we will not consider them in de-
tail here; we center the attention on the non-graphic part
of this information exchange . Extending the treatment
of controls to achieve such more generality would be
managed in a similar way, if necessary.

The hierarchy of .NET controls is very large. Here,
according to [FPB™03] we mention the most common
controls (which are also the most frequently used, in our
personal practice). We consider that these controls suf-
fice for giving a complete account of the problems and
solutions that any other control could rise and require
to achieve our purpose.

The table in Figure 1 shows the Haskell-like data as
could be considered to be managed by each .NET con-
trol. This table shows that with few simple Haskell
datatypes can be managed all necessary information, re-
garding our main purpose of having the graphic part of
the application developed in .NET (C#) and the ‘logic’
of the program written in Haskell.

3 A SIMPLE CASE STUDY

In order to discuss the techniques developed here, we
use a simple case study. It includes a simple graphic
interface to introduce and manipulate strings by means
of simple transformations:

converting the characters of the string into capital or
small letters,

removing spare blank spaces, and

simple encryption (based on the well-known Cae-
sar’s method)

The length of each string is also stored (as an integer
value). In order to highlight the role of Haskell as the
language which actually implements the logic of the ap-
plication, the use of C# here is strictly limited to provide
a GUI, i.e., to ease the introduction and visualization of
strings by means of graphic controls. The length of the
current string is displayed in a read only text control.
The different transformations are triggered by means
of buttons. The current string is selected from a Com-
boBox which shows the strings introduced so far (see
Figure 2).

In the Haskell part, we have the structures of func-
tional data which are necessary to control the state of
the system: we store each pair string-length in a list
that is indexed by a integer that points out at the current
position of the list (Focus):

ISBN 80-86943-11-9

WINDOWS FORMS

ASSOCIATED DATA

Button, GroupBox, Panel, Label, Splitter
CheckBox, RadioButton

ListBox

ComboBox

ListView

TrackBar, ProgressBar, NumericUpDown
TextBox, RichTextBox

MainMenu, OpenFileDialog, SaveFileDialog, FolderBrowserDialog

Bool
([Int],[String])
(Int,[String])

[[String]]
Int
String

Figure 1: .NET controls and data

Tt brared

[EramPLE

deletebln et
- |

[ExamPLE £l

Length [T

Figure 2: Simple example of interoperability

type Focus = Int

type Length = Int

data HL = H_L [(String, Length)]
Focus deriving Show

The algebraic data type HL contains all necessary in-
formation to implement the required functionality ex-
plained above. The following mappings manipulate this
data structure:

— Adds a new string and its length

addPair :: HL -> String -> HL

— Obtains the ‘current’ string
getString :: HL —-> String

— Updates the ‘current’ string
writeString :: HL -> String -> HL

- Length of the ‘current’ string
getLength :: HL -> Int

- Sets the (index of) ‘current’ string
setFocus :: HL -> Int —-> HL

The following mappings implement the transforma-

tions over strings.

toUpperCase :: String —-> String
toLowerCase :: String —-> String
deleteB :: String —-> String

encrypt

Haskell files and other (IDL, C#, etc.) archives as ex-
plained below can be retrieved from

http://www.dsic.upv.es/~balarcon/
example.zip.

:: String —-> String

4 INTEROPERABILITY BY MEANS
OF COM IN HASKELL

Microsoft’s COM technology is used to create re-usable
components (possibly written in different programming

.NET Technologies 2006 Short papers

languages) and connect them together. In the follow-
ing, we show how to use COM technology to connect
Haskell with .NET components.

4.1 Haskell modules and COM compo-
nents

A Haskell program that implements a COM component
consists of four parts:

e The application code, written in Haskell by the pro-
grammer.

e An IDL specification establishing those Haskell
functions which we want to make accessible
through the DLL.

e A set of Haskell modules which are automatically
generated from the IDL by the HDirect tool.

e A Haskell library module, Com, that exports all the
functions needed to support COM objects in Haskell
and a C library module that provides some run-Time
support (RTS)

In the following sections we briefly describe and dis-
cuss these steps of the process.

4.2 The IDL of the Haskell component

IDL is a declarative language which is used to describe
interfaces and classes disregarding any programming
language [HIu98]. An IDL specification describes the
interface of a component.

The IDL code in Figure 3 is used in our case study.
We have followed the example in [FLMP99], the indi-
cations of the manual of HDirect [Fin99] and the infor-
mation about IDL [HIu98]. We declare all (and only!)
Haskell functions that we wish to have accessible from
C# code together with their arguments and the type of
the returned value.

Now we are going to describe the IDL code. This is
useful to understand what we are going to obtain from
COM [Rog97, Ste04, COMO04]. On the basis of the
IDL code, we are going to build the skeleton of the ob-
ject that we want to encapsulate. For that purpose, we
have a 1ibrary (Example), an interface (Iexam-
ple) and a class (EXAMPLE).

ISBN 80-86943-11-9

[uuid (35E80A56-3664-4d91-9C6C-3018496A8D61)
helpstring ("Haskell COM component")
version(1.0)]

library Example {
importlib ("stdole32.t1lb");

[object,
uuid (4DB0C045-CC9F-4607-B79A-26D27E0C1594)]
interface Iexample : IUnknown {

HRESULT addPair([in,string]BSTR in);
HRESULT getString([out,retval] BSTR =xout);

HRESULT getLength ([out, retval]
HRESULT setFocus ([in] int in);
HRESULT toUpperCase();

HRESULT toLowerCase();

HRESULT deleteB();

HRESULT encrypt();

int =*out);

bi

[object,
uuid (49D98D24-DC88-4d24-8C5D-404FE510644D)]
coclass EXAMPLE

[default]interface Iexample;

}i

bi

Figure 3: IDL code for the case study

A type library is a binary file that contains the same
information that we could find in a C or C++ header file.
It includes the names of the classes and the interfaces
which are implemented in the server and the number
and type of parameters for each method of their inter-
faces. Note that it also contains the GUID (Globally
Unique IDentifiers), a very important part of the model
of COM programming, for each class and interface. A
GUID is a structure of 128 bits “statistically guaran-
teed" to be unique. In our case we have used the tool
Create GUID (which is part of Visual Studio .NET) to
generate them.

A COM interface is a collection of linked methods
that perform a functionality. All are based on the /Un-
known interface; each of them receives a unique inter-
face identifier (1ID).

A COM class is the implementation of one or more
COM interfaces, while a COM object is an instance
of a class. Each object has a class identifier (CLSID).
CLSID and IID are subgroup of GUID.

The name of our interface is Iexample and inher-
its from [Unknown the use of methods Querylnterface,
AddRef and Release. Inheritance from multiple inter-
faces is not allowed. The first attribute, ob ject, which
is locked up in brackets next to the GUID, identifies
the interface as a COM interface. For each method
in the interface, we specify the parameters with which

.NET Technologies 2006 Short papers

" the method will be called (from C#). The attribute in

indicates that the parameter is used as an input given
to the method (e.g., in addPair), out indicates output
(e.g., in getString). The attribute string is used
with parameters that are pointers to characters. The
retval keyword indicates that the parameter must be
interpreted as the returned value of the function. It must
do it in this way, because the literal return of the method
is a HRESULT type, which is used to give back the in-
formation of errors.

4.3 Encapsulating a Haskell component
as a COM component

Once the IDL has been specified, the next step is to
generate the proxy and the skelefon of our component.
In order to generate those modules we use the following
(HDirect) command:

ihc —-fcom example.idl -s —-skeleton

This generates two Haskell files: EXAMPLE.hs and
ExampleProxy.hs. The first one contains the skeleton
of the methods that implement our component, that
is, the Haskell structure for the methods declared in
the IDL. The second one provides a proxy that adapts
our methods behind an interface COM to make the
communication possible.

Regarding the definition of the skeleton, HDirect ac-
complishes three fundamental tasks:

e To import the necessary Haskell modules to give
support to the characteristics of the interface spec-
ified by the IDL.

e Tointroduce a St ate type to implement the (neces-
sary) persistence of the functional data by means of
a mutable variable that can be initialized, read and
modified by means of the functions of the TOExts
library of GHC®.

e Toinclude Haskell declarations corresponding to the
functions defined in the IDL. Haskell functions will
have an additional argument corresponding to the
state of the application (that will be able to be read
or modified) and a monadic return type IO t where
t is the (non monadic) type returned as indicated in
the IDL (String or Integer, in our case).

The following step is to fill up the skeleton with the
Haskell code of our methods. In our case, the HList
module contains the methods in pure functional code,
so we will fill up the skeleton with the corresponding
calls to methods and the operations to read and write,
the state by means of readIORef and writeIORef
(defined in TOExts). For instance, for deleteB, we
have:

6 Glasgow Haskell Compiler, http://www.haskell.org/ghc

ISBN 80-86943-11-9

module EXAMPLE where (...)
import IOExts

—Pure Haskell Component
import qualified Hlist

data State = State (IORef HList.HL)

deleteB :: State
-> Prelude.IO ()
(State st) = do
hl <- readIORef st
;str’ <- Prelude.return
(HList.deleteB (HList.getString hl))
; writeIORef st (HList.writeString str’ hl)

4.4 Creating a COM DLL from Haskell
modules

deleteB

The next step is to compile the two new files to generate
the .hi and .o files and the stubs of the proxy:

ghc —-c EXAMPLE.hs ExampleProxy.hs

Now we have to decide how to encapsulate our com-
ponent. HDirect provides solutions to build servers of
internal processes (DLLs) or servers of external pro-
cesses (EXEs). We have chosen to implement a DLL.
Although it entails a bit more effort, the user benefits
from a simpler use of the COM model, as the COM
object is loaded without any intervention from the user.

In order to implement a DLL, the next step is to in-
clude the ComDIIMain.lhs and dll_stub.c modules in
the directory and compile them. Finally it is neces-
sary to provide a Main module (required by GHC for
descriptive purposes).

Once the module Main has been compiled, we build
the type library (.tlb) using HDirect from the IDL and
the proxy, generating example.tlb:

ihc -s -fanon-typelib -v -c example.idl -o

ExampleProxy.hs -output-tlb=example.tlb

The type library is a resource that we must bind to our
DLL. Resources are specified using a special and very
simple text file, called resource script or .rc file. The
file contains the specification of the resources that we
want to include in the program or DLL (in our case the
type library) for compiling it with the resource com-
piler. The resource compiler converts the file .rc into an
object file (.0). The resource compiler is a GNU binary
utility called windres. We use it along with cygwin to
include example.tlb in our project. Now, we can build
the DLL.

S INTEGRATION OF COM INTO .NET

At this point, we must insert the COM DLL into our
Visual Studio.NET project’. Having the DLL, it is
necessary to register the generated component. The
simplest way is using regsvr32.exe, in the command-
prompt window. COM only uses a registry branch:

7 We use Visual Studio.NET 2003.

.NET Technologies 2006 Short papers

63

HKEY_CLASSES_ROOT. Under it, we can find all
the CLSIDs of the components installed in the system.
A CLSID is contained in the registry as an alphanu-
meric string with the following format: {xXxXxxxxx-
XXXX-XXXX-XXXX-XXXXXXXXXXXX }.

5.1 Using COM components in .NET ap-
plications

A NET client cannot directly communicate with a
COM component because the interfaces exposed by
the COM component cannot be read from the .NET
application. The data types, the mechanisms for
managing errors, etc., are different for managed and
unmanaged objects®. In order to simplify the interoper-
ation between the components of .NET Framework and
the unmanaged code, the CLR (Common Language
Runtime) hides the differences between them both to
clients and servers. This is achieved by means of a
RCW (Runtime Callable Wrapper)(to understand the
whole process see Figure 4) . The .NET SDK provides
RCW to obtain it, thus a .NET application can see the
unmanaged component as if it was managed. In .NET
there are several ways to do this:

e Using the Type Library Importer utility (7/-
bimp.exe), provided together with the .NET
Framework.

e Making reference to the COM component directly
from the C# application.

Tibimp is a console application that converts the type
definitions found in a COM type library into equivalent
definitions in a .NET assembly. The assembly produced
by the Tlbimp.exe tool is a standard .NET assembly that
can be examined with Ildasm.exe (MSIL disassembler).

U
HASKELL COM COMPONENT

U
n
Y
Hbirect impleProxyhs N
amplePrany s | E;
=1
=m s
libr
(library) d
g
o
[windows application DE® - = g
NNET Client ROW [§
8
d
(=]

Figure 4: Interoperability with .NET from Haskell

After registering our DLL, we use Tlbimp and we run
VS.NET. From our Windows application we click the

8 The .NET native CLR code is called ‘managed’, in contrast to any
other machine-dependent code which is ‘unmanaged’ [Cha02].

ISBN 80-86943-11-9

right button on the References file in the VS Solution
Explorer, we select Add reference and look for the as-
sembly which we have just generated. Now it can be
used exactly as any other .NET assembly: we just cre-
ate an instance (denoted by h) of the appropriate class:

ExampleClass h = new ExampleClass{();
Now we can access to Haskell functions as if they

were C# functions (see Figure 5).

private void encrypt_Click(object sender, System.Eventirgs e)

§_Click{ohject sender, System.Eventhrgs e)

=@ getlength
=@ getstring
=@ GetType
=@ setFocus

=@ tolowerCase x|

Figure 5: Haskell functions in C#

We can use them to program the event handlers on
the GUI that we have developed.

6 A .NET VERSION OF MU-TERM

MU-TERM is a termination proof tool for (Context-
Sensitive) Rewriting Systems. (Context-sensitive)
Rewrite Systems are useful for describing seman-
tic aspects of a number of programming languages
(e.g., Maude, OBJ2, OBJ3, or CafeOBJ) and
analyzing the computational properties of the cor-
responding programs, in particular termination (see
[DLM ™04, Luc01, Luc02]). The tool implements the
generation of the appropriate orderings and transfor-
mations for proving termination. MU-TERM is written
in Haskell and wxHaskell was used to develop the
graphical user interface. The system consists of around
30 Haskell modules containing more than 5000 lines
of code. We refer the reader to [Luc04] for more
information about the use and functionality of the tool.
Compiled versions and instructions for the installation
are available on the MU-TERM WWW site.

We have developed a new (hybrid) version of
MU-TERM which, having the same functionalities
(implemented by the same Haskell modules), includes
a GUI written in C# which replaces the old one. Let’s
take a look to the windows which constitute the GUI
of MU-TERM (see Figures 6 and 7) and let’s consider
the corresponding controls. As it can be noticed,
the controls to manage in the interface are MenufFile,
Button, ComboBox, CheckBox, TextBox, ListBox, etc.
In Section 2 we discussed them and their associated
data. We have applied the process described in Sections
4 to 5 to MU-TERM and the obtained results were very
satisfactory. The new version of MU-TERM is now
composed of the same number of Haskell modules but
the WinMuTerm.hs module, which contained about
1200 lines of code, has been replaced by a new module
WinMuTermNET.hs, that contains less than 800 lines.

.NET Technologies 2006 Short papers

9 See,

64

On the other hand, the C# part of the .NET version of
MU-TERM (consisting of six new modules with about
2000 lines altogether, most of them generated automat-
ically(!) by the graphic assistant) includes a new C#
module WinMuTermNET.cs that implements the cre-
ation of the new user interface and manages the events
transforming them in function calls to Haskell code by
means of exchanges of strings and integers. This C#
component uses the COM DLL generated from Win-
MuTermNET.hs (together with the other Haskell mod-
ules). The .NET version of MU-TERM is available on
the MU-TERM WWW site.

7 CONCLUSIONS AND FUTURE
WORK

We have shown how to integrate software components
developed in Haskell together with (graphic) compo-
nents developed in C#, or other .NET language. Our
starting point is HDirect which permits to build a COM
component from a Haskell module, and making it avail-
able as a COM DLL which can interoperate with NET
applications. We have shown the practicality of this ap-
proach by giving a new .NET GUI to a Haskell tool like
MU-TERM. Other remarkable aspects are:

e it is a complete experience of 'weak’ integration
of software components written in a functional lan-
guage like Haskell in a software development plat-
form like .NET that still does not manage the inclu-
sion of sources written directly in this language.

e it is a pioneer experience in the functional program-
ming community, since MU-TERM is the first com-
plex software written in Haskell that uses COM
technology by means of HDirect.

e itis also a pioneer experience for the academic com-
munity interested in the interoperability of program
analysis software tools, specially regarding tools for
proving termination, where interoperability of dif-
ferent tools can be important °.

In the world of functional languages, there are
more or less complete approximations to .NET for
the languages'®. Regarding Haskell, a full-featured
Haskell development environment has been recently
implemented. It is called Visual Haskell [AMOS]. Al-
though it is an interesting contribution for the Haskell
community, it does not treat the possibility of building
graphic user interfaces for Haskell programs using
the .NET resources. In their project they have also
used HDirect, although they did not find it completely

for instance, http://www.lri.fr/~marche/
termination-competition.

OML nttp://www.cl.cam.ac.uk/Research/TSG/SMLNET
or Mondrian http://www.mondrian-script.org.

ISBN 80-86943-11-9

Maintdenu, ‘ CheckBox ‘

| ComboBox |

OpenFileDialog,
SaveFileDialog

(2 s Tarm 4.2
il ey
TERMINATION OF CSBASnct procf]
g
[Ratonats sptttogens =] T Rmmn—m.z//ua [aomaic <]

Mas yale For coticerts [5 1 1)

Frool vith CSAPO

»1100
¥ Mo geoote

TRANSFORMATIONS
Tormination of CSA:

Zuctomaz

Femsrs and Flbeio's

Gieal and Middekdong's

Cempiele Giod and Middekdor's
Innvemasd nemanation of CSR
ies| and Middekdong's
Teimination ol Lazy flowiing
Luea

TERMINATION OF REWRITING

DP sPugramisks Froa with CME
[Dependency pan =] [Stancmd =)

[E1_2_Luetze
REPLACEMENT MAP

et
..

v

/

Coronical | Joincancrical | Greatest

DISPLAY FORMAT

DRJ Maude +

b Ex1_2_Luxiic
5

dasgssssy

2.5
405555 i (1 0]

eer
e
5.
vaEXY
Zndc
o

$35

25

Z5

onf¥ corafv Zll = ¥
) = consf il

\

B

\

| | TextBox ‘

Buttons

Figure 6: Principal window of MU-TERM

™ Replacement map in: Ex1_2 Lu... EEEI

* Proof of semination Exi_#_ LucOize

ListWiew

[Poce o bpemarsgcn b El_2 Ll
(el a3 o 1

foora Bt e 00 & 1720
Preanfi] = 4o 1|

|65 mis

TReRE- 10 0000k

ListBox

SETTINGS

Bacs cdieing Poromal ardesrg

Pouok e Piodramesl bermarubion

Uipper bowrd for coelfs &

Frsbraly bothos 1 oo ol rcerreplocng mge: o
Popromal inforatation: Linear
Coeffs in pobnomal: Astonali and inlegers

TextBox

Dot anberishee
// Congzarky Sadve
e =] I

Figure 7: Rest of MU-TERM windows

appropriate for their purposes. This is also in contrast
to ours: due to the simplicity of the information
exchange between the C#-based user GUI and the core
Haskell application, we find HDirect to be easy to use
(although it took time to reach a sufficient know-how).
For instance, HDirect limits the structures of Haskell
data that are directly interchangeable by means of
COM to strings and integers (of 32 bits). This can be a
problem for most applications, but it is not problematic
for developing GUIs, since the involved data types (see
Section 2) are easily exchangeable in such format.
These initiatives to integrate functional languages
into the .NET framework reveal the interest of the
community to converge to this platform. Our expe-
rience is also encouraging. We plan to develop the
theoretical aspects of our work, and also envisage
possible extensions of this experience to other tools
and programming languages in the future. In particular,
we want to explore the use of the .NET facilities for
using Web Services based on XML with these tools
and programming languages. A first candidate, again,

.NET Technologies 2006 Short papers

65

could be the termination tool MU-TERM.

ACKNOWLEDGEMENTS

Work partially supported by Spanish MEC grant SELF
TIN 2004-07943-C04-02, Accién Integrada HU 2003-
0003, and EU-India Cross-Cultural Dissemination
project ALA/95/23/2003/077-054.

REFERENCES

[AMOS5] K. Angelov and S. Marlow. Visual Haskell. In Proc.
of Haskell Workshop, Haskell’05, pages 5-16, ACM
Press, 2005.

T. Archer. Inside C#. McGraw-Hill, 2001.
D. Chappell. Understanding .NET. Addison Wesley,
2002.

COM, Component Object Model. http://www.
etse.urv.es/EngInf/assig/ens4/2004/
netda.pdf

F. Durén, S. Lucas, J. Meseguer, C. Marché, and X.
Urbain. Proving Termination of Membership Equa-
tional Programs. In P. Sestoft and N. Heintze, editors,

[Arc01]
[Cha02]

[COMO4]

[DLM™04]

ISBN 80-86943-11-9

[Fin99]

[FLMP99]

[FPBT03]

[HDi99]

[HIu98]

[Hoa03]

[LucO1]

[Luc02]

[Luc04]

[Rog97]

[Ste04]

[Tro02]

Proc. of ACM SIGPLAN 2004 Symposium on Partial
Evaluation and Program Manipulation, PEPM’04,
pages 147-158, ACM Press, New York, 2004.

S. Finne. HaskellDirect UserA«s Manual. Novem-
ber, 1999.

S. Finne, D. Leijen, E.Meijer, S. Peyton Jones. Call-
ing hell from heaven and heaven from hell. In Proc.
of 4th ACM SIGPLAN International Conference on
Functional Programming, ICFP’99, Sigplan Notices
34(9):114-125, 1999.

J. Ferguson, B. Patterson, J. Beres, P. Boutquin, and
M. Gupta. C#’s bible. Microsoft Press, 2003.

H/Direct: supporting component programming
in Haskell. http://www.haskell.org/
hdirect/design.html#toc3

B. Hludzinski. Understanding Interface Defini-
tion Language: A Developers Survival Guide,
1998. http://www.microsoft.com/msj/
0898/idl/idl.htm

T. Hoare. The Verifying Compiler: A Grand Chal-
lenge for Computing Research. Journal of the ACM,
50(1):63-69, 2003.

S. Lucas. Termination of Rewriting With Strategy
Annotations. In Proc. of LPAR’01, LNAI 2250:669-
684, Springer-Verlag, Berlin, 2001.

S. Lucas. Context-sensitive rewriting strategies. In-
formation and Computation, 178(1):293-343, 2002.

S. Lucas. MU-TERM: A Tool for Proving Termina-
tion of Context-Sensitive Rewriting In V. van Oost-
rom, editor, Proc. of 15h International Conference
on Rewriting Techniques and Applications, RTA’04,
LNCS 3091:200-209, Springer-Verlag, Berlin,
2004. Available at http://www.dsic.upv.es/
~slucas/csr/termination/muterm.

D. Rogerson. Inside COM. Microsoft’s Component
Object Model. Microsoft Press, 1997.

P. Steele. 15 Seconds: COM Interop Exposed.
2004. http://www.1l5seconds.com/issue/
040721 .htm

A. Troelsen. COM and .NET Interoperability.
Apress, 2002.

.NET Technologies 2006 Short papers

66

ISBN 80-86943-11-9

Self-contained CLI Assemblies

Bernhard Rabe
Haso-Plattner-Institute,
University of Potsdam

P.O. Box 90 04 60

14440 Potsdam, Germany

bernhard.rabe@hpi.uni-potsdam.de

ABSTRACT

High-level programming languages and bytecode-based virtual execution environments have become popular in
software development. Bytecode-based runtimes extend embedded system by techniques to improve safety, help
portability and interoperability. The ECMA/ISO Common Language Infrastructure (CLI) specifies a bytecode-
based execution environment (Common Language Runtime) and a comprehensive class library. CLI applications
suffer from long startup time, high memory consumption and the amount of referenced assemblies. Startup time
is determined by resolving references and high memory consumption through big class library assemblies. Often
CLI applications use a small subset of the CLI class library, but the whole memory footprint is basically deter-
mined by the class library. To overcome memory requirements of the class library, a minimal application format
that includes all essential class library functionality is reasonable. Self-contained CLI assemblies as an approach
for size-optimized deployment format are presented in this paper.

Keywords

CLI, assembly format, space-optimization.

1. INTRODUCTION

High-level programming languages and bytecode-
based execution environment have become popular
in development of desktop systems. The Common
Language Infrastructure (CLI) [Int03a] as imple-
mented in the .NET Framework [Mic05a] has been a
popular platform for creating component-based ap-
plications, because of:

e Platform independence of bytecode-based ex-
ecutables

e Fine granular security restrictions
e Revisable code
e Component model

It would be beneficial if CLI applications could be
executed on memory restricted systems that are not

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency — Science Press,
Plzen, Czech Republic.

.NET Technologies 2006 Short papers 67

covered by existing CLI implementation. .NET de-
velopers could then reuse their code for these sys-
tems instead of reimplementing their applications
from the ground up using C or C++.

Embedded systems differ from desktop systems in
various aspects:

e Hardware resources are often limited: memory
size, processing power, power supply.

e Software capabilities: Faulty programs can
crash the system, because memory protection is
not available.

e Capabilities for developer interaction, for de-
bugging, or communication bandwidth are often
limited.

CLI technology is integrated seamlessly in Rapid
Application Development tools as Microsoft's Visual
Studio suite for desktop development just as for em-
bedded development. Compiler and tools are avail-
able for multiple programming languages e.g. C#,
C++ .NET, or Delphi. The CLI could offer develop-
ers of embedded systems the same advantages as for
desktop systems.

Due to the predictable nature of the sandbox-mode
execution of CLI instructions, programming errors
never result in system crashes, but cause exceptions

ISBN 80-86943-11-9

to be thrown. This allows for a simpler postmortem
analysis of a fault. Due to the support for rapid proto-
typing, simulators for the target can be more easily
created. Ideally, much of the code would only use
standard library functions of the CLI, so that simula-
tors are only necessary for the target-specific hard-
ware.

The CLI as implemented in the Microsoft .NET
Framework, the Microsoft Compact Framework
[Mic05b], or the Mono Project [Mon0O6a] does not
meet the requirements of limited resources of sys-
tems. There are few implementations of the CLI for
small mobile devices e.g. for Symbian OS based
[Gef05a], or for Linux based [Dot0O6a].

The memory footprint of an executable assembly is
calculated by the assembly itself, the custom libraries
used, the Base Class Library (BCL) and the Common
Language Runtime (CLR). These are four items
where size optimization can occur. In this paper the
first three items were focused on. CLR optimization
would harm the "compile once run everywhere" ap-
proach of CLI.

In this paper we present an approach to reduce the
memory footprint of an executable assembly in that
way the unused library functionality is not required
to be present at runtime.

This can be achieved by compacting an assembly
with its used library functionality into a self-
contained assembly. The self-contained assembly
will contain only required library functionality and
will become smaller than the combined libraries.
Furthermore the number of referenced assemblies
which are required to be loaded is reduced to the
self-contained assembly itself. The self-contained
assembly is smaller than the sum of previously refer-
enced assemblies.

This work is based on the PERWAPI [Gou05a] li-
brary, which is extended to the needs of creating self-
contained assemblies.

The rest of this paper is structured as follows: Sec-
tion 2 briefly reviews the Common Language Infra-
structure. In Section 3 the mechanism of executing
CIL-code is discussed in detail. Next, self-contained
assemblies as approach for optimized memory foot-
prints and predictable behavior in are presented in
section 4. Section 5 gives an overview of related
work followed by conclusions and future plans.

2. COMMON LANGUAGE INFRA-
STRUCTURE

The CLI standard specifies the executable format, a
virtual runtime environment (Virtual Execution Sys-
tem (VES)) and a set of libraries as implemented in

.NET Technologies 2006 Short papers

the Microsoft NET Framework, Shared Source
Common Language Infrastructure (SSCLI) [Mic02a],
or in the Mono project.

CLI executables, called assemblies are encoded in
the Common Intermediate Language (CIL) instruc-
tion set. An assembly is the deployment unit of the
CLI and may consist of multiple files (modules). An
assembly is loose coupled with the BCL and other
assemblies in a way similar to native applications and
shared libraries.

CIL is a stream of bytecodes similar to processor
instructions. Most opcodes are one byte long, a few 2
bytes long and may have an optional parameter (up
to 8 bytes long). Every method consists of a header, a
body and a possible footer. To evaluate opcodes a
stack is used. Bytecodes are located in the method
body.

Metadata

Assemblies are equipped with metadata about refer-
ences, type names, method names... Metadata are
organized in a number of named streams. These
streams are divided into 2 types: metadata heaps and
metadata tables. For executing assemblies the follow-
ing metadata tables are basically involved:

o Assembly: Assembly defined in the PE file.

o AssemblyRef: For execution required assem-
blies.

e TypeRef: Used types defined in external assem-
blies. Every type in this table refers its resolu-
tion scope that is located in the AssemblyRef-
table for the relevant cases.

e TypeDef: Contains all types that are defined
within an assembly.

e Method: All methods that are declared by types
in TypeDef-table. Every row in the Method-
table is owned by one and only one row in the
TypeDef-table.

e MemberRef: All methods or fields of external
defined types that are accessed within the as-
sembly. There is merely a 'forward-pointer’
from each row in the TypeRef-table.

References in metadata tables are tokens into table
rows and heaps or relative virtual addresses within
the assembly. Heaps are constant pools used for
metadata and CIL code.

Costa and Rohou [Cos05a] show that metadata size
varies from 40 percent up to 80 percent of the whole
assembly size for representative set of programs. The
metadata split 70 percent to 30 percent into constant
pool (heaps) and tables. Section 3 will show that ma-
jor parts of the #String are not required for executing

ISBN 80-86943-11-9

CIL code. For example textual descriptions of vari-
ables and properties are needed for reflection pur-
poses only.

Version compatibility

To overcome the problem resulting from different
versions of dynamic libraries on Windows systems
[And00a] the CLI introduced a version management
that builds up on version numbers and public keys.
An assembly version number consists of four parts:
major, minor, build and revision number. To make an
assembly reference distinct the assembly must have a
strong name. Strong names guarantee name unique-
ness by relying on unique key pair. All shared as-
semblies that reside in the GAC must have a strong
name. The BCL of actual CLI implementation have
all the same standard public key that does not require
a private key to sign. This is done to provide vendor
independent execution of assemblies. That means an
assembly which has references to the BCL (mscor-
lib.dll) may behave differently with different BCL
implementations.

3. EXECUTION OF .NET ASSEMB-
LIES

AssemblyRef
mscorlib 4—]
TypeRef

ystem.Object — |

Assembly
mscorlib 6

)

TypeDef

| |
\ I | I
[[!
|] | I
| [|
|] | I
[: :(—‘—--System.Object :
|

I MemberRef : : Method :
: —.ctor : \ \"“.ctor\ :

[}
: | | |
: N | :
| [|
1 | | |
I I [} I
| [|
1 [|
I L} | |
: IL code i IL code” :
I | 1darg.0 : : ret :
I | call Oxa0001 —| Lo |
| ret] | |
| \ 1 I
| |] [}
1 [:
] A

: usercode.exe i mscorlib.dll |

Figure 1: Resolving of an external method

When the CLR loads an assembly and starts execut-
ing a method all assemblies referenced within that
method have to get loaded too. This means that all
assemblies referenced in this assembly will be
loaded, even though they might not be needed most
of the time the application is executed.

A way to reduce the number of loaded modules is to
merge multiple modules into one [Mic06a]. In terms
of the CPU, assembly loads have fusion binding and
CLR assembly-loading overhead in addition to the
LoadLibrary call, so fewer modules mean less CPU
time. In terms of memory usage, having fewer as-

.NET Technologies 2006 Short papers

69

semblies also means that the CLR will have less state
to maintain.

To create the executable image the CLR has to locate
referenced CIL code within an assembly. The com-
plexity of this task is different for assembly internal
and assembly external references. Figure 1 shows
how CIL code of an external method will be located:

1. A CIL operation (call) has a token operand that
points to a MemberRef-table row.

2. The MemberRef-table row contains the name of
the method and a token into the TypeRef-table.

3. In the TypeRef-table row the namespace, the
type name and a token into the AssemblyRef-
table are included.

4. The AssemblyRef-table row provides the target
assembly name and optional a version number
as well as a public key token.

5. Within the referenced assembly the CLR looks
into the TypeDef-table for the requested type.
This is done by a linear search with string and
signature comparison until the matching row is
found.

6. The linear search for the matching method row
in the Method-table is optimized in the way that
the start of the relevant rows is known.

7. The matching Method-table row provides the
address to CIL code within the PE-file.

This task must be repeated for every external
method. In comparison with an external method call
requires an internal method call a single lookup in
the Method-table to get the address of the CIL code
within the assembly. Recapitulating it has been re-
flected that loose coupling of assemblies and conse-
quential external references cause the following
drawbacks:

o Memory consumption: each external assembly
must be loaded and metadata tables have to
build up.

e Processing power: multiple indirections, linear
search, string and signature compare during ref-
erence resolving cause additional CPU time in
contrast with internal references.

e Memory footprint: combination of functionality
into a single assembly (mscorlib.dll) causes a
high CLR memory footprint if only a single
type is referenced.

e Revisable code: CIL within an assembly can be
inspected for validity. External assemblies es-
pecially the BCL may be implemented differ-
ently and makes it impossible to predict the be-
havior of CIL code.

ISBN 80-86943-11-9

These drawbacks can be minimized if all external
referenced functionality is assembled to a single as-
sembly. This harms the loose coupling, but it allows
lower memory footprints and to analyze the assembly
in terms of CIL code.

4. SELF-CONTAINED CLI ASSEMB-

LIES

A key feature of the CLI is the revisable bytecode-
based execution of assemblies. The verification is
done at runtime. But there are also needs for static
revisable code before runtime e.g. prevent exceptions
while runtime.

The loose coupling and dynamic linking of applica-
tions and libraries assemblies does not permit an
static evaluation of CIL code, because CLRs may
provide different implementations of relevant assem-
blies.

To overcome version conflicts of assemblies, CLI
introduced strong names and side-by-side execution
of different versions of the same assembly.

This works fine for most strong named assemblies,
but fails for the BCL.

A static revisable assembly might not have depend-
encies to CLR-provided assemblies. With the self-
contained assembly approach a static revisable for-
mat based on CIL code is proposed. This approach
lifts up problems through different implementations
of referenced assemblies.

Self-contained assembly features are:

¢ Minimal memory footprint

e Predictable behavior based on CIL-code
e Reduced startup time

The memory footprint of the runtime environment
for an assembly is calculated by the CLR, the
relevant libraries and the assembly itself. In general
every assembly uses BCL features (e.g.
System.Object). The BCL 1is represented as
mscorlib.dll [Ecm02a]. But mscorlib.dll implementa-
tions of .NET Framework, Mono, Portable NET
[Dot06a] and Rotor provide different additional
features, which are not used by most assemblies.
Independently from the amount of mscorlib.dll
features by an assembly the memory footprint for the
BCL is fixed. Self-contained assemblies do not need
additional library assemblies and form together with
the CLR the minimal footprint for an execution
environment. This feature targets mainly memory
restricted systems.

Prediction of execution behavior of a self-contained
assembly is possible, because all executable CIL

.NET Technologies 2006 Short papers

70

codes are within the assembly. A static behavior
evaluation can be done before runtime and allows for
example prediction of memory consumption.

Dynamic linking of assemblies at load time causes
delays until the first CIL code is executed. The time
is needed for loading assemblies and resolving refer-
ences. Self-contained assemblies does not require
additional assemblies, therefore the startup time is
shortened.

public class Hello{
public static void Main(string[] args) {
Object obj=new Object () ;

Console.WriteLine ("Hello World!");

Figure 2: Simple C# Hello world

Figure 2 shows a C# program cutout that has a Main-
method where an instance of Object is created and
"Hello World" is printed out. The second program in
figure 3 shows the IL-code' of the Main-method
generated by the Ildasm tool. The local variable obj
disappeared, because it is not used furthermore. A
instance of System.Object is created with a call of
.ctor () from the mscorlib assembly. Then the
string "Hello World" is printed out by an call of
System.Console: :WriteLine from the mscorlib
too.

.method public hidebysig static void Main(string[] args) cil
managed

{
.entrypoint
.maxstack 1
newobj
pop
1dstr

instance void [mscorlib]System.Object::.ctor()

"Hello World!"
call void [mscorlib]System.Console:: WriteLine(string)

ret

Figure 3: IL code of the compiled Main-method

The program in figure 4 is generated from the second
program where the System.Object type was in-
cluded. The System.Object::.ctor () call does
not leave the assembly scope. The rest of the pro-
gram behaves the same.

The two IL-programs differ also in the .maxstack
value, because the Microsoft C# compiler generates a
Fat-method header and the PERWAPI library a Tiny-

' The C# source code was compiled with .NET Framework
v1.1 compiler and optimization (/optimize+) enabled.

ISBN 80-86943-11-9

method header. None of the requirements for a Fat-
header are satisfied, so the 1 byte Tiny header is a
better alternative for size optimization.

method public hidebysig static void Main(string[] args) cil man-
aged

{
.entrypoint
.maxstack 8
newobj
pop
1dstr

instance void System.Object::.ctor()

"Hello World!"
call void [mscorlib]System.Console:: WriteLine(string)

ret

Figure 4: IL-code of Main-method with Sys-
tem.Object included

This demonstrates the adaptable level of containment
for specific aims. The System.Object type was
included and the reference to System.Console
::WriteLine () was kept.

Creating self-contained assemblies
Self-contained assemblies do not have any external
references. This means a CLR should able to execute
a self-contained assembly without loading the BCL
or other managed assemblies.

In contrast to statically linked native binaries, the
CLI abstracts from the operating system and the un-
derlying hardware. This fact makes it feasible to
build a CLR independent CLI assembly.

To get a self-contained assembly, the relevant as-
sembly must be disengaged from type references to
external assemblies. This work can be done by proc-
essing IL textual representation or by using an as-
sembly manipulation library.

In this project the library approach is used, because
ILDASM approach requires a lot of text substitution
and depends on available CLI framework tools.

The Reflection API of the NET Framework does not
supports access to CIL code. Microsoft's new com-
piler framework Phoenix allows assembly modifica-
tions within a compiler run. After evaluation of ca-
pabilities of different assembly manipulation frame-
works the work presented in this paper finally bases
on PERWAPI [Gou0O5a] developed at the Queen-
sland University of Technology. PERWAPI provides
an abstract representation of the PE-file embodied as
object oriented structure. The library is implemented
in C# and is released as available for free. PERWAPI
was extended to support the creation of self-
contained assemblies.

.NET Technologies 2006 Short papers

71

Figure 5 shows the creation of self-contained assem-
blies with the Linker tool and an optional configura-
tion. The assembly on the left side references the
BCL (mscorlib) and may have references to multiple
custom libraries.

%, library .
[NGRRERTARRER |
library
\ ; B
assemly 'ib RN
self-contained

Linker assembly

se [
Figure 5: Creation of self-contained assemblies

The PERWAPI-based linker tool resolves references
controlled by an optional configuration file. The con-
figuration allows the instrumentation of the assem-
bling process inside the linker tool. The source for a
type to import could be set or types that should kept
as references.

Every type defined in an assembly must be reviewed
for the following list of elements:

Custom Attributes

A Custom Attribute points to a type constructor
method and contains optional constructor values.
Attributes can occur at assembly level, type level,
and method level.

Type

A Type has a parent type except System.Object
and may implement a number of interfaces. Methods
describe operations that may be performed on that
type. Fields are named subtypes of a type.

Interface
Interfaces are special types that do not have a super
type and contain no CIL code.

Method

A Method is a named operation and is characterized
by the types of its parameters. Besides the parameter
types also the return type and possible Custom At-
tributes have to set to the resolved type. Local vari-
ables are unnamed subtypes within a method resolu-
tion scope. CIL code may have a type, method or
field parameter. Exception clauses are defined by a
code range and the type of the exception.

Event
Events are handled like fields of a type.

CIL code
The following types of IL codes must be checked for
references to types, methods or fields references:

e Type Op.: castclass, newarr, initobj, ...

ISBN 80-86943-11-9

e Method Op.: call, calli, callvirt, newobj, ...
e Field Op.: 1dfld, 1dflda, stfld, stflda, ...

The challenge of assembling self-contained assem-
blies is to verify types for references and generate a
consistent PE-file. The current version of self-
contained assemblies addresses CLI vl.l features
only. There are further size optimizations practicable.
To reduce the size of the constant pool, some kind of
type descriptions can be shorten or eliminated. Cus-
tom type names not required by the CLR, except
special names e.g. type constructor.

Proof of concept results

The current implementation of self-contained assem-
blies targets desktop CLR like .NET, Rotor, Mono or
Portable.NET.

public static int Main(string[]
Object obj=new Object();
return 1;

args) {

}

The above C# program has a single external refer-
ence (System.Object::.ctor) in CIL representa-
tion. But for the self-contained version a second
method from System.Object must be imported,
because the CLR calls the destructor (Finalize())
of the CLI-base type without further reference.

The compiled' assembly with mscorlib reference had
a size of 3072 bytes. The size of the CLR is not con-
sidered, because it assumed to be constant. So the
memory footprint with NET v1.1 mscorlib.dll is
2141184 bytes.

The self-contained version has an oval size of 2048
bytes and contains no references. These results are
prestigious in no means, but the potential of self-
contained assembly optimization.

To process more complex programs a clean BCL
implementation is reasonable, because existing
mscorlib.dll implementations are using none BCL
features® for BCL functionality.

CLR implementation issues

The CLI defines a lot of possibilities for optimized
CLR implementations. This section discusses these
optimizations in terms of portability of self-contained
assemblies among different CLR.

The CLR is responsible for resolving references to
assemblies and loading types. References to external
types are available in textual representation. CLI
metadata are organized as a number of cross refer-

! csc /optimize+ simple.cs

Class attribute System.Runtime.InteropServices.
ClassInterfaceAttribute::.ctor in NET vl.l
System.Object implementation

.NET Technologies 2006 Short papers

72

enced tables. A referenced in type in an external as-
sembly can have references to the same assembly or
the external assemblies. The CLI suggests resolving
all references before start the execution. Therefore all
related assemblies must be loaded to create a consis-
tent memory image.

For optimization issues the CLI introduced build in
primitive types e.g. bool, char, object,
string, .., which does not induce type refer-
ences as long no type specific operation were per-
formed.

In contrast to Java the CLI provides an internal map-
ping of primitive type to their wrapper types. The
CLR knows the mapping of primitive types to their
wrapper types e.g. object=System.Object. The
mapping of primitive types to BCL types, inside the
CLR, is realized with string compare, because a type
reference is given in textual representation. For types
implemented inside a self-contained assembly this
mapping is possible further on.

The CLI supports multiple ways to implement type
methods. Possible implementation flags [Lid02a] for
types inside the BCL:

e cil: The method is implemented in CIL code.

e internalcall: This flag indicates that the method
is internal to the runtime and must be called in a
special way.

o runtime: The method implementation is pro-
vided by the runtime itself.

o pinvokeimpl: The method has unmanaged im-
plementation and is called through the platform
invocation mechanism P/Invoke.

A cil implemented method can be executed by any
CLR. An internalcall method is not portable among
CLR implementations. This flag can occur in the
BCL and additional features provided by the CLR. A
runtime supplied implementation is also CLR de-
pendent. The pinvokeimp! flag indicates the CLR
provided mechanism (P/Invoke) to call native code.
Figure 7 shows three different implementations of
the System.Object::Equals(object) method.

The Microsoft .NET Framework uses the internalcall
manner to perform the comparison. This implies the
existence of a dispatch table for internalcalls.

Microsoft .NET v1.1.4322

.method public hidebysig newslot virtual
Equals(object obj) cil managed internalcall {}

instance bool

ISBN 80-86943-11-9

Mono v1.1.13.2

.method public hidebysig newslot
Equals(object obj) cil managed

{

virtual instance bool

.maxstack 8
IL_0000: Idarg.0
IL_0001: ldarg.1
IL_0002: ceq
IL_0004: ret

}

Compact Framework v1.0.500

.method public hidebysig newslot virtual instance bool

Equals(object obj) cil managed
{
.maxstack 8

IL_0000: 1darg.0
IL_0001: ldarg.1

IL_0002: bool System.PInvoke.EE::Object Equals(object,
object)

IL_0007:

call

ret

}

.method public hidebysig static pinvokeimpl("mscoree" as "#17"
winapi) bool Object Equals(object objl, object obj2) cil managed
preservesig {}

Figure 7: Implementation of System.Object::
Equals(object) in .NET, Mono and Compact
Framework

Mono provides a implementation based on CIL code,
which makes the implementation portable.

In the Compact Framework BCL System.Object
::Equals (object) is implemented with a
additional call through the P/Invoke mechanism.

The current version of self-contained assembly’s
implementation is portable among different CLR as
long as no implementation specifics are used. One
can benefit from self-contained features as long as is
executed with the CLR that provided the BCL im-
plementation.

5. RELATED WORK

There are several approaches to optimize Java class
files to meet the requirements of small embedded
devices. The optimizations are often done on a per
class basis.

IBM’s WebSphere® Studio Device Developer
(WSDD) [IBMO06a] includes the SmartLinker tool
(formerly JAX [alp06a]) to optimize J2ME [Sun06a]
applications.

SmartLinker removes unused code, merges classes,
and introduces short identifiers to reduce the overall
code size. Resulting applications are composed in the
Java Executable format (JXE), which is not interop-
erable with jad/jar format as specified in J2ME.

.NET Technologies 2006 Short papers

73

Rayside et al. [Ray99a] propose a modified Java
class file format with significant space reduction with
little or no runtime penalty.

Clausen et al. [Cla00a] use macros for multiple oc-
currences of code fragments and an extended JVM
with macro support.

The JamaicaVM]Jaic06a] developed by aicas GmbH
includes a builder tool for integrating Java bytecode
and a corresponding Virtual Machine implementation
into a single executable application binary. Bytecode
is embedded as C-Array definition and linked with
the JamaicaVM library.

TinyVM[Sol06a] is a firmware replacement for the
Lego™ Mindstorm™ RCX hardware. The firmware
executes (interprets) Java programs that are com-
pacted into custom images.

The Lego.NET [Osm05a] project has developed a
GCC front-end which translates CIL code into native
machine code of the Lego™ Mindstorm™ RCX
processor.

Microsoft's .NET Compact Framework is a subset of
the .NET platform for mobile and embedded devices.
The Compact Framework class libraries occupy at
least 2 Megabyte of memory. The assembly format
and execution environment differ only in trifles from
the desktop version.

Microsoft’s ILMerge[Mic06a] is a utility that can be
used to merge multiple .NET assemblies into a single
assembly. ILMerge does not support a selection of
types which should be merged together.

AppForge, Inc. offers with Crossfire[AppO6a] a
product for multi-platform applications for mobile
and wireless devices based on .NET. The CIL byte-
code is transferred into a custom executable format
that is executed by platform specific Crossfire-Client
software.

6. CONCLUSION AND FUTURE
WORK

This paper proposes an approach of self-contained
assemblies to reduce memory consumption and
shorter startuptime while executing the assembly.
CLI assemblies are loose coupled with other assem-
blies (shared class libraries, custom libraries).

Creating of self-contained assemblies is done at type
level with a customized version of the PERWAPI
assembly manipulation library. The compaction of
assemblies bases on referenced types of an assembly
and requires no source code, nor compiler support.
Self-contained assemblies are size optimized in terms
of assembly footprint and memory consumption
while execution.

ISBN 80-86943-11-9

Furthermore the effect of an executed self-contained
assembly is identical among the acceptance the CLR
is CLI-complaint and no CIL-code is executed out-
side of the assembly.

The customized PERWAPI library allows adaptive
compaction at type level that means certain types
remain as references.

It has to be analyzed to what extent the abstraction of
CLR internals from the BCL implementation could
be realized CLI-compliant.

The proof-of-concept results must be analyzed in
terms of memory consumption, startup time and exe-
cution performance with CLR implementations.

Self-contained assemblies could offer useful features
for embedded systems development, for predictable
execution behavior and more generally for an adap-
tive deployment format.

7. ACKNOWLEDGMENTS
We would like to thank the reviewers for their useful
comments and suggestions.

8. REFERENCES

[Aic06a] aicas GmbH. JamiacaVM. Available at ai-
cas.com, 2006

[And00a] Anderson R. The End of DLL Hell. Micro-
soft Cooperation. Available at
msdn.microsoft.com/library/en-
us/dnsetup/html/dlldangeri.asp, 2000

[App0O6a] AppForge, Inc. Crossfire homepage.
Available at www.appforge.com/products/
crossfire, 2006.

[Cla00a] Clausen L.R., Schultz U.P., Consel C., and
Muller G. Java bytecode compression for low-
end embedded systems. ACM Transactions on
Programming Languages and Systems,
22(3):pp-471-489, 2000.

[Cos05a] Costa R.,and Rohou E. Comparing the size
of .net applications with native code. in
CODESHISSS ’05: Proceedings of the 3rd
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthe-
sis, pp. 99—104, ACM Press, 2005.

[Dot06a] The DotGNU project. Portable. NET. Avail-
able at www.dotgnu.org, 2006

[Ecm02a] Ecma international. Standard Ecma-335,
Common language infrastructure (Cli). Available
at www.ecma-international.org/ publications/
standards/Ecma-335.htm, 2002.

.NET Technologies 2006 Short papers

74

[Gef05a] Gefflaut A., van Megen F., Siegemund F.,
Sugar R. Porting the .NET Compact Framework
to Symbian Phones — A Feasibility Assessment.
NET Technologies’05 conference proceedings,
UNION Agency — Science Press, ISBN 80-
86943-01-1, 2005

[Gou05a] Gough J., and Corney D. PERWAPI-a pe
file reader/writer. Available at
www.plas.fit.qut.edu. au/perwapi, 2005.

[IBMO06a] IBM. WebSphere Everyplace Micro Envi-
ronment. Available at www-306.ibm.com/ sofi-
ware/wireless/wsdd, 2006

[Int03a] International Standards Organisation. In-
formationtechnology — Common Language Infra-
structure, ISO/IEC 23271:2003(E) First edition,
2003.

[alpO6a] alphaWorks/IBM. JAX. Available at
www.alphaworks.ibm.com/tech/JAX, 2006

[Lid02a] Lidin S. Inside Microsoft .net il assem-
bler.Microsoft Press, 2002.

[Mic02a] Microsoft Corporation. Shared source
common language infrastructure. Available at
msdn.microsoft.com/net/sscli, 2002.

[Mic05a] Microsoft Corporation. .NET Framework.
Available at msdn.microsoft.com/netframewortk,
2005.

[Mic05b] Microsoft Corporation. NET Compact
Framework. Available at msdn.microsoft.com/
netframework/programming/netcf, 2005.

[MicO6a] Microsoft Research. ILMerge, Available
at re-
search.microsoft.com/~mbarnett/ILMerge.aspx,
2006

[Mon0O6a] The Mono project. website. Available at
www.mono-project.com, 2006.

[Osm05a] Operating systems and middleware group.
Lego.net website. Available at
www.dcl.hpi.unipotsdam.de/research/lego. NET/,
2005.

[Ray99a] Rayside D., Mamas E., and Hons E. Com-
pact java binaries for embedded systems. In
CASCON ’99: Proceedings of the 1999 confer-
ence of the Centre for Advanced Studies on Col-
laborative research, page 9. IBM Press, 1999.

[Sol06a] Solorzano J.H. TinyVM website. Available
at tinyvm.sf.net, 2006.

[Sun0O6a] Sun Microsystems, Inc. Java Platform, Mi-
cro Edition. Available at javasoft.com/j2me, 2006

ISBN 80-86943-11-9

http://www.alphaworks.ibm.com/

PMPI: A multi-platfor m, multi-programming
language M Pl using .NET

Mohammad M. El Saifi Edson Toshimi Midorikawa
Department of Computer Engineering and Digital Systems
Polytechnic School — University of Sao Paulo
Sao Paulo - SP - Brazil

{ mohamad.saifi, edson.midorikawa} @poli.usp.br

ABSTRACT

Implementation of the MPI standard on heterogeneous platforms is desirable because it permits using resources
discarded by existing MPI implementations of homogenous systems. This paper describes PMPI, as partia
implementation of the MPI standard on a heterogeneous platform. Unlike other MPI implementations, PMPI
permits MPI processes written in different programming languages to run on multiplatform system. PMPI is built
on top of .NET framework. PMPI can span multiple administrative domains distributed geographicaly. To
programmers, the grid looks like alocal MPI computation. The model of computation is indistinguishable from
that of standard MPI computation. This paper studies the implementation of PMPI with Microsoft .NET
framework and MONO to provide a common layer for a multiprogramming language multiplatform MPI
application. We show the obtained results using PMPI, and compare them to MPICH2. The obtained results will
show that the use of .NET framework for PMPI isfeasible and can be optimized for performance.

Keywords
MPI, Paralld Computing, HPC, .NET Framework, MONO

1. INTRODUCTION operating systems across networked PCs, are
discarded because of the lack of an MPI that
executes on a heterogeneous platform. These idle

For many years, paralle computation was always cycles are increasingly being recognized as a huge
an attractive aternative for obtaining high- and largely untapped source of computing power
performance computing [Dongarra et al. 2003] On the other side amost existing MPI

[Foster 1995]. With the use of multiple
computational nodes interconnected by a high-
speed network, clusters of computers are the most
common platform of parallel machines. The recent
introduction of multi-core microprocessors will
result in parallel computers becoming available on

implementations use C, C++ or FORTRAN
programming language. Accordingly, researchers
and programmers who collaborate on the solution
of the same problem need to stick to one of the
languages that supports the MPI library they intend

desktops. to use.

parallel computation allowing nodes spread across idle resources on heterogeneous platforms is
the network to collaborate to achieve a common desirable because it alows researchers and
computational goal [Andrews 2000] [MPI Forum programmers, who need high performance
1994]. computing and have available heterogeneous
The Iimit_ati on of MPI i§ two fold. (_)n the one side, Pg&rcr: [a}r<0$|1|r;d té\ger ;:nagw gﬂfﬁitt(;muzez?)lgéa]\{alézblls
most existing MPI implementations, such as and Roe 2002][Kélly and Mason 2003]. Having the
MPICH2, execute only on homogeneous platforms ability to use MPl on heterogeneous systems

[MPICH2 2006]. Accordingly, idle cycles that are

. . . maximizes computational power resources.
spread across a variety of machine architectures and P P

.NET Technologies 2006 Short papers 75 ISBN 80-86943-11-9

mailto:@poli.usp.br

In addition to usng MPI on a heterogeneous
platform, programmers want to use a variety of
programming languages in ther computational
program. In the same MPI computation,
programmers want nodes to run applications written
in different programming languages simultaneously
using MPI standards. This becomes a merit when
we have multiple programmers participating in the
solution of a unique problem, where each
programmer is writing a program that runs on a
separate node such as same data multiple program
solutions. This permits programmers to explore
their abilities and skills in their preferred
programming language, and to use the
programming language that best suit the solution of
the problem.

This paper studies the feasibility of implementing
MPI standard on a heterogeneous platform by
implementing the component PMPI. PMPI aims to
provide programmers and researchers with a
framework that takes care of a transparent
communication infrastructure between the
heterogeneous nodes in a MPI computation in a
robust and secure manner. The programmer is left
to concentrate only on the application specific
computational aspects. We take advantage of the
.NET framework to provide application
programmers with a choice of the programming
language, all of which can use the same PMPI
framework classes.

There are different choices that can be made to
implement the PMPI component. We choose the
.NET framework [Ritchter and Balena 2002] for
this purpose as the first tentative and used .NET
Remoting [McLean 2003] [Rammer 2002] as the
communication infrastructure for PMPI. In this
implementation, PMPl acts as a remote-object
based framework for creating MPl paralléd
applications. The framework is built using the
extensibility features of the .NET Remoting
framework.

Unlike the Java virtual machine, the .NET runtime
is designed to be language independent.
Accordingly, developers can creste ther
applications using any language that targets the
CLR such as; C#, Visud Basic, Visud C++ or one
of many other .NET languages such as Eiffd, Perl,
Cobol, Component Pascal, Smalltalk, or Fortran
[Ritchter and Balena 2002]. Today there are about
twenty six different programming languages that
target the .NET framework [Ritchter and Balena
2002]. PMPI enables programmers to program in a
normal MPI fashion, without being concerned what

platform or programming language other
participating nodes will run.
.NET Technologies 2006 Short papers

76

The main contribution of this paper is to study the
feasibility of implementing MPI on a virtud
machine and show performance results compared to
other existing MPI implementation. This offers
programmers who have heterogeneous systems with
a library that can reap the available computational
power on available machines.

The remainder of this paper is organized as follows.
Section 2 describes the architecture of PMPI.
Section 3 describes the programming model of
PMPI. Section 4 explains the sample application
used in the tests. Section 5 describes the results and
some preliminary performance figures. Finaly,
section 6 concludes and discusses future and related
works.

2. ARCHITECTURE

PMPI architecture follows the standard
structure of a layered networking architecture.
PMPI is composed of three components. The first
component is PMPI which contains MPI
implementation. The second one is the agent that
runs on each node participating in the MP
computation. The agent is responsble for starting
MPI programs on nodes, and offers adminisrative
information about nodes, in addition to information
about administrative domains. The third component
is PMPl Gateway, or PIP (Platform Interface
Portal). The PIP serves as a gateway to
adminigrative domains to overcome problems
raised by firewalls and NAT separating different
adminigtrative domains.

Each administrative domain has a PIP known to all
agents. Insde PMPI component, there is an address
resolution layer that is transparent to programmers.
This layer decides on whether to direct MPI calls
directly to other nodes or to their corresponding
PIPs. This permits programmers the freedom to

concentrate on their problem rather than
communi cation implementation.

Node Node

| Process | | Process |

| PMPI || Agent | | PMPI || Agent |

I'I Ethernet i |

Node Node

| Process | | Process |

| PMPI || Agent | | PMPI || Agent |

Figure 1: Four nodes using PMPI

ISBN 80-86943-11-9

Figure 1 shows a basic PMPI infrastructure. The
figure shows a structure with four nodes running on
one administrative domain connected by local
Ethernet network. The processes may be running on
different platforms and each process may be
written in a different programming language.

PMPI communication infrastructure is constructed
on .NET Remoting, and in turn, is based on
TCP/IP. .NET Remoting can be customized to
support other protocols [Rammer 2002].

FMPI Component

WP Send

WP Init
WPl BC ast

Address Resolution

Real Proxy

SOAP
Formatter

Binary
Formatter
Transport Sinks

Figure 2: PMPI layered view

Figure 2 shows PMPI component layers. On the
top, we have the MPI interface that is available to
programmers. When a MPI cal is made, it passes
through the address resolution module to check
which administrative domain the destination node
belongs to, and what communication method is to
be uses to reach the node that costs less. For
example, nodes behind firewalls may be reachable
only through port 80 using the SOAP protocol
which is firewall friendly in contrast to the binary
protocol. On the other hand, SOAP consumes more
network bandwidth and is less efficient than binary
formatting [McLean 2003].

Figure 3 shows a sketch of a MPI computation
spanning two administrative domains where each
adminigrative domain is located behind a firewall.
In this figure, MPI cdls made from one
adminigrative domain to the other are done through
the PIPs of the administrative domain. The PIP will
serve as a proxy on behalf of nodes making the call.
The scenario in figure 3 assumes that we have
barriers in both administrative domains. In other
words, nodes in adminigrative domain 1 cannot
reach nodes in adminidrative domain 2 directly
using remote object calls. Instead, they should use
the PIP proxy service to exchange messages.

.NET Technologies 2006 Short papers

77

Node

Process |

Node

| Process | |

| PMPI || Agent | | PMPI || Agent |

[|

Node Node

| Process |

| PMPI || Agent |

PMPI
(Gateway

Node

| Process |

| PMPI || Agent |

|

Node Node

| Process | | Process |

| PMPI || Agent | | PMPI || Agent |

Figure 3: Using PMPI on two administrative
domains

To better understand the idea, let’ stake an example
where node A in adminigtrative domain one will
make MPI cal to node B in administrative domain
two. The address resolution layer of PMPI running
on node A detects that node B is running on another
adminigrative domain and there is no way to reach
node B directly because of a firewall or NAT. The
address resolution layer directs the call to the PIP
node of administrative domain one. The PIP in turn
directs the MPI call to PIP of administrative domain
two. The PIP of administrative domain two receives
the call and directsit to node B of its domain. If the
call is synchronous, then the PIP of adminigrative
domain one block node A until it recelves a
notification from PIP of the other adminigrative
domain that node B has received the call. The PIP
acts as proxy on behalf of the nodes in their
corresponding administrative domain.

The rest of this section is divided into two
subsections. The first describes MPI standard. The
second describes PMPI architecture and constructs.

ISBN 80-86943-11-9

2.1 MPI: Message Programming I nterface

In the message-passing library approach to parallel
programming, a collection of processes executes
programs written in a sandard sequential language
augmented with calls to a library of functions for
sending and receiving messages. MPI is a complex
system. In its entity, it comprises 129 functions,
many of which have numerous parameters of
variants [Foster 1995].

In the MPI programming model, a computation
COMPrises one or more processes that communicate
by calling library routines to send and receive
messages to other processes. In most MPI
implementations, a fixed set of processes is created
at program initialization, and one process is created
per processor. However, these processes may
execute different programs. Hence, the MPI
programming model is sometimes referred to as
multiple program multiple data (MPMD) to
distinguish it from SPMD mode in which every
processor executes the same program.

Processes can use point-to-point communication
operations to send a message from one named
process to another; these operations can be used to
implement local and unstructured communications.
A group of processes can cal collective
communication operations to perform commonly
used global operations such as summation and
broadcast. MPI's ability to probe for messages
allows asynchronous communication. Probably
MPI’'s most important feature from a software
engineering viewpoint is its support for modular
programming. A mechanism called a communicator
allows the MPI programmer to define modules that
encapsulate interna communication structures
[MPI Forum 1994].

2.2 PMPI Basic Architecture

PMPI is built on top of .NET framework. We are
using Microsoft .NET framework 1.1 for Microsoft
Windows and Mono 1.0.5 for Linux. Although
Mono can run on Power PC, BSD and other
operating systems and architectures, we based our
initia implementation on Windows and Linux
operating systems although this can be expanded to
other operating systems without any modification in
the code.

Theinitial implementation of PMPI was devoted to
implement functionality rather that performance.
Because of this, we sdected higher level
implements of the .NET framework to implement
PMPI. For the communication layer, we used .NET
Remoting which is based on remote object
communication. The classes that make up the .NET

.NET Technologies 2006 Short papers

78

framework are layered, meaning that at the base of
the framework are simple types, which are built on
and reused by more complex types. .NET Remoting
is one such complex type which in turn is built as
layers where each layer can be customized to
programmer needs [Jones et al 2004]. This adds
extra overhead compared to using simple raw
classes such as socket class [Rammer 2002].

We used C# as the programming language. All
.NET programming language compilers targets the
CTS (common type system) of the framework. C#
compiler helps the programmer adhere to CTS
types by setting the “CLSCompliantAttribute’
attribute to true [Bock 2003]. In this way, the
compiler generates an error whenever you try to use
anon CTS type. This guarantees that the generated
code is accessed by al .NET programming
languages since all .NET programming languages
target the CTS[Ritchter and Balena 2002].

Each node participating in the MPI computation
should have the .NET framework installed. Nodes
running Windows operating systems should install
Microsoft Framework 1.1 on their machines. Nodes
running Linux should install Mono 1.0.5. Although
there are newer versions of the framework for both
platforms, PMPI has been tested on earlier
frameworks.

In addition to the framework installed on the
machines participating in the MPI computation, the
nodes should have PMPI ingalled on each node.
The initial implementation of PMPI needs to have
bidirectional communication between the nodes.
Accordingly, firewalls can cause problems. The
implementation of PIP isnot yet implemented.

Initially, PMPI implemented 20 MPI functions.
Those functions cover basic, asynchronous,
collective and modular commands. When MPI
computation starts, each node registers PMPI object
at a known end point to other nodes using .NET
remote object. With .NET remoting, the framework
creates a thread pool to receive the calls made
againgt the remote object. When node A sends data
to node B within the same administrative domain,
node B's PMPI will receive the data and releases
the calling object immediately, node A in this
When node B calls MPI_Receive, PMPI will check
to seeif there is a message with the corresponding
tag and source. If it finds a corresponding message,
then a pointer to the message is passed to
MPI_Receive, and the call returns immediately in
node B. If no corresponding message is found with
the requested tag-source, the call in node B is
blocked until node B receives the requested
message. If node A uses synchronous MPI_SSend,
then PMPI layer on node A blocks until node B

ISBN 80-86943-11-9

sends a release signal after the process in node B
makesacall to MPI_Receive.

PMPI uses a hash table data structure to control
received message. The key of the hash table is a
combination of the source, tag, and communicator
ID. The value of the hash table points to a queue
whose elements contains a data structure composed
of the received message, message size, message
type and synchronization objects that the receiving
thread will block on. When the node calls
MPI_Receive with a particular tag, source and
communicator, PMPI checks the hash table for
pending messages in the queue. If it finds a
message, it pops the message from the queue in a
FIFO manner and wakes up the thread using the
synchronization objects found in the read queue
element. When the waked thread terminates, the
message is passed to the MPI_Receive call. Note
that if the call is made using MPI_Ssend, which isa
synchronous send, the receiving thread will block
the sending thread until it is waked up again by
MPI_Receive in the manner explained above. If it
comes that MPI_Receive is called before a
MPI_Send and PMPI finds the queue empty, then it
blocks the call on synchrozination objects, enqueue
the call with the synchronization objects in the
gueue whose pointer is stored in a hash table. Later,
when PMPI isinvoked by MPI_Send, PMPI checks
first if a pending MPI_Receive exists. If it find a
pending receive, then it pops the queue, wakes the
thread using the popped synchronization objects
and returns.

When it comes to collective operations, PMPI uses
a thread pool to perform the collective task. PMPI
uses a simple algorithm for collective tasks. Each
communicator has a master node known to all
participating nodes. The communicator master node
is responsble for coordinating the collective calls.
In other worlds, its the master communicator node
who decides when the collective call is done. PMPI
implements this by using a thread pool in the
communicator master node. When the collective
call ismade, PMPI checks if the node is the master
in the target communicator. If it isnot, then it usesa
methodology similar to Send Receive explained
before. If it finds the node to be the communicator
master, then it creates one thread for each node in
the communicator, and blocks on the
synchronization object. When the thread in the pool
terminates, it verifies if other threads in the pool
had terminated; if not, then the thread blocks on a
synchronization object. If the thread happens to be
the lagt one, then the thread wakes all other threads
using the synchronization object. By this means, the
communicator master manages the collective
operation.

.NET Technologies 2006 Short papers

79

The agents will be a separate component. For MS
Windows, the agent is implemented as Windows
Service. The agent will be responsible for starting
the programs on participating nodes. In addition,
the agent will supply managing data about the
nodes themselves such as available memory, CPU
load, speed, adminidrative domains and other
managing data. Today, most operating systems
implement the Web-Based Enterprise Management
(WBEM), which is an industry initiative to develop
a standard technology for accessing management
information in an enterprise environment. WMI is
the Micorsoft implementation of WBEM.

The PIPs are part of PMPI architecture but are not
yet implemented. PIPs will be implemented using
Web Services. The remote object model explained
will be subgtituted by Web Service model. The PIP
will be a gateway on behalf of the calling node. The
architecture and implementation of PIP will
consider having two communicating PIPs on behalf
of the send and receiving nodes.

3. PROGRAMMING M ODEL

The programming model is as smple as any
exising MPI implementation. The master node
initializes the MPl computation usng a XML
computation file. PMPI is object based. Therefore,
the MPI functions should be called as object
methods.

When PMPI is initidized, it publishes a remote
object at a known end point. Each participating
node knows the address and port of all other nodes
in the MPI computation. When the program calls a
MPI function, PMPI receives the function call and
tranamits it to the corresponding node after
resolving its address internally. Although current
implementation did not target nodes running behind
NATs and firewall, PMPI layered implementation
makes it easy to build semantics to solve the
complications raised by firewalls and NATs with
out programmer awareness. This helps the
programmer to devote his efforts on programming
rather than MPI communications. Future works will
customize the real proxy of the .NET Remoting
object to intercept message calls and sdect the
destination accordingly.

We wrote applications in VB.NET, C#, managed
C++, and J#. We ran each application on a different
node. All four nodes ran under Microsoft Windows
XP operating system. For MONO running on Linux
Redhat 9, we were limited to C# since it is the only
existing non-beta compiler. For simplicity, we used
only the above programming languages, but this
can extend to any available .NET programming
language. The MPI computation ran as if programs

ISBN 80-86943-11-9

at all nodes were written in the same programming
language.

MPI obj = new MPI();
obj . MPl _Init(args);
i d=obj . MPI _Comm Rank(MPI _Comm Wor | d) ;
t asks=obj . MPl _Comm Si ze(MPI _Comm Wor | d);
obj . MPl _Send(of fset, 1,
MPI _I nt eger, dest,
MPI _Conm Wor I d);
obj . MPl _Send(rows, 1, Ml _Integer, dest,
ntype, MPlI_Comm Worl d);

nype,

Figure 4: Part of the sample application

Figure 4 shows part of the sample application
written in C# where the code initializes an MPI
computation, gets its task Id within
COMM_WOLRD, gets COMM_WORLD size,
sends data to “dest” node and later receives data
from “dest” node. Note that the MPI functions are
methods of a PMPI object called “obj”. These
methods are either static or instance methods. Static
methods of PMPI enable us to write multithreaded
programs running on a machine where al threads
use the same PMPI object. Also, it is possible to
start multiple PMPI objects where each object
participatesin a different MPI computation with out
the need to MPI communi cators.

4. SAMPLE APPLICATION

We used as a sample application the master-worker
model for matrix multiplication (A x B = C). The
results of this sample are compared to MPICH2 for
Windows in the next section.

The master (task Id 0) sends matrix B to all
participating nodes (workers), and distributes the
rows of matrix A into worker nodes evenly.
Workers perform the multiplication and send back
the result to the master node. Master node
accumul ates the results from all workers into matrix
C. The sample application was taken from the
examples that ingal with MPICH2. In this sample
application, the master does not participate in the
MPI computation. It just sends the data to workers
and gets back the resultsinto matrix C.

5.RESULTS

The performance tests are done with the sample
application written in C#. We set the number of
columns in matrix A to 1200 and the number of
columns of matrix B to 500. We varied the number
of rows of matrix A to 2400, 4800, 9600 and 19200
respectively. For each problem size, we executed
the application on oneto all six nodes.

.NET Technologies 2006 Short papers

80

The tests are executed in three sets. The first set of
tests is the results obtained executing the sample
application on a homogeneous platform corporate
network. The second test is done on the same
corporate network with both PMPI and MPICH2.
The last test is done on a cluster using
homogeneous and heterogeneous platforms.

5.1 Results usng Corporate Homogenous
Platform

We tested the application first on standalone
machines with out using paralldd MPI computation.
We rewrote the application taking out all MPI
commands and compiled them using Microsoft
Visual C++, Microsoft C# and MONO C#
compilers.

The corporate network was composed of AMD 1.5
GHZ, 512 KB cache CPUs with 256 MB RAM and
40 GB HD. The nodes run under Windows XP. One
node had dual operating systems: Windows XP and
Redhat 9. The obtained results are as follows. C#
managed code application executed 27% dower
than C++ application on machine running Windows
XP or Windows 2003 operating system. On
machine running Linux Redhat 9 with mono .NET
framework, C++ executed 10 times faster than C#!
Comparing .Microsoft NET C# running on
Windows XP to MONO 1.05 C# compiler Running
under Linux Redhat 9, Microsoft C# executed 5
times faster than MONO CH#.

Before going any further, let me clarify some
details about array access in managed world and
some performance issues. Each time an element of
an array is accessed, the CLR ensures that the index
iswithin the array’ s bound. This prevents you from
accessing memory that is outside the array, which
would potentidly corrupt other objects. If an
invalid index is used to access an array el ement, the
CLR throws a System.IndexOutOfRangeException
exception.

The index checking comes at a performance cost. If
we have confidence in our code, we can access an
array without having the CLR perform index
checking. This feature is not allowed in al .NET
languages and is not CLS complaint. Accordingly,
only .NET languages that have this feature will
benefit from fast array access such as C#.

To give an idea on how much gain we get using fast
array access, we show the following results. C#
using managed array access executes 20% dower
than C# using fast array access on the machine
running Windows XP. On Linux, C# using
managed array access, executed 5 times slower than
C# using fast array access. As we note, the
performance gain in Linux is huge (500%).

ISBN 80-86943-11-9

The problem with fast array is that not all .NET
languages support it sinceit isnot a CLS compliant.
In addition, it is harder to code than managed array
access since it uses pointers. Accordingly, the
benefit of using fast array is limited to only a subset
of .NET programming languages.

Later, we executed the application using both
MPICH2 and PMPI using managed array access
with PMPI. The sample application running on
PMPI nodes was written with C#, JavaNET,
managed C++ and VB.NET. The compiler choice
did not affect the result. We used a various
combination of the programming languages and we
got the same results. The results are shown only for
Windows OS since we used MPICH2 for windows.

In figures 5, we show a comparison between PMPI
and MPICH2 for different problem sizes executing
on 6 nodes. The results demonstrate that PMPI
executed dower than MPICH2 between 40% and
70%.

Figure 6 shows the linear relation ship between the
number of nodes and the execution time As we
increase the participating nodes, the execution time
decreases linearly.

Time x Problem s{aeb)
180,
160

o 140

N}
=}

Tim

.
o
=}

"
P

©
S

/

[}
=

Execunis

IS
o

———
20 T

—
0

2400 4400 6400 8400
‘ —+—PMPI +MPICHZ‘

10400 12400 14400 16400 18400
Problem Size

Figure 5: comparison between PMPI and MPICH2

Time x Number of Nodes

Time
130.0;

120.00>
110.0
100.0
90.0 T~
80.0 —
70.0
60.0 :
3 4 5

Number of nodes for size=9600

Figure 6: Execution time as a function of
participating nodes

5.2 Resultsusing cluster with a
Heterogeneous Platform

.NET Technologies 2006 Short papers

81

The cluster, named BIO, is composed of 8 nodes
each with dual 2.0 GHZ, 512 KB cache CPUs with
512MB RAM and 40 GB HD.

As before, we tested the application firs on a
standalone machines with out using paralld MPI
computation. We rewrote the application taking out
al MPI commands and compiled them using
Microsoft C# compiler and mono C#.

Later, we executed the application on the cluster
using up to six nodes where nodes varied between
nodes running Windows 2003 server and nodes
running Linux Redhat 8. The result is shown below
in figure 7. As the figure shows, Microsoft .NET
plaform performed better than MONO .NET
framework. When we mixed the nodes between
Windows and Linux operating systems, PMPI
executed with performance eguivalent to the

average of executing on each platform
independently.
Tempo PMPI with multiPlatform
500
450
400
by NN
250
—
100
50
0
2 3 4 5 6
[—+— Windows s Linux Mixed | nodes

Figure 7: PMPI on a heterogeneous platform

5.3 Result analysis

As shown in section 5, PMPI executes as a linear
function of the problem size. The execution time
increased linearly as we increased the matrix size.
Also, as we increase the number of nodes, the
execution time decreased almost linearly.

Although PMPI executes slower than MPICHZ2, the
main overhead is a result of managed array access
and the use of high construct communication
congtruct of the .NET framework. This overhead
was expected and is subject for future work.

In addition, we detected that the use of thread
pool within the program structure, degraded PMPI
performance in a master-worker model. This loss of
performance resulted from the fact that the
operating system has full control of the thread pool
which resulted in activating threads to receive the
results from nodes while other threads were till
sending data to other nodes. With a custom thread
pool, PMPI will have full control on the executing
thread, and in turn, can block receiving threads
while PMPI is sending. This will improve a lot
performance especially when we have large number
of nodes. This happens because as we increase the
number of nodes, we have greater the tendency of
nodes completing their jobs before the master.

ISBN 80-86943-11-9

Moreover, there are some other code tuning of
PMPI that can improve performance such as
reducing .NET framework boxing, a mechanism
that .NET framework exchange data between the
allocated stack and managed heap. Boxing in .NET
managed code is known to have performance cost
and minimizing it can improve performance alot.

6. RELATED WORKS

In this section we discuss related work the can be
use pardlel computing on a multiplatform. In
[Fer05], experiment with implementation of parallel
programs using C# running on Unix and Windows
is done. In [Will01], a binding between an already
implemented MPI interfaces and C# is done. In
[Car00], a Multiplatform MPI implementation is
done for JAVA programming language. However,
none of the above works have focused and worked
with a Multiprogramming Language MPI.

7. CONCLUSION AND FUTURE
WORKS

The first implementation of PMPI was shown to be
feasible and it is possible to execute MPI standards
on a multi-language and multiplatform systems.
Although the first implementation showed that
PMPI is dower than MPICH2, the difference is
explained by known issues and these issues can be
eliminated. Care should be taken when usng a
heterogeneous system including Linux with
managed array access. As shown in the preliminary
results, mono performs very poor with managed
array access. In such a case, we should consider
using fast array access.

The next step in this project is to span PMPI to
multiple administrative domains that span
geographic area across the internet. In addition,
lower communication constructs can improve
performance in addition to use a custom thread pool
to manage threads instead of the operating system
thread pool. Thiswill give us a complete control on
the threads. Also, we will do a comparison between
JavaMPl to PMPI .

REFERENCES

[And00a] Andrews, G.R. Foundation of
Multithreading, Parrallel, and Distributed
Programming, pp 115-243, 2000.

[Rit02a] Ritchter,J. and Balena,F. Applied
Microsoft Dotnet Framework Programming in
Microsoft C# 2002.

[Fos95a] Foster, I.. Designing and Building Parallel
Programs, pp 275-310, 1995

.NET Technologies 2006 Short papers

[Don03a] Dongarra,J. and Foster,l. and Fox,G. and
Gropp, W., Kennedy,K. and Torczon,L.
White,A. Sourcebook Of Parallel Computing.
2003.
[Ram02a] Rammer, |. Advanced Dotnet Remoting
in C#.2002.
[Boc03a] Bock,J. and Barnaby, T. Applied Dotnet
Attributes. 2003
[EastO44a] Easton, M.J. and King, J. Cross-Platform
Dotnet Development. 2004
[Jon044a] Jones, A., Ohlund,J. and Olson, L.
Network Programming for the Microsoft
Dotnet Framework. 2004.
[ArdO2a] Ardestani, K. and Feracchiati, F. and
Gopikrishna,S., Redkar,T., Sivakumar, S,
Titus, T. Visual Basic Dotnet Threading. 2002.
[Sha03a] Sharp, J. and Jagger, J. Microsoft Visual
C# Dotnet. 2003.
[McLO3a] McLean, S. and Naftd,J. and
Williams K. Microsoft Dotnet Remoting. 2003.
[Mar04a] Mariani,R. , Bohling, B., C.Smith, and
S.Barber. Improving Dotnet Application
Performance and Scalability. 2004.
[MPI94a] MPI FORUM. 1994. The MPl message
passing interface standard. University of
Tennesse,Knoxville.
[MONO5a] The MONO project. http://www.go-
MONO.com
[ECMa] ECMA ISO/IEC 23270, ISO/IEC 23271
and I1SO/IEC 23272. http://www.ecma.ch and
http://msdn.microsoft.com/net/ecma
[KelO2a] Kdly,W., RoeP. and Sumitomo,J. , G2:
A Grid Middleware for Cycle Donation using
Dotnet , The 2002 International Conference on
Parallel and Digributed Processing Techniques
and Applications, Las Vegas, June 2002.
[KelO2b] Kely,W. and RoeP., Donating Cycles
over the Internet Using Web Services , The
Eighth Australian World Wide Web
Conference, Sunshine Coast, July 2002
[Fer05] Ferreira, F and Sobral, Joao, ParC#:
Parallel Computing with C#in .Net*,
Springer-Verlag Berlin Heidelberg 2005

[Will01] Willcock,J and Lumsdaine,A and
Robison,A, Using MPI with C# and the
Common Language Infrastructure Indiana
University Computer Science Department
Technical Report 570

[Car00] Carpenter,B, Getov,V, Judd,G, Skjellum,T
and Fox,G MPJ: MPI-like Message Passing for
Java. Concurrency: Practice and Experience
Volume 12, Number 11. September 2000

ISBN 80-86943-11-9

http://www.go
http://www.ecma.ch
http://msdn.microsoft.com/net/ecma

	NET_2006_Short_Papers_All_label.pdf
	A11-full.pdf
	INTRODUCTION
	BACKGROUNDS AND RELATED WORK
	CONTRIBUTIONS
	Estimation of the Model Parameters
	Model Evaluation
	Model validation

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	A41-full.pdf
	INTRODUCTION
	ROLES IN CSS
	SERVICES FOR PARTICIPANTS IN CSS
	Services for Clients
	Services for Partners
	Services for Branches
	Services for Central Office
	Services for Developers
	Other Services

	PROCESSES IN CSS
	ARCHITECTURE
	REFERENCES

