
 
 
 

 

 
 
 

 
 

 
.NET Technologies 2006 

 
 
 
 
 
 
 
 

University of West Bohemia 
Campus Bory 

 
 
 

May 29 – June 1, 2006 
 
 

 
 

 
 

 
Short communication papers proceedings 

 
 
 
 

 
 
 

Edited by 

Jens Knoop, Vienna University of Technology, Austria 
Vaclav Skala, University of West Bohemia, Czech Republic 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.NET Technologies – Short communication papers conference proceedings 
 
Editor-in-Chief: Vaclav Skala 
   University of West Bohemia, Univerzitni 8, Box 314 
   306 14 Plzen 
   Czech Republic 
   skala@kiv.zcu.cz 
Managing Editor:  Vaclav Skala 
 
Author Service Department & Distribution: 

  Vaclav Skala - UNION Agency  
   Na Mazinach 9 
   322 00 Plzen 
   Czech Republic 
   Reg.No. (ICO) 416 82 459 
 
Hardcopy:   ISBN 80-86943-11-9 
 



 

CONFERENCE CO-CHAIR 

Knoop, Jens (Vienna University of Technology, Vienna, Austria) 
Skala, Vaclav (University of West Bohemia, Plzen, Czech Republic) 

PROGRAMME COMMITTEE 

Aksit, Mehmet (University of Twente, The Netherlands) 
Giuseppe, Attardi (University of Pisa, Italy) 
Gough, John (Queensland University of Technology, Australia) 
Huisman, Marieke (INRIA Sophia Antipolis, France) 
Knoop, Jens (Vienna University of Technology, Austria) 
Lengauer, Christian (University of Passau, Germany) 
Lewis, Brian,T. (Intel Corp., USA) 
Meijer, Erik (Microsoft, USA) 
Ortin, Francisco (University of Oviedo, Spain) 
Safonov, Vladimir (St. Petersburg University, Russia) 
Scholz, Bernhard (The University of Sydney, Australia) 
Siegemund, Frank (European Microsoft Innovation Center, Germany) 
Skala, Vaclav (University of West Bohemia, Czech Republic) 
Srisa-an, Witawas (University of Nebraska-Lincoln, USA) 
Sturm, Peter (University of Trier, Germany) 
Sullivan, Kevin (University of Virginia, USA) 
van den Brand, Mark (Technical University of Eindhoven, The Netherlands) 
Veiga, Luis (INESC-ID, Portugal) 
Watkins, Damien (Microsoft Research, U.K.) 

REVIEWING BOARD 

 
Alvarez, Dario (Spain) 
Attardi, Giuseppe (Italy) 
Baer, Philipp (Germany) 
Bilicki, Vilmos (Hungary) 
Bishop, Judith (South Africa) 
Buckley, Alex (U.K.) 
Burgstaller,Bernd (Australia) 
Cisternino, Antonio (Italy) 
Colombo, Diego (Italy) 
Comito, Carmela (Italy) 
Ertl, Anton,M. (Austria) 
Faber, Peter (Germany) 
Geihs, Kurt (Germany) 
Gough, John (Australia) 
Groesslinger, Armin (Germany) 
Huisman, Marieke (France) 
Knoop, Jens (Austria) 
Kratz, Hans (Germany) 
Kumar,C., Sujit (India) 
Latour, Louis (USA) 
Lewis, Brian (USA) 

Meijer, Erik (USA) 
Midkiff, Sam (USA) 
Ortin, Francisco (Spain) 
Palmisano, Ignazio (Italy) 
Pearce, David (New Zealand) 
Piessens, Frank (Belgium) 
Safonov, Vladimir (Russia) 
Schaefer, Stefans (Australia) 
Scholz, Bernhard (Australia) 
Schordan, Markus (Austria) 
Siegmund, Frank (USA) 
Srinkant, Y.N. (India) 
Srisa-an, Witawas (USA) 
Strein, Dennis (Germany) 
Sturm, Peter (Germany) 
Sullivan, Kevin (USA) 
Tobies, Stephan (USA) 
van den Brand, Mark (The Netherlands) 
Vaswani, Kapil (India) 
Veiga, Luis (Portugal) 
 

 



 
 

Contents 
 
 
 

• Bogárdi-Mészöly, Á., Levendovszky, T., Charaf, H.: Handling Session 
Classes for Predicting ASP.NET Performance Metrics (Hungary)  
 

1 

• Pocza,K., Biczo,M., Porkolab,Z.: Towards Effective Runtime Trace 
Generation Techniques in the .NET Framework (Hungary)  
 

9 

• Löwis,M., Möller,J.: A Microsoft .NET Front-End for GCC (Germany)  
 

17 

• Pavlov,N., Rahnev,A.: Architecture and Design of Customer Support 
System using Microsoft .NET technologies (Bulgaria)  
 

21 

• Grosso,A., Podestagrave,R., Vecchiola,C., Boccalatte,A.: Design and 
Implementation of a Grid Architecture over an Agent-Based Framework 
(Italy)  
 

27 

• Lohmann,W., Riedewald,G., Tühlke,T.: A Light-weight Infrastructure to 
Support Experimenting with Heterogeneous Transformations (Germany)  
 

35 

• Chilingarova,S., Safonov,V.: Sampling Profiler for Rotor as Part of 
Optimizing Compilation System (Russia)  
 

43 

• Shalyto,A., Shamgunov,N., Korneev,G.: State Machine Design Pattern 
(Russia)  
 

51 

• Alarcon,B., Lucas,S.: Building .NET GUIs for Haskell Applications (Spain) 
  

59 

• Rabe,B.: Self-contained CLI Assemblies (Germany)  
 

67 

• Saifi,M.El., Midorikawa,E.T.: PMPI: A Multi-Platform, Multi-Programming 
Language MPI Using .NET (Brazil)  
 

75 

 



Handling Session Classes for Predicting ASP.NET 
Performance Metrics 

 
Ágnes Bogárdi-Mészöly 

BUTE, Department of Automation 
and Applied Informatics 

Goldmann György tér 3. IV. em. 
 1111, Budapest, Hungary 

agi@aut.bme.hu 

Tihamér Levendovszky 
BUTE, Department of Automation 

and Applied Informatics 
Goldmann György tér 3. IV. em. 

1111, Budapest, Hungary 

tihamer@aut.bme.hu 

Hassan Charaf 
BUTE, Department of Automation 

and Applied Informatics 
Goldmann György tér 3. IV. em. 

1111, Budapest, Hungary 

hassan@aut.bme.hu 
 

ABSTRACT 
Distributed systems and web applications play an important role in computer science nowadays. The most 
common consideration is performance, because these systems must provide services with low response time, 
high availability, and certain throughput level. With the help of performance models, the performance metrics 
can be determined at the early stages of the development process. The goal of our work is to predict the response 
time, the throughput and the tier utilization of web applications, based on queueing models handling one and 
multiple session classes, with MVA and approximate MVA (Mean-Value Analysis) evaluation algorithm, in 
addition to balanced job bounds calculation. We estimated the model parameters based on one measurement. We 
implemented the MVA and the approximate MVA evaluation algorithm for closed queueing networks along 
with the calculation of the balanced job bounds with the help of MATLAB. We have tested a web application 
with concurrent user sessions in order to validate the models in ASP.NET environment. 

Keywords 
Web application, web performance, queueing models, performance prediction, and measurements. 

 

1. INTRODUCTION 
New frameworks and programming environments 
have been released to aid the development of 
complex web-based information systems. These new 
languages, programming models and techniques are 
proliferated nowadays, thus, developing such 
applications is not the only issue anymore: operating, 
maintenance and performance questions have 
become of key importance. One of the most 
important factors is performance, because network 
systems face a large number of users, they must 
provide high-availability services with low response 
time, while they guarantee a certain level of 
throughput. 

These performance metrics depend on many factors. 
Several papers have investigated various 
configurable parameters, how they affect the 

performance of a web-based information system. 
Statistical methods, hypothesis tests are used in order 
to retrieve factors influencing the performance. An 
approach [Sop05a] applies analysis of variance, 
another [Bog05a] performs independence test. 

The performance-related problems emerge very often 
only at the end of the software project. With the help 
of properly designed performance models, the 
performance metrics of a system can be determined 
at the earlier stages of the development process 
[Smi90a] [Smi01c]. In the past few years several 
methods have been proposed to address this goal. A 
group of them is based on queueing networks or 
extended versions of queueing networks [Jai91a] 
[Man02a] [Urg05a]. By solving the queueing model 
using analytical and simulation solutions, 
performance metrics can be predicted. Another group 
uses Petri-nets or generalized stochastic Petri-nets 
[Ber02b] [Kin99a], which can represent blocking and 
synchronization aspects much more than queueing 
networks. The third proposed approach uses a 
stochastic extension of process algebras, like TIPP 
(Time Processes and Performability Evaluation) 
[Her00a], EMPA (Extended Markovian Process 
Algebra) [Ber98a] and PEPA (Performance 
Evaluation Process Algebra) [Gil94a]. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 

.NET Technologies 2006 
Copyright UNION Agency – Science Press,  
Plzen, Czech Republic. 
 

.NET Technologies 2006  Short papers 1 ISBN 80-86943-11-9



Today one of the most prominent technologies of 
web-based information systems is Microsoft .NET. 
Our primary goal was to predict the response time of 
ASP.NET web applications based on queueing 
models handling one and multiple session classes, 
because response time is the only performance metric 
to which the users are directly exposed. Our 
secondary goals were to predict the throughput and 
the utilization of the tiers. 

The organization of this paper is as follows. Section 
2 covers backgrounds and related work. Section 3 
presents our demonstration and validation of the 
models in the ASP.NET environment, namely, 
Section 3.1 describes our estimation of the model 
parameters, Section 3.2 presents our implementation 
of the MVA and the approximate MVA evaluation 
algorithm along with the calculation of the balanced 
job bounds, and Section 3.3 demonstrates our 
experimental configuration as well as our 
experimental validation of the models. Finally, we 
draw conclusions. 

2. BACKGROUNDS AND RELATED 
WORK 
Queueing theory [Jai91a] [Kle75a] is one of the key 
analytical modeling techniques used for computer 
system performance analysis. Queueing networks 
and their extensions (such as queueing Petri nets 
[Kou03a]) are proposed to model web applications 
[Man02a] [Urg05a] [Urg05b] [Smi00b]. 

In [Urg05a] [Urg05b], a basic queueing model with 
some enhancements is presented for multi-tier web 
applications. An application is modeled as a network 
of M queues:  (Figure 1). Each queue 
represents an application tier, and it is assumed to 
have a processor sharing discipline, since this 
discipline closely approximates the scheduling 
policies applied by most of the operating systems. 

MQQ ,...,1

A request can take multiple visits to each queue 
during its overall execution, thus, there are 
transitions from each queue to its successor and its 
predecessor as well. Namely, a request from queue 

 either returns to  with a certain probability 
, or proceeds to  with the probability 

. There are only two exceptions: the last queue 
, where all the requests return to the previous 

queue , and the first queue , where the 
transition to the preceding queue denotes the 
completion of a request.  denotes the service time 
of a request at  

mQ 1−mQ

mp 1+mQ

mp−1

MQ
)1( =Mp 1Q

mS

mQ )Mm( ≤≤1 . 

Internet workloads are usually session-based. The 
model can handle session-based workloads as an 

infinite server queueing system , that feeds the 
network of queues and forms the closed queueing 
network depicted in Figure 1. Each active session is 
in accordance with occupying one server in . The 
time spent at  corresponds to the user think time 
Z. It is assumed that sessions never terminate. 
Because of the infinite server queueing system, the 
model captures the independence of the user think 
times and the service times of the request at the 
application. 

0Q

0Q

0Q

Z

Z

Z

1S

1Q

2S

2Q

MS

MQ

Mp

11 −− Mp21 p−11 p−

3p

2p

1p

0Q
 

Figure 1. Modeling a multi-tier web application 
using a queueing network 

An enhancement of the baseline model [Urg05a] can 
handle multiple session classes. Incoming sessions of 
a web application can be classified into multiple (C) 
classes. N is the total number of sessions, and  
denotes the number of sessions of class c, thus, 

. A feasible population with n sessions 

means that the number of sessions within each class c 
is between 0 and , and the sum of the number of 
sessions in all classes is n. In order to evaluate the 
model, the service times, the visit ratios, and the user 
think time must be measured on a per-class basis. 

cN

∑ =
=

C

c cNN
1

cN

The model can be evaluated for a given number of 
concurrent sessions N. A session in the model 
corresponds to a customer in the evaluation 
algorithm. The MVA (Mean-Value Analysis) 
algorithm for closed queueing networks [Jai91a] 
[Rei80a] iteratively computes the average response 
time of a request and the throughput. The algorithm 
introduces the customers into the queueing network 
one by one, and the cycle terminates when all the 
customers have been entered.  

In addition, the utilization of the queues can be 
determined from the model, using the utilization law 
[Jai91a] [Kle75a]. The utilization of the queue m is 

mmm SXVU = , where X is the throughput and  is 
the visit number (the number of visits to  made 
by a request during its processing). 

mV

mQ

The MVA algorithm is only applicable if the 
queueing network is in product form, namely, the 
network has to satisfy the conditions of the job flow 

.NET Technologies 2006  Short papers 2 ISBN 80-86943-11-9



balance, one-step behavior, and device homogeneity. 
Furthermore, the queues are assumed either fixed-
capacity service centers or infinite servers, and in 
both cases exponentially distributed service times are 
assumed. 

MVA is a recursive algorithm. Handling one session 
class for large values of customers, or if the 
performance for smaller values is not required, MVA 
can be too expensive computationally. If we handle 
multiple session classes, the time and space 
complexities of MVA are proportional to the number 
of feasible populations, and this number rapidly 
grows for relatively few classes and jobs per class. 
Thus, it can be worth using an approximate MVA 
algorithm [Rai91a] [Sin05a] or a set of two-sided 
bounds [Rai91a] [Zah82a]. 

These bounds referred to as balanced job bounds are 
based on the issue that a balanced system has a better 
performance than a similar unbalanced system. A 
system without a bottleneck device is called a 
balanced system, in other words, the total service 
time demands are equal in all queues. The balanced 
job bounds are very tight, the upper and lower 
bounds are very close to each other as well as to the 
real performance. D is the sum of total service 
demands,  is the average service 

demand per queue, and  is the maximum 
service demand per queue. 

MDDavg /=

maxD

⎭
⎬
⎫

⎩
⎨
⎧

+
−+−

ZD
DDNDZND avg)1(,max max

ZDN
DNDNDNR
+−

−
−+≤≤

)1(
)1()1()( max  

ZDN
DNDNDZ

N

+−
−

−++
)1(

)1()1( max

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−++

≤≤

ZD
DDNDZ

N
D

NX
avg)1(

,1min)(
max

 

The model validation presented in [Urg05a] was 
executed in a J2EE environment, while in this paper 
the models are demonstrated and validated in an 
ASP.NET environment. In order to improve the 
model, it must be enhanced to handle the limits of the 
four thread types in .NET thread pool, in addition to 
the global and the application queue limit [Mei04a], 
since in previous work [Bog05a] we have proven by 
statistical methods [Bra87a], that the limits of the 
four thread types, namely, the maxWorkerThreads, 
maxIOThreads, minFreeThreads, minLocalRequest-

FreeThreads, along with the global and application 
queue limit, namely, the requestQueueLimit, app-
RequestQueueLimit parameters have a considerable 
effect on performance, in other words, they are 
performance factors. 

3. CONTRIBUTIONS 
We have implemented a three-tier ASP.NET test web 
application (Figure 2). Compared to a typical web 
application, it has been slightly modified to suit the 
needs of the measurement process. 

 
Figure 2. The test web application architecture 

Thereafter, we have demonstrated and validated the 
models in the ASP.NET environment. Firstly, we 
have estimated the input values of the model 
parameters from one measurement. Secondly, we 
have implemented the MVA and the approximate 
MVA algorithm, along with the calculation of the 
balanced job bounds with the help of MATLAB, and 
we have evaluated the model. Finally, we have tested 
a typical web application with concurrent user 
sessions, comparing the observed and predicted 
values in order to validate the models in the 
ASP.NET environment. 

We expect that the baseline model and the model 
handling multiple session classes can be validated in 
ASP.NET environment. The thread pool settings and 
the queue limits are common in the two 
environments (J2EE and .NET), but the concrete 
threads (four types, their partitioning in the thread 
pool) and queues (two types, their placement and 
configuration) are specific to .NET. Thus, a general 
model for the two environments with specific 
extensions is expected, which is more accurate than 
the baseline model or the model handling multiple 
session classes. The algorithms presented in 
[Urg05a] could not be reused directly, because they 
must be extended.  

Estimation of the Model Parameters 
The web application was designed in a way that the 
input values of the model parameters can be 
determined from the results of one measurement. 
Each page and class belonging to the presentation, 
business logic or database was measured separately. 

.NET Technologies 2006  Short papers 3 ISBN 80-86943-11-9



Handling one session class, the input parameters of 
the model are the number of tiers, the maximum 
number of customers (simultaneous browser 
connections), the average user think time Z , the 
visit number  and the average service time mV mS  
for  . mQ )Mm( ≤≤1

During the measurements the number of tiers was 
constant (three). The maximum number of customers 
means that the load was characterized as follows: we 
started form one simultaneous browser connection 
then we continued with two, until 52 had been 
reached. In order to determine the average user think 
time we averaged the sleep times in the user scenario. 
To determine  we summed the number of 
requests of each page and class belonging to the 
given tier in the user scenario. To estimate 

mV

mS  we 
averaged the service times of each page and class 
belonging to the given tier. 

Handling multiple session classes, the input model 
parameters are the number of tiers, the number and 
the maximum number of customers, respectively, on 
a per-class basis, the average user think time cZ , the 

visit number , and the average service time cmV , cmS ,  
for  ( , mQ Mm ≤≤1 Cc ≤≤1 ).  

There were two classes. The number of sessions for 
one class was constant 10, while the number of 
simultaneous browser connections for the other class 
was varied up to a maximum number of customers. 
The load was characterized as follows: we started 
from one simultaneous browser connection then we 
continued with 5, 10, until 70 had been reached. To 
determine cZ , the sleep times in the user scenario 
were averaged per class. In order to determine , 
the number of requests of each page and class 
belonging to the given tier and class in the user 
scenario was summed. In order to estimate 

cmV ,

cmS , , the 
service times of each page and class belonging to the 
given tier and class were averaged. 

Model Evaluation 
The conditions described in Section 2 have been 
satisfied: the number of arrivals to a queue equals the 
number of departures from the queue, the 
simultaneous job moves are not observed, since the 
queues have processor sharing discipline, and finally, 
the service rate of a queue does not depend on the 
state of the system in any way except for the total 
queue length. In addition, the queues  are 
fixed-capacity centers, and the  queue is an 
infinite server. Therefore, the MVA algorithm can be 
applicable to evaluate the model (Figure 1) of the test 

web application (Figure 2), because the model is in a 
product form. 

321 ,, QQQ

0Q

We implemented the MVA and approximate MVA 
algorithm for closed queueing networks, in addition 
the calculation of the balanced job bounds with the 
help of MATLAB. Our MATLAB scripts can be 
downloaded from [Mat06a].  

When we handle one session class, the inputs of the 
script are the number of tiers, the maximum number 
of customers, the average service times, the visit 
numbers, and the average user think time. When we 
handle multiple session classes, the inputs the 
number of tiers, the number and the maximum 
number of customers, respectively, on a per-class 
basis the average service times, the visit numbers, 
and the average user think time. The scripts compute 
the response times, the throughputs and the tier 
utilizations up to a maximum number of customers. 
MVA provides a recursive way, approximate MVA 
computes these in a few steps, while balanced job 
bounds method completes in one step. 

Model validation 
Finally, our experimental configuration and 
experimental validation of the model in ASP.NET 
environment are demonstrated. 

The web server of our test web application was 
Internet Information Services (IIS) 6.0 with 
ASP.NET 1.1 runtime environment, one of the most 
proliferated technologies among the commercial 
platforms. The database management system was 
Microsoft SQL Server 2000 with Service Pack 3. 
The server runs on a 2.8 GHz Intel Pentium 4 
processor with Hyper-Threading technology enabled. 
It had 1GB of system memory; the operating system 
was Windows Server 2003 with Service Pack 1. The 
emulation of the browsing clients and measuring the 
response time were performed by ACT (Application 
Center Test), a load generator running on another PC 
on a Windows XP Professional computer with 
Service Pack 2 installed. It ran on a 3 GHz Intel 
Pentium 4 processor with Hyper-Threading 
technology enabled, and it also had 1GB system 
memory. The connection among the computers was 
provided by a 100 Mb/s network. 

ACT [Ald03a] is a well-usable stress testing tool 
included in Visual Studio .NET Enterprise and 
Architect Editions. The test script can be recorded or 
manually created. Virtual users send a list of HTTP 
requests to the web server concurrently. Each test run 
takes 2 minutes and 10 seconds warm-up time for the 
load to reach a steady-state. In the user scenario, 
sleep times are included to simulate the realistic 
usage of the application. 

.NET Technologies 2006  Short papers 4 ISBN 80-86943-11-9



When we handle one session class, while the number 
of simultaneous browser connections varied, the 
average response time and throughput per class were 
measured (Figure 3). 

 
Figure 3. The observed response times and 
throughputs handling one session class 

Handling multiple session classes, there were two 
classes of sessions: a database reader and a database 
writer. The number of simultaneous browser 
connections of one class was fixed at 10, while the 
number of simultaneous browser connections of the 
other class varied, and we measured the average 
response time and throughput per class (Figure 4). 

 
Figure 4. The observed response times and 
throughputs handling multiple session classes 

The results presented in Figure 3 and in Figure 4 
correspond to the common shape of response time 
and throughput performance metrics. Increasing the 
number of concurrent (reader) clients, the (reader) 
throughput (served requests per second) grows 
linearly, while the average (reader) response time 
advances barely. After the saturation the (reader) 
throughput remains approximately constant, and an 
increase in the (reader) response time can be 
observed. In the overloaded phase, the (reader) 
throughput falls, while the (reader) response time 
becomes unacceptably high. 

Handling one session class, we experimentally 
validated the model to demonstrate its ability to 

predict the response time and the throughput of 
ASP.NET web applications with MVA (Figure 5), 
and approximate MVA algorithm. We have found 
that the model handling one session class predicts the 
response time and throughput acceptably. 

 
Figure 5. The observed and predicted response 
times and throughputs handling one session class 
with MVA 

Moreover, from the model, the utilization of the tiers 
can be predicted. The results are depicted in Figure 
6. The presentation tier is the first that becomes 
congested. The utilization of the database queue is 
the second (29%), and the utilization of the business 
logic queue is the last one (17%). 

 
Figure 6. The tier utilization handling one session 
class with MVA 

Thereafter, we demonstrate that the response time, 
the throughput and the tier utilization of ASP.NET 
web applications move within tight upper and lower 
bounds (Figure 7, Figure 8). We have found that the 

.NET Technologies 2006  Short papers 5 ISBN 80-86943-11-9



response time, the throughput, and the queue 
utilization from the observations fell into the upper 
and lower bounds. Thus, the balanced job bounds 
handling one session class predict the response time, 
the throughput, and the utilization of the tiers 
acceptably. 

 
Figure 7. The observed and predicted response 
times and throughputs handling one session class 
with balanced job bounds 

 
Figure 8. The tier utilization handling one session 
class with balanced job bounds 

Finally, the model handling multiple session classes 
was experimentally validated. We have found that 
the model predicts the response time and throughput 
with approximate MVA acceptably (Figure 9). While 
the presentation tier is congested, the utilization of 
the database queue is about 84%, and the utilization 
of the business logic queue is about 16% (Figure 10). 
We have found that the response time, the 
throughput, and the utilization from the observations 
as well as from the approximate MVA fell into the 

upper and lower bounds. Hence, the balanced job 
bounds predict the response time, the throughput, 
and the utilization acceptably (Figure 11).  

 
Figure 9. The observed and predicted response 
times and throughputs handling multiple session 
classes with approximate MVA 

 
Figure 10. The tier utilization handling multiple 
session classes with approximate MVA 

4. CONCLUSIONS AND FUTURE 
WORK 
We have demonstrated and validated queueing 
models handling one and multiple session classes in 
ASP.NET environment, namely, the input model 
parameters were estimated from one measurement, 
the MVA and approximate MVA evaluation 
algorithm, in addition the calculation of the balanced 
job bounds were implemented with the help of 
MATLAB, and a measurement process was executed 
in order to experimentally validate the models. 

.NET Technologies 2006  Short papers 6 ISBN 80-86943-11-9



 
Figure 11. The observed and predicted response 
times and throughputs handling multiple session 
classes with balanced job bounds 

Our results have shown that the models handling one 
and multiple session classes predict the response time 
and the throughput acceptably with MVA and 
approximate MVA evaluation algorithm, along with 
the calculation of balanced job bounds. Furthermore, 
the presentation tier is the first to become congested. 
The utilization of the database tier is the second one, 
and the utilization of the business logic queue is the 
last one. 

In order to improve the model, the limits of the four 
thread types in .NET thread pool, the global and 
application queue limits must be handled along with 
other features. These extensions of the model and the 
validation of the enhanced models, as well as the 
validation of the models in ASP.NET 2.0 
environment are subjects of future work. 

5. REFERENCES 
[Ald03a] Aldous, J., and Finnel, L. Performance 

Testing Microsoft .NET Web Applications. 
Microsoft Press, 2003. 

[Ber98a] Bernardo, M., and Gorrieri, R. A Tutorial 
on EMPA: A Theory of Concurrent Processes 
with Nondeterminism, Priorities, Probabilities 
and Time. Journal of Theoretical Computer 
Science, Vol. 202, pp. 11-54, 1998. 

[Ber02b] Bernardi, S., Donatelli, S., and Merseguer, 
J.  From UML Sequence Diagrams and 
Statecharts to Analysable Petri Net Models. In 
Proceedings of ACM International Workshop 
Software and Performance. Rome, Italy, pp. 35-
45, 2002. 

[Bog05a] Bogárdi-Mészöly, Á., Szitás, Z., 
Levendovszky, T., Charaf, H. Investigating 
Factors Influencing the Response Time in 
ASP.NET Web Applications. Proceedings of 
Lecture Notes in Computer Science, 3746, pp. 
223-233, 2005. 

[Bra87a] Brase, C.H., and Brase, C.P. 
Understandable Statistics. D. C. Heath and 
Company, 1987.  

[Gil94a] Gilmore, A.S., and Hillston, J. The PEPA 
Workbench: A Tool to Support a Process 
Algebra-Based Approach to Performance 
Modelling. In Proceedings of Seventh 
International Conference Modelling Techniques 
and Tools for Performance Evaluation, pp. 353-
368, 1994. 

[Her00a] Herzog, U., Klehmet, U., Mertsiotakis, V., 
and Siegle, M. Compositional Performance 
Modelling with the TIPPtool. Journal of 
Performance Evaluation, Vol. 39, pp. 5-35, 2000. 

[Jai91a] Jain, R. The Art of Computer Systems 
Performance Analysis. John Wiley and Sons, 
1991. 

[Kin99a] King, P., and Pooley, R. Derivation of Petri 
Net Performance Models from UML 
Specifications of Communication Software. In 
Proceedings of 25th UK Performance Eng. 
Workshop, 1999. 

[Kle75a] Kleinrock, L. Queueing Systems, Volume 
1: Theory.  John Wiley and Sons, 1975. 

[Kou03a] Kounev, S., Buchmann, A. Performance 
Modelling of Distributed E-Business 
Applications using Queueing Petri Nets. 
Proceedings of IEEE International Symposium on 
Performance Analysis of Systems and Software, 
Austin, Texas, USA, 2003. 

[Man02a] Manescé, D.A., and Almeida, V.A.F. 
Capacity Planning for Web Services. Prentice 
Hall, 2002. 

[Mat06a] Our MATLAB scripts can be downloaded 
from - http://avalon.aut.bme.hu/~agi/research/

[Mei04a] Meier, J.D., Vasireddy, S., Babbar, A., and  
Mackman, A. Improving .NET Application 
Performance and Scalability (Patters & 
Practices). Microsoft Corporation, 2004. 

.NET Technologies 2006  Short papers 7 ISBN 80-86943-11-9

http://avalon.aut.bme.hu/~agi/research/


[Rei80a] Reiser, M., and Lavenberg, S.S. Mean-
Value Analysis of Closed Multichain Queuing 
Networks. Journal of Association for Computing 
Machinery, Vol. 27, pp. 313-322, 1980. 

[Sin05a] Sinclair, B., Mean Value Analysis. 
Computer Systems Performance Handout, 2005. 

[Smi90a] Smith, C.U. Performance Engineering of 
Software Systems. Addison-Wesley, 1990. 

[Smi00b] Smith, C.U., Williams, L.G. Building 
responsive and scalable web applications. 
Computer Measurement Group Conference, 
Orlando, FL, USA, pp. 127-138, 2000. 

[Smi01c] Smith, C.U., and Williams, L. G. 
Performance Solutions: A Practical Guide to 
Creating Responsive, Scalable Software. 
Addison-Wesley, 2001. 

[Sop05a] Sopitkamol, M., and Menascé, D.A. A 
Method for Evaluating the Impact of Software 

Configuration Parameters on E-Commerce Sites. 
In Proceedings of the ACM 5th International 
Workshop on Software and Performance, Palma, 
Illes Balears, Spain, pp. 53-64, 2005. 

[Urg05a] Urgaonkar, B. Dynamic Resource 
Management in Internet Hosting Platforms. 
Dissertation, Massachusetts, 2005. 

[Urg05b] Urgaonkar, B., Pacifici, G., Shenoy, P., 
Speitzer, M., and Tantawi, A. An Analytical 
Model for Multi-tier Internet Services and its 
Applications. Journal of ACM SIGMETRICS 
Performance Evaluation Review, Vol. 33, No. 1, 
pp. 291-302, 2005. 

[Zah82a] Zahorjan, J., Sevcik, K.C., Eager D.L., and 
Galler, B. Balanced Job Bound Analysis of 
Queueing Networks. Journal of Communications 
of the ACM, Vol. 25, No. 2, pp. 134-141, 1982. 

 

.NET Technologies 2006  Short papers 8 ISBN 80-86943-11-9



* Supported by GVOP-3.2.2.-2004-07-0005/3.01 

Towards Effective Runtime Trace Generation 
Techniques in the .NET Framework * 

 
Krisztián Pócza 

Eötvös Loránd University 

Fac. of Informatics, Dept. of 
Programming Lang. and Compilers 

Pázmány Péter sétány 1/c. 
 H-1117, Budapest, Hungary 

kpocza@kpocza.net 

Mihály Biczó 
Eötvös Loránd University 

Fac. of Informatics, Dept. of 
Programming Lang. and Compilers 

Pázmány Péter sétány 1/c. 
 H-1117, Budapest, Hungary 

mihaly.biczo@axelero.hu 

Zoltán Porkoláb 
Eötvös Loránd University 

Fac. of Informatics, Dept. of 
Programming Lang. and Compilers 

Pázmány Péter sétány 1/c. 
 H-1117, Budapest, Hungary 

gsd@elte.hu 
 

ABSTRACT 
Effective runtime trace generation is vital for understanding, analyzing, and maintaining large-scale applications. 
In this paper two cross-language trace generation methods are introduced for the .NET platform. The non-
intrusive methods are based on the .NET Debugging and Profiling Infrastructure; consequently, neither additional 
development tools, nor the .NET Framework SDK is required to be installed on the target system. Both methods 
are applied to a test set of real-size executables and compared by performance and applicability. 

Keywords 
Runtime trace generation, .NET, Debugger, Profiler, program slicing 

 

1. INTRODUCTION 
 

Generating and analyzing runtime traces for large 
scale enterprise applications is a common task to 
investigate the cause of arising malfunctions and 
accidental crashes. 

In order to prepare reliable applications, it is 
important to investigate programs using a debugger 
application, and examine the application log or the 
event log of the operating system so that erroneous 
instructions and variables getting incorrect values can 
be detected. However, there are many situations 
where a simple debugger fails to find the erroneous 
instructions and variables. One common example is 
when the error occurs in a production environment 
where we are not allowed to install a development 
environment to detect the bug [Mar03a]. 
Furthermore, multithreaded applications or 
applications producing incorrect behavior only under 
heavy load often may not be debugged correctly on 

the development machines. What makes things even 
more complicated is that incompatibility issues might 
also arise in the case of programs and components 
that run on a deployment server or a client computer. 
Further problematic situations include cases when the 
deployment servers are in a Network Load Balancing 
(NLB) Cluster, or the isolation level on the IIS web 
server is too restrictive. 

The most common research area where low level 
runtime traces are used in the academic world is 
dynamic program slicing [Agr91a, Bes01a, Póc05a, 
Tip95a, Zha03a]. The result of program slicing can 
also be used in the industry. The original goal of 
program slicing was to map mental abstractions made 
by programmers during debugging to a reduced set of 
statements in source code. With the help of program 
slicing programmers are able to identify bugs more 
precisely and at a much earlier stage. 

In this article we show two different methods for 
generating source code statement level runtime traces 
for applications hosted by the Microsoft .NET 
Framework 2.0. In their current form our solutions 
are incompatible with older versions (1.0, 1.1) of the 
.NET Framework but they can be ported back. None 
of our methods requires the modification of the 
original source code nor the Runtime. Consequently, 
these solutions do not depend on either Rotor (the 
Shared Source implementation of the .NET 
Framework), Mono, or any other open source 
software. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 

.NET Technologies 2006 
Copyright UNION Agency – Science Press,  
Plzen, Czech Republic. 
 

.NET Technologies 2006  Short papers 9 ISBN 80-86943-11-9



 

None of the methods requires the installation of the 
development tools or the Microsoft .NET Framework 
SDK on the target machine, and since .NET is a 
cross-language programming environment, they can 
be used to generate trace for programs written in any 
.NET programming language. 

The first trace generating method uses the .NET 
Debugger which we presented in [Póc05] in order to 
utilize it in our dynamic slicing algorithm, while the 
second approach exploits the capabilities of the .NET 

Profiling API and IL code rewriting [Mik03]. It will 
clear up that only the second method is suitable for 
large scale multithreaded applications, and the first 
method is sufficient only for toy programs. 

In the next section we describe the main concepts and 
the architecture of the .NET Debugging and Profiling 
Infrastructure. In the 3rd section we will describe the 
method that uses the .NET Debugger to generate 
trace, while in the 4th section the second solution 
based on the .NET Profiler and IL code rewriting 
technique will be presented. In the 5th section we 
compare these methods and present performance 
figures with different applications. We primarily 
focus on tracing statements of the original source 
code that appear in the execution path, and will not 
give detailed description on how to identify variables. 
However, in the last section we show how the 
prepared solutions can be complemented to identify 
variables. 

2. .NET DEBUGGING AND 
PROFILING INFRASTRUCTURE 

 

All 20+ .NET languages compile to an intermediate 
language code called Common Intermediate 
Language (CIL) or simply Intermediate Language 
(IL). The compiled code is organized into assemblies. 
Assemblies are portable executables - similar to dll’s 
- with the important difference that assemblies are 
populated with .NET metadata and IL code instead of 
normal native code. The .NET metadata holds 
information about the defined and referenced 
assemblies, types, methods, class member variables 
and attributes [ECMA]. IL is a machine-independent, 
programming language-independent, low-level, 
assembly-like language using a stack to transfer data 
among IL instructions. The IL code is jitted by the 
.NET CLR (Common Language Runtime) to 
machine-dependent instructions at runtime. 

With the release of .NET, a new Debugging API has 
also been introduced in the Microsoft world. Script 
engines can now compile or interpret code for the 
Microsoft Common Language Runtime (CLR) 
instead of integrating debugging capabilities directly 

into applications through Active Scripting [Pell]. 
.NET Debugging Services is not only able to debug 
every code compiled to IL written in any high level 
language, but it also provides debugging capabilities 
for all modern Object Oriented languages. 

The .NET CLR supports two types of debugging 
modes: out-of-process and in-process.  

Out-of-process debuggers run in a separate process 
providing common debugger functionality. 

In-process debuggers are used for inspecting the run-
time state of an application and for collecting 
profiling information. These kinds of debuggers 
(profilers) do not have the ability to control the 
process or handle events like stepping, breakpoints, 
etc. 

The CLR Debugging Services are implemented as a 
set of some 70+ COM interfaces, which include the 
design-time application, the symbol manager, the 
publisher and the profiler. 

The design-time interface is responsible for handling 
debugging events. It is implemented separated from 
the CLR while the host application must reside in a 
different process. The application has a separate 
thread for receiving debugger events that run in the 
context of the debugged application. When a debug 
event occurs (assembly loaded, thread started, 
breakpoint reached, etc.) the application halts and the 
debugger thread notifies the debugging service 
through callback functions. 

The symbol manager is responsible for interpreting 
the program database (PDB) files that contain data 
used to describe code for the modules being 
executed. The debugger also uses assembly metadata 
that also holds useful information described earlier. 
The PDB files contain debugging information and are 
generated only when the compiler is explicitly forced 
to do so. Besides enabling the unique identification of 
program elements like classes, methods, variables 
and statements, the metadata and the program 
database can also be used to retrieve their original 
position in the source code. 

The publisher is responsible for enumerating all 
running managed processes in the system. 

Symbol 
Manager 

Design time 

CLR Publisher 

 

Profiler 

Figure 1: CLR Debugging architecture 

.NET Technologies 2006  Short papers 10 ISBN 80-86943-11-9



 

The profiler tracks application performance and 
resources used by running managed processes. The 
profiler runs in-process of the inspected application 
and can be used to handle events like module and 
class loading/unloading, jitting, method calls, events 
related to exceptions and garbage collection 
performance. 

3. .NET DEBUGGER WAY TO 
INSTRUMENT APPLICATIONS 

 

To employ the Debugger first we set a breakpoint to 
the entry point of our application and we step along 
each executing statement until the end. The step (or 
step-in) debugging operation goes along sequence 
points in the original source code. Sequence points 
which can be identified using metadata and the 
program database divide the statements in high-level 
programming languages. 

The CLR Debugger API called ICorDebug [Stall] is 
implemented by native COM interfaces. It can be 
directly reached from managed or unmanaged code 
but there are also higher level managed wrapper 
classes used by MDbg [Stall], the managed debugger 
part of the Microsoft .NET Framework 2.0 SDK with 
full source code.  

Using these interfaces we can start a process for 
debugging and register our managed or unmanaged 
callback functions. As mentioned earlier, querying 
run-time information of program variables is another 
important application. 

The structure of our solution: 

1. Low level managed COM Wrapper 

2. High level managed API of the previous 

3. Application employing the previous to generate 
runtime execution trace 

The 1st and the 2nd layer of our solution is not 
implemented by us rather we borrowed it from MDbg 
that is freely usable and provided by Microsoft. 

The low level managed COM Wrapper (1st layer) 
represents a COM marshaling code that is used to call 
native Debugging API functions and is written in IL. 
It resides in the corapi2 folder in MDbg’s source tree. 

The high level managed API (2nd layer) provides an 
easy-to-use higher level managed wrapper to the 
underlying layer and it is written in C# 2.0. 
Sometimes it uses properties instead of methods, and 
dispatches native debugging events as managed 
events. It resides in the corapi folder of MDbg’s 
source tree. 

Our solution based on these APIs can be downloaded 
from http://avalon.inf.elte.hu/src/netdebug/ . 

In the implementation first we create the process to 
be run but do not start it. A Debugger event is raised 
at every module load. When the module containing 
the user entry point (Main method) is loaded we set a 
breakpoint at this entry point. After loading the 
process and setting the breakpoint we let the 
application run. At this point the process is actually 
created and the OnCreateProcess event is raised by 
the Debugger. In the handler of this event we set the 
state of the application being debugged to running 
and start a while loop which is allowed to run while 
the application is alive. When the breakpoint 
previously set is encountered the OnBreakPoint 
debug event is raised. In the handler of this debug 
event an AutoResetEvent called eventComplete is set 
and we wait for eventModState to be set. The handler 
of OnStepComplete Debugger event does exactly the 
same. 

Afterwards the while loop does the following three 
things: 

1. Waits for the eventComplete event which is 
set by the Debugger event handlers 

2. doStepIn operation is called as described later 

3. Sets the eventModState event 

Between setting the eventComplete event and waiting 
for the eventModState event the doStepIn method 
runs which requires/sets the following information at 
every step: 

1. The IL instruction pointer 

2. The current function token and module 

3. Which sequence point belongs to the current IL 
instruction 

4. The target of the next step 

The IL instruction pointer, the function token and the 
module can be easily queried from the CorFrame 
object which can be queried from the current thread. 
The sequence points are required to output the actual 
source line and source column to the trace and to 
define the next step using the StepRange method of 
CorStepper. The sequence points and the target of the 
next step are static properties, therefore we cache 
them so that they can be queried by the 
GetSequencePoints and GetRanges method of the 
current ISymbolMethod interface accordingly. At the 
first and last sequence point of each function we log a 
function enter and leave event in the trace. 

Unfortunately, this approach is not able to correctly 
handle multithreaded application because it is not 
possible to step from one thread to another and the 
debugger does not notify us about thread switches.  

.NET Technologies 2006  Short papers 11 ISBN 80-86943-11-9



 

4. .NET PROFILER WAY TO 
INSTRUMENT APPLICATIONS 

 

Basically, this approach explores all sequence points 
in all methods of all classes and all modules of the 
application being profiled and inserts trace method 
calls defined in an outer assembly at every sequence 
point at IL code level [Mik03]. 

The .NET Profiler provides a COM interface called 
ICorProfilerCallback2 exposing a set of callbacks 
which can be implemented as a COM class. The 
implementer is not allowed to use any managed 
programming language, otherwise the Profiler would 
profile itself. Consequently we have chosen the C++ 
language to demonstrate this approach. 

We have used some other COM interfaces also like 
ISymUnmanagedReader, ISymUnmanagedMethod, 
IMetaDataImport and ICorProfilerInfo2 while the 
standard classes implementing these interfaces were 
instantiated using Microsoft’s ATL (Active Template 
Library). 

From the 70+ Profiler events provided by the 
ICorProfilerCallback2 interface we have used only 
two: ModuleLoadFinished and ClassLoadFinished. 

4.1. Tracing Methods: Implementation 
and Referencing 
In this section we discuss the tracing methods we are 
using, how they log and the way we reference them. 

We created a module (assembly) called 
TracerModule and placed a static class called Tracer 
in it containing only static methods. 

Listing 1 illustrates the trace method executed at 
every method entry (first sequence point executed) 
and leave (last sequence point, which is always 
executed unless exception has been thrown).  

The first four parameters represent the position of the 
sequence point in the source code, the fifth parameter 

represents the unique function identifier and the 
action code (1 for E(nter), 2 for L(eave)). Since the 
tracer is prepared for multithreaded applications, we 
lock on a static object and output the unique managed 
thread identifier at every step. At intra-function 
sequence points the trace method gets only the first 
four parameters and does not output any function 
identifier or action code. 

If we intend to call a method placed in an outer 
module we have to reference the assembly containing 
that method, the class and the method itself. We 
decided not to modify the original program in any 
way so we have to add these references to the in-
memory metadata of every assembly at runtime. The 
best place to do this is the ModuleLoadFinished 
Profiler event. 

Through the DefineAssemblyRef method of the 
IMetaDataAssemblyEmit interface, the 
DefineTypeRefByName and the DefineMemberRef 
methods of IMetaDataEmit2 interface we are able to 
add these references to the in-memory metadata of 
assemblies and receive their token values. When 
adding these references they are specified simply by 
their names, the function token is used to call the 
belonging function at the corresponding sequence 
points. 

4.2. Internal Representation of Native 
.NET Primitives 
In this section we will give a general overview of the 
internal representation of .NET methods, IL 
instructions and Exception Handling Clauses 
[Mik03]. 

4.2.1. Internal representation of .NET methods 
Every .NET method has a header, IL code and may 
have extra padding bytes to maintain DWORD 
alignment. Optionally, it may have an SEH 
(Structured Exception Handling) header and 
Exception Handling Clause. 

A .NET method can be in Tiny and in Fat format. A 
Tiny method is smaller than 64 bytes, its stack depth 
does not exceed 8 slots, contains no local variables, 
SEH header and exception handlers. Fat methods 

public  static  void  DoFunc( uint  startLine,  
uint  startColumn, uint  endLine, uint  endColumn,  
uint  functionID, uint  action) 

{ 
  try 
  { 
    lock  (lockObj) 
    { 
      char  act = 'E' ; 
      if  (action == 2) 
        act = 'L' ; 
      sw.WriteLine( "{6}T{5}{4}{0}:{1}-{2}:{3}" , 

startLine, startColumn, endLine, 
endColumn, act, functionID,       
Thread .CurrentThread.ManagedThreadId); 

    } 
  } 
  catch  { } 
} 

Listing 1: Trace method 
Header 
IL Code 
SEH Header 
Ex. Hand. Clauses 
Padding byte 

Tiny method FAT method 

Figure 2: Method formats 

.NET Technologies 2006  Short papers 12 ISBN 80-86943-11-9



 

overrun one or more of these criterions. 

4.2.2. IL instruction types 
IL instructions can be divided into several categories 
based on the number and type of parameters they use: 

- have no parameter (dup: duplicates the element 
on top of the stack; ldc.i4.-1,…ldc.i4.8: load an 
integer on stack (-1,…8)) 

- has one integer (8, 16, 32, 64 bits long) 
parameter (ldc.i4 <int>: load the integer 
specified by <int> on stack; br <param>, br.s 
<reloff>: long or short jump to the relative 
address specified by <reloff>) 

- has one token parameter (call <token>: calls the 
method specified by <token>; box <token>: box 
a value type with type <token> into an object; 
ldfld <token>: load the field specified by 
<token> of the stack-top class on stack) 

- multi-parameter instructions (switch <count> 
<reloff1>…<reloffcount>: based on the stack-
top value representing the relative offset 
parameter index jumps to the chosen relative 
offset) 

4.2.3. Exception Handling Clauses 
Every Fat method can have one or more exception 
handlers. Every EHC (Exception Handling Clause) 
has a header and specifies its try and handler starting 
(absolute) offset and length. An EHC can be also in 
Tiny and Fat format based on the number of bytes the 
offset and length properties are used to describe. 
Obviously each EH offset and length specifies a 
sequence point beginning and ending position in the 
IL code-flow.  

4.3. Let the Game Begin: IL Code 
Rewriting 
Our goal is to change the IL Code of methods before 
they are jitted to native code. We have chosen the 
ClassLoadFinished Profiler event to perform this 
operation because in this early stage we are able to 
enumerate all methods (with the EnumMethods 
method of IMetaDataImport interface) of the class 
just loaded and rewrite the IL code of a whole bunch 
of methods. The binary data of a method can be 
retrieved by the GetILFunctionBody method of 
ICorProfilerInfo2. After IL code rewriting, necessary 
space for the new binary data can be allocated using 
the Alloc method of IMethodMalloc and the binary 
data can be set with the SetILFunctionBody method 
of ICorProfilerInfo2.  

Single-method binary data operations and IL code 
rewriting can be divided into five steps: 

1. Parsing binary data and storing it in custom data 
structures 

2. Upgrading method and instruction format 

3. Insertion of instrumentation code to the IL code-
flow 

4. Recalculating offsets and lengths 

5. Storing new representation in binary format 

4.3.1. Parsing binary method data 
At first we determine the sequence points of the 
method being parsed using the GetSequencePoints 
method of ISymUnmanagedMethod. This procedure 
determines the IL- and original source code-level 
start and end offsets for every sequence point. The 
first byte of the header describes whether the method 
is tiny or fat, the function is parsed using this 
information.  

The IL-level offsets of sequence points were 
determined previously, now the binary data has to be 
assigned to them and the IL instructions have to be 
identified based on the binary data at every sequence 
point. Every category of IL instructions featured in 
4.2.2 is able to parse itself and determine its 
parameters (integer value, token value, multiple 
parameters). Furthermore it can also generate both a 
human readable and a binary representation (along 
with its length) of it. 

Consider the simple method in Listing 2. In Table 1 
the corresponding sequence points are shown 
identified by their IL offset, the start and end offsets 
by line and column numbers.  

Index IL offset Start offset End offset 

0 0 25,1 25,2 
1 1 26,3 26,23 
2 9 0xfeefee,0 0xfeefee,0 
3 12 27,3 27,4 
4 13 28,7 28,47 
5 24 29,7 29,19 
6 28 31,3 31,16 
7 32 32,1 32,2 

Table 1: Sequence Point Offsets 

Sequence point at index 2 petted FeeFee does not 
have a real source code level offset just helps us to 
jump out if the predicate fails. 

The IL code in Listing 4 illustrates the internal 
representation of method in Listing 2. The numbering 
on the left indicates the IL offsets while the numbers 
right to the branch instructions (brtrue.s, br.s) 

static  bool  IsFirstLess( int  value1, int  value2) 
{ 
  if  (value1 < value2) 
  { 
    Console .WriteLine( "Yes, first is less" ); 
    return  true ; 
  } 
  return  false ; 
}  

Listing 2: Simple C# Method 

.NET Technologies 2006  Short papers 13 ISBN 80-86943-11-9



 

represents absolute target offset, relative target offset, 
target sequence point and target instruction index at 
the target sequence point. Parameters of ldstr and call 
instructions are of type string and functions tokens 
respectively. The absolute target offset of branch 
instructions identified by target IL instruction has to 
be calculated from the instruction offset and the 
relative target offset. 

If exist, the EHCs are also parsed [Mik03]. 

4.3.2. Upgrading method and instruction format 
In case of Tiny method format the header is upgraded 
to represent a Fat format because we can easily 
overrun the limitations of Tiny format. 

The short branch instructions (brtrue.s, br.s, bge.un.s, 
etc.) are converted to their long pairs (brtrue, br, 
bge.un, etc.) because we cannot guarantee that the 
relative branch lengths will remain within the 
numeric representation barriers after inserting some 
instrumentation instructions between the branch 
instructions and their targets. 

Tiny Exception Handling Clauses are also upgraded 
to store offset and length values in DWORD format 
because the limitation of original WORD (offset) and 
BYTE (length) can be easily overrun after 
instrumentation code insertion. 

4.3.3. Instrumentation code insertion 
Now we have the Token IDs of Trace methods, 
queried the IL and source code level offsets and 
lengths of sequence points and converted the binary 
data to upgraded IL instruction flow. Now we 
examine how the methods called DoFunc (in Listing 
1) and its pair called DoTrace can be parameterized 
and called. While DoFunc is intended to use at 
method enter and leave, DoTrace handles intra-
function sequence points. 

As we have mentioned earlier, IL instructions are 
able to parse themselves therefore we create a BYTE 
array to store binary data which can be easily parsed 

and stored in the same type of container where the 
original instructions are stored. 

The parameters of the method to be called are loaded 
on the stack using the ldc.i4 instruction (opcode 
0x20) in order of parameters and the Token ID of 
method is given as the parameter of call instruction 
(opcode 0x28). The possible instruction (ldc.i4.1, or 
ldc.i4.2) at index 25 surely having a one byte opcode 
(0x17 or 0x18) loads 1 for enter or 2 for leave on 
stack respectively. 

The above parameters are dynamically substituted 
depending on the data of the current sequence point 
and a unique function ID (generated by an own 
counter) while the function token can be preset since 
it is module (and not function) dependent. 

In the intra-function sequence points only the data of 
sequence points is substituted and the thread ID is 
queried at each step, the function ID and other 
information are irrelevant here. The substituted 
binary data is parsed and converted to IL instructions 
and inserted into the beginning of the IL code 
container of every sequence point. 

4.3.4. Recalculating offsets and lengths 
Since the IL instruction flow is altered by inserting 
extra instructions the target offsets of branch 
instructions and the start offset and length properties 
of Exception Handling Clauses have to be 
recalculated. 

A target offset of a branch instruction can point to the 
first instruction of a sequence point and can point to 
other than the first instruction. If the original branch 
target offset pointed to the first instruction of a 
sequence point then we change the target offset to the 
newly created first instruction in order to run 
instrumentation after jumps also. If the original 
branch target pointed to other then the first 
instruction then we leave it to target to the same 
instruction as before. 

Any IL instruction in our representation can calculate 
its length, so we can easily recalculate the new offsets 
of IL instructions and sequence points for the branch 
targets also.  

The offset and length properties of Exception 
Handling Clauses can be calculated similarly. 

BYTE insertFuncInst[31]; 
insertFuncInst[0] = 0x20; //ldc.i4, start line 
insertFuncInst[5] = 0x20; //ldc.i4, start column 
insertFuncInst[10] = 0x20; //ldc.i4, end line 
insertFuncInst[15] = 0x20; //ldc.i4, end  column 
insertFuncInst[20] = 0x20; // ldc.i4, func. id 
insertFuncInst[25] = 0x0; // ldc.i4.1 or ldc.i4.2 
insertFuncInst[26] = 0x28; // call 
*((DWORD *)(insertFuncInst+27)) = 
                    tracerDoFuncMethodTokenID;  

Listing 3: Binary representation of trace method call 

0: nop 
1: ldarg 0 
2: ldarg 1 
3: clt 
5: ldc.i4 0 
6: ceq 
8: stloc 1 
9: ldloc 1 
10: brtrue.s 28 (16) [tsp: 6, til: 0] 
12: nop 
13: ldstr 1879048193 
18: call 167772181 
23: nop 
24: ldc.i4 1 
25: stloc 0 
26: br.s 32 (4) [tsp: 7, til: 0] 
28: ldc.i4 0 
29: stloc 0 
30: br.s 32 (0) [tsp: 7, til: 0] 
32: ldloc 0 
33: ret 

Listing 4: Human Readable Output of Internal 
Method Representation 

.NET Technologies 2006  Short papers 14 ISBN 80-86943-11-9



 

4.3.5. Storing the instrumented method 
Now we have the instrumented method represented in 
our data structures. The job is to store the data and IL 
code back in binary format following the 
specification. The binary data can be restored to the 
CLR by using the method described in 4.3. 

5. COMPARISON OF METHODS AND 
TEST RESULT 

 

In the previous sections we have presented two 
different methods for generating runtime execution 
trace of .NET-based applications. 

None of the methods require us to modify the 
applications being tested. Both methods can be 
accomplished to produce trace information about the 
value of accessed variables of any type, and identify 
reference variables. With the help of the Debugger, 
reference variables can be identified by their Object 
Id, but obtaining this Id requires many time 
consuming operations [Stall]. Using the Profiler’s IL 
code rewriting capabilities it is also possible to 
identify reference variables, and much faster than 
with the Debugger. A value type variable is always 
identifiable by the sequence point occurrence it was 
created in. 

The Debugger is unable to notify us about thread 
switches and the step-in operation is unable to jump 
through threads therefore it is not possible to handle 
multithreaded applications. To the contrary, using the 
Profiler we are able to log the thread’s ID at every 
sequence point of the application. 

In order to make the Debugger work we have to 
attach it to the process we intend to instrument. To 

use the Profiler, it is required to register it as a COM 
component using the regsvr32 command and set two 
environment variables in the process, user or system 
context to enable the Profiler in that context. Set 
Cor_Enable_Profiling to 0x1 and Cor_Profiler to the 
GUID or ProgID of our object implementing the 
ICorProfilerCallback2 interface. 

We demonstrate the performance of the methods 
through four applications. The first two use only few 
class library calls so they are intended to measure the 
pure performance. The third application uses much 
more but very short, while the last one uses many and 
long class library calls. 

The character of the four applications: 

1. Counter is a simple application that calculates the 
sum of numbers from 1 to 10000 and prints a dot 
at each step on the screen by implementing the 
addition in a separate function and uses only few 
class library calls, but a lot of integer operations 
which are implemented by native IL instructions. 

2. ITextSharp is an open source PDF library. In our 
test we created a basic PDF document. It uses 
very few class library calls and a lot of string 
operations which are implemented by native IL 
instructions. 

3. DiskReporter recursively walks the directory tree 
from a previously specified path and creates an 
XML report. In our test 3141 directories and 
12257 files were enumerated. It uses more, but 
short library calls (xml node and attribute 
operations, file property query). 

4. Mohican is a small HTTP server using multiple 
threads for serving requests. In our test Mohican 
served a 1.3MB HTML document referencing 20 
different pictures. It uses many and long class 
library calls (mainly network and file access). 

App. name Normal run Debugger 
trace 

Profiler 
trace 

No. of SPs 

Counter 00:00.17 01:53:92 00:01.34 110,034 

ITextSharp 00:01:02 98:11.32 02:33:50 2,825,242 

Disk-
Reporter 

00:05.46 24:04.42 00:11.76 316,196 

Mohican 00:01.37 n/a 00:01.89 175,434 

Table 2: Test results 

Table 2 shows the performance comparison of the 
normal application run, the run under the control of 
the Debugger and the Profiler in mm:ss.ii format. The 
last column contains the number of source code 
statements executed. 

It can be seen that applications containing few class 
library calls perform poor under the control of both 
the Debugger and the Profiler, while applications 
containing many class library calls perform better. 

0: ldc.i4 25 
5: ldc.i4 1 
10: ldc.i4 25 
15: ldc.i4 2 
20: ldc.i4 3 
25: ldc.i4 1 
26: call 167772195 
31: nop 
32: ldc.i4 26 
37: ldc.i4 3 
42: ldc.i4 26 
47: ldc.i4 23 
52: call 167772194 
57: ldarg 0 
58: ldarg 1 
59: clt 
61: ldc.i4 0 
62: ceq 
64: stloc 1 
65: ldloc 1 
66: brtrue 165 (94) 
71: ldc.i4 27 
76: ldc.i4 3 
81: ldc.i4 27 
86: ldc.i4 4 
91: call 167772194 
96: nop 
97: ldc.i4 28 
102: ldc.i4 7 
107: ldc.i4 28 
 

112: ldc.i4 47 
117: call 167772194 
122: ldstr 1879048193 
127: call 167772181 
132: nop 
133: ldc.i4 29 
138: ldc.i4 7 
143: ldc.i4 29 
148: ldc.i4 19 
153: call 167772194 
158: ldc.i4 1 
159: stloc 0 
160: br 197 (32) 
165: ldc.i4 31 
170: ldc.i4 3 
175: ldc.i4 31 
180: ldc.i4 16 
185: call 167772194 
190: ldc.i4 0 
191: stloc 0 
192: br 197 (0) 
197: ldc.i4 32 
202: ldc.i4 1 
207: ldc.i4 32 
212: ldc.i4 2 
217: ldc.i4 3 
222: ldc.i4 2 
223: call 167772195 
228: ldloc 0 
229: ret 
 

Listing 5: Altered IL code of IsFirstLess method 

.NET Technologies 2006  Short papers 15 ISBN 80-86943-11-9



 

Applications containing long class library calls (like 
any real world enterprise application) perform well 
under the control of the Profiler. Unfortunately the 
Debugger could not be tested (because of 
multithreading). 

The runtime trace generated by the Profiler can be 
visualized using a Winform application as shown in 
Figure 3 (the trace of Mohican). The code fragment 
in green (darker) shows the statement executed at an 
arbitrary step of the application. Statements in yellow 
(lighter) have already been executed, while white 
statements have not yet been traversed. 

6. CONCLUSION AND FURTHER 
WORK 

 

In this paper we have shown how to utilize the .NET 
Debugging and Profiling Infrastructure to generate 
runtime execution trace of large applications and 
analyzed both method using programs of different 
characteristic. We can conclude that although the 
method based on the Debugger is easier to 
implement, the Profiler is much more suitable for 
tracing large scale, multithreaded applications.  

Therefore, we plan to advance on the Profiler way. 
The first and most important thing is to extend our 
framework to identify variables in the order as local 
variables, method arguments and class variables 
appear. We can insert instrumentation code after any 
variable load and before any variable store operation. 
The on-stack-top variables can be duplicated by the 
dup IL instruction in order to consume them in the 
parameter of a trace method call. 

There are some language elements and CLR features 

which we currently do not support like exceptions, 
nested classes, anonymous methods, generic types 
and methods, application domains. 

7. REFERENCES 
 
[Agr91a] H. Agrawal and J. R. Horgan. Dynamic 

program slicing. In SIGPLAN Notices No. 6, 
pages 246-256, 1990. 

[Bes01a] Á. Beszédes, T. Gergely, Zs. M. Szabó, J. 
Csirik, T. Gyimóthy. Dynamic slicing method for 
maintenance of large C programs, CSMR 2001, 
pages 105-113. 

[ECMA] ECMA C# and Common Language 
Infrastructure Standards 
http://msdn.microsoft.com/netframework/ecma/ 

[Mar03a] K. Maruyama, M. Terada, Timestamp 
Based Execution Control for C and Java 
Programs, AADEBUG,  2003 

[Mik03] A. Mikunov, Rewrite MSIL Code on the Fly 
with the .NET Framework Profiling API, MSDN 
magazine, issue September 2003, 
http://msdn.microsoft.com/msdnmag/issues/03/0
9/NETProfilingAPI/ 

[Póc05] K. Pócza, M. Biczó, Z. Porkoláb. Cross-
language Program Slicing in the .NET 
Framework, Journal of .NET Technologies, 2005 

[Stall] Mike Stall’s .NET Debugging Blog, 
http://blogs.msdn.com/jmstall/, 2004-2006 

[Tip95a] F. Tip, A survey of program slicing 
techniques. Journal of Programming Languages, 
3(3):121-189, Sept. 1995. 

[Zha03a] X. Zhang, R. Gupta, Y. Zhang. Precise 
dynamic slicing algorithms. Proc. International 
Conference on Software Engineering, pages 319-
329, 2003

 

Figure 3: Visualizing the trace 

.NET Technologies 2006  Short papers 16 ISBN 80-86943-11-9



A Microsoft .NET Front-End for GCC 
 

Martin v. Löwis 

Hasso-Plattner-Institut 
für Softwaresystemtechnik GmbH 

Postfach 900460 
+49 331 5509 239 

Martin.vonLoewis@hpi.uni-potsdam.de 

Jan Möller 

Hasso-Plattner-Institut 
für Softwaresystemtechnik GmbH 

Postfach 900460 
 

Jan.Moeller@hpi.uni-potsdam.de 
ABSTRACT 

In the past, embedded systems developers have been severely constrained in their choice of programming 
languages. Recent advancements in processing power and memory availability allow for new techniques. We 
present an extension to the GNU Compiler Collection (GCC) that offers the expressiveness of all Microsoft 
.NET languages to embedded systems. 

Keywords 
Common Intermediate Language, GNU Compiler Collection, GCC. 

 

1. INTRODUCTION 
Embedded systems are known for the severe resource 
constraints in terms of memory size and clock speed. 
For that reason, developers traditionally use 
assembler language and C for such systems [Bar99]. 
Compared to current desktop and server 
programming languages such as Java, C#, Python, 
Visual Basic, and others, the typical development 
environment is tedious to use, and the development is 
less productive. 

There are two primary aspects of the “desktop” 
programming languages that we consider interesting 
for embedded developers as well: object-orientation 
and safety. With object-orientation, the software may 
become more maintainable, as the encapsulation 
mechanisms allow for better modularization and 
abstraction. 

By “safety”, we refer to the reliability aspects that are 
typically associated with interpreters: the run-time 
system of the language will make sure that invalid 
operations (such as out-of-bounds accesses to arrays) 
cause a well-defined program termination (typically 
through an exception), instead of causing undefined 
behavior (such as memory corruption). Safe 
programming languages reduce the number of bugs 
that remain in the software after testing, as errors are 
reliably detected. They also simplify the process of 
locating the source of a bug, as the error is often 
detected right after it occurred. 

Unfortunately, both object-orientation and safety 
come at significant run-time cost. Interpreters 
execute program code much slower than similar 
compiled programs. Alternatively, just-in-time 
compilation is used to speed-up execution [Kra98]. 

Unfortunately, just-in-time compilation is itself 
expensive and causes unpredictable run-time 
behavior. Furthermore, a just-in-time compiler needs 
to be developed for each new target architecture. 

As an alternative, we present an approach which 
allows static compilation of .NET programs for 
embedded targets. We briefly discuss different 
aspects of this solution in the remainder of this paper. 

2. GCC 
The GNU Compiler Collection integrates different 
programming languages (C, C++, Java, Ada, …) for 
various microprocessor architectures [GS04]. Among 
the supported targets are many desktop and 
embedded processors; GCC is known for relatively 
easy extensibility to new architectures [Sta95]. While 
it originally focused on the C language only, it has 
recently been extended to object-oriented and safe 
languages, such as Java [Bot97]. 

In GCC, the source code of the input language is 
transformed into an intermediate representation1, 
which is then processed in optimization passes. The 
result of the compilation is then output as an 
assembler source code file for the target machine. 
This assembler file is processed with assemblers, 
loaders, etc. for the target system to produce an 
executable program. 

The design of GCC is engineered towards 
extensibility. Support for new microprocessors can 

                                                           
1 More precisely, there are two internal representations: the 

tree structure, and the Register Transfer Language 
(RTL). 

.NET Technologies 2006  Short papers 17 ISBN 80-86943-11-9



be added relatively easy by describing the processor 
in a machine definition. Using this machine 
definition, the compiler can convert the internal 
representation (RTL) into assembler code of the 
target system. This assembler code is then further 
processed in an assembler to object files, and 
eventually combined with a linker into executable 
files and libraries. 

 
Figure 1. GCC Architecture 

In the last few years, the focus in extensibility moved 
towards integration of new languages into GCC, and 
into integration of new optimization algorithms. To 
support a new front-end, several aspects have to be 
considered in the compiler framework: 

• Integration of the front-end into the build 
process, 

• Integration of input and output file handling, 
• Management of symbol tables, 
• Representation of the actual code of the 

program, 
• Debugger support, and 
• Optimization. 
 

For each of these aspects, GCC defines interfaces 
which a new front-end must use. For example, to add 
a new front-end to the build process of the compiler 
itself, one must create a subdirectory in the source 
tree, and add files such as Make-lang.in and config-
lang.in. This will automatically result in another 
option for the GCC --enable-languages switch, so that 
an administrator can enable or disable the build of 
this front-end. Likewise, by adding a file lang.opt to 
the source directory, the GCC command line option 
processing framework will automatically support 
language-specific compiler options. 

To integrate a front-end into the actual processing 
flow in the compiler, the compiler framework defines 
certain hook functions which might be filled out by 
the front-end. For example, the compiler framework 
will invoke a parser call-back, which then should 
process all input files for the source language. 

To support symbol tables and code representation 
uniformly across languages, GCC defines a set of 
data structures and utility functions. In the parser, the 
front-end will use the utility functions to build a 
program representation, which is then passed to the 

back-end passes of the compiler. As an example, the 
function build_decl is used to create a function 
declaration object. This object is enriched, through 
further function calls, with the actual body of the 
function. Eventually, rest_of_compilation must be 
called, which performs the optimization (if 
requested), and output the assembler code. 

Both optimization and debugger support in the 
compiler need the help from both the front-end and 
the back-end. The front-end needs to annotate the 
tree with programming-level knowledge (e.g. 
whether the address of an object was ever taken), and 
the back-end needs to specify how many cycles each 
instruction consumes, so that the instruction 
scheduler can pick the most efficient of several 
alternative instruction sequences. 

3. The CIL front-end 
The Common Intermediate Language (CIL) 
[ECM02a] is a platform-independent representation 
of object-oriented programs. It was designed to 
support a wide range of languages. It focuses on the 
C# language [ECM02b], but also supports variants of 
Java, C++, Visual Basic, Eiffel, and other languages. 
CIL builds the core of the Microsoft .NET 
environment. 

Our front-end transforms CIL code into the internal 
representation, which GCC then optimizes and 
outputs for the target system. Similar to the Java 
front-end, we use symbolic execution to convert the 
stack machine that CIL assumes into the tree 
structures of GCC. 

GCC

C++

C#

VB

.Net
Compiler

IL
Assembly

x86
asm

h8/300
asm

 
Figure 2. Integration of the Common 

Intermediate Language into GCC 

Unlike the Java front-end, we have no plans to 
process source code directly. Instead, we use the IL 
library from the DotGNU Portable.NET framework 
[Dot05] to load IL assembly files into memory, and 
traverse the meta-data structures in the assembly. As 
a result, we do not have a traditional parser in our 
front-end. Instead, we define our own traversal 
algorithm, which processes all classes in the 
assembly in sequence. For each class, we build the 
layout of the class and the structure of the virtual 
method table, and emit code for each method. 

The IL front-end can, in principle, support all aspects 
of the semantics of .NET programs, except for the 
dynamic loading of additional assemblies which had 

.NET Technologies 2006  Short papers 18 ISBN 80-86943-11-9



not been compiled through this front-end. In the 
current implementation, only a subset of the .NET 
concepts is available; see section 5 for details. 

4. Target Systems 
In principle, it is possible to support all features of 
the .NET platform that don’t require dynamic 
insertion of behavior. That is, all instructions of the 
intermediate language can be converted into 
sequences of assembler instructions of the target 
system. Through generation of data structures into 
the resulting assembler code, introspection of objects 
is possible, using the standard APIs. Even dynamic 
loading of assemblies is possible, as long as the 
assembly to be loaded was compiled using GCC in 
advance. 

For the remaining features, we plan to support 
interoperability with the Mono software [DB04]. To 
achieve an integration of Mono, we need to use the 
same application binary interface (ABI) that mono 
uses, with respect to calling conventions, and 
representation of meta-data in memory. 

At the same time, we also like to target embedded 
systems. At the moment, our primary target is the 
Lego Mindstorms hardware [Sat02], which uses the 
Renesas H8/300 processor [Ren03]. On this system, 
memory is limited. For our .NET implementation, 
this means primarily that we have to be very 
selective in the subset of the .NET library that we can 
support – the entire platform library just won’t fit 
into 32k of main memory. In this environment, we 
may also have to accept further limitations. However, 
depending on the application’s needs, we believe that 
all features of the virtual machine can be supported. 
The more challenging features are floating point 
computations (which require emulation in software, 
as the chip has no hardware floating point support), 
exception handling, and garbage collection. At this 
point, we cannot yet predict what costs in terms of 
memory and processor cycles these features will 
require. 

In addition to the Lego Mindstorms, we also target 
Windows CE; in particular CE PC. 

5. Current Status 
Currently, only a small fraction of the CIL features 
are supported, namely 

• primitive data types (bool, byte, short, int, float, 
double) 

• classes, including static and instance attributes 
and properties, as well as inheritance, 

• static and instance methods, including 
parameters, local variables, and constructors, 

• arrays and strings, 
• delegates 

• arithmetic operations, and 
• control flow operations (conditional and 

unconditional branch instructions). 
Using this subset, we have been able to develop 
small control programs for the Lego Mindstorms 
platform. 

On the Windows CE system, we were able to create 
control programs which meet hard real-time 
constraints. 

Work to provide additional features, such as  
interfaces, and exception handling, is in progress. 
Our current implementation is available from 
http://www.dcl.hpi.uni-potsdam.de/ 
research/lego.NET/release.htm. 

6. Conformance 
This implementations of the CLI aims to comply 
with the Kernel Profile of the ECMA specification 
335. Support for the Compact Profile would be 
largely possible through integration of library 
implementations, such as the ones provided with 
Mono. To support the Compact Profile, the biggest 
challenge is the support for reflection, in particular, 
for the dynamic loading of assemblies. For that to 
work, a byte code interpreter or just-in-time compiler 
is needed in addition to the statically-compiled code. 

With respect to the Kernel Profile as specified in 
[ECM02c], section 4.1 (Features Excluded From 
Kernel Profile), our implementation has the 
following properties: 

• Floating Point is supported if the target 
processor supports it or an emulation library is 
available. 

• Non-vector Arrays are not currently supported; 
adding support would be straight-forward, 
though. 

• Reflection is currently not supported, but work 
to add support for reflection is in progress. Due 
to the overhead of reflection, support for 
reflection will be selectable on a per-application 
basis. See above for a discussion of dynamic 
assembly loading. 

• Application domains are currently not 
supported; however, concepts needed to support 
them (e.g. per-appdomain static class variables) 
are already implemented. 

• Remoting is not supported; no support is 
planned. 

• Varargs functions, frame growth, and filtered 
exceptions are currently not supported; no 
support is planned. Code that tries to use these 
features is rejected in the compiler 

.NET Technologies 2006  Short papers 19 ISBN 80-86943-11-9



As shown in section 5, many features of the CLI are 
currently unimplemented. Most notably, there is no 
support for verification: We assume that all 
assemblies passed to the compiler are verifiable. 
However, at this point, we don’t foresee any aspects 
of the CLI metadata or instruction semantics that are 
unsuitable for our implementation approach. For 
example, verification would be implemented most 
naturally in the compiler itself, causing no run-time 
overhead.  

7. Related Work 
Cygnus Solutions (now Redhat) has developed a 
Java front-end [GCJ05], supporting both Java source 
code and byte code. The CIL front-end has taken 
much inspiration from the latter. 

Microsoft currently develops the Phoenix framework 
[Lef04], which appears to be similar in architecture 
to GCC, and also appears to  contain a .NET front-
end. Very little information about Phoenix has been 
published so far. 

8. REFERENCES 
[Bar99] M. Barr. Programming Embedded Systems 

in C and C++. O’Reilly, 1999. 
[Bot97] P. Bothner. A Gcc-based Java 

implementation. IEEE Compcon’97. 

[DB04] E. Dumbill, N.M. Bornstein. Mono: A 
Developers Notebook. O’Reilly, 2004. 

[Dot05] DotGNU Portable.NET. 
http://www.dotgnu.org 

[ECM02a] ECMA-335. Common Language 
Infrastructure, Partition III: CLI Instruction Set. 
Dec. 2002. 

[ECM02b] ECMA-334. C# Language Specification. 
Dec. 2002. 

[ECM02c] ECMA-335. Common Language 
Infrastructure, Partition IV: Library. Dec. 2002. 

[GCJ05] The GNU Compiler for the Javatm 
Programming Language. 
http://gcc.gnu.org/java 

[GS04] B.J. Gough, R.M. Stallman(Forword). An 
Introduction to GCC. Network Theory Ltd, 2004. 

[Kra98] A. Krall. Efficient JavaVM Just-in-Time 
Compilation. PACT, 1998. 

[Lef04] J. Lefor. Phoenix as a Tool in Research and 
Instruction. July, 2004. 

[Ren03] Renesas Technology Corp..H8/300 
Programming Manual. 2003. 

[Sat05] J. Sato. Jin Sato’s Lego Mindstorms. No 
Starch Press, San Francisco, 2002. 

[Sta95] R.M. Stallman. Using and Porting GNU CC. 
Free Software Foundation, 1995.

 

.NET Technologies 2006  Short papers 20 ISBN 80-86943-11-9



Architecture and Design of Customer Support 
System using Microsoft .NET technologies 

 
Nikolay Pavlov 

PU Paisii Hilendarski 
236 Bulgaria Blvd. 

 Bulgaria, Plovdiv 4003 

npavlov@kodar.net 

Asen Rahnev 
PU Paisii Hilendarski 

236 Bulgaria Blvd. 
Bulgaria, Plovdiv 4003 

assen@pu.acad.bg 
 

 
 

ABSTRACT 
This paper describes the four-tiered architecture, technologies, functionality and electronic services for the 
participants in the process of customer support with a software system for customer support – Integrated Help-
Desk Center (IHDC), based on an object-oriented framework for development of distributed applications.  
There exist multiple solutions for customer support management.  Many of them do not provide services to end-
clients, do not support vertical organizational structure or lack relevant multi-language support for international 
clients. 
The participants in the process of customer support in IHDC are: clients, local partners, local branches, central 
office and development department.  Multilingual support is provided to enable operation over different 
counties.  IHDC consists of: Customer Relationship Management; System for registering and management of 
tickets; Management of application known issues; Management of application updates. 

The system is developed with Microsoft .NET Framework. Its infrastructure is build upon Microsoft Windows 
Server 2003, Microsoft SQL Server 2000 and Microsoft Information Server. The four tiers are: database server, 
application server, functional objects and thin client interface – Windows-based and browser-based. 

Keywords 
Four-tiered architecture, object-oriented framework, customer support, Microsoft .NET Framework. 

 

1. INTRODUCTION 
High-quality customer support services have been 
always identified as an important element of the 
overall package of software services for customers, 
crucial for the mission of every software company.  
Therefore, successful software companies strive to 
provide increasingly higher quality services to their 
customers, and seek ways to achieve this by 
automating and optimizing their processes.  One of 
the necessary elements is to have a centralized 
repository of all customer-related issues, and to have 
an established process for handling those issues, to 
ensure that no problem is neglected or processed 
inadequately.  The dynamic of the modern world 

creates new economic and cultural environments, 
thus putting further difficulties before companies, 
which operate across country boundaries.  Some of 
those problems include multi-level company 
hierarchical structures and multi-national fields of 
operation. 
There exists a wide range of software solutions for 
customer support.  Many of them are not suited for 
the latest requirements for quality customer support, 
because they lack support of certain features.  
Common disadvantages are: 

• Support of horizontal company structure only. 
• No multi-language support. 
• Insufficient integration with existing office 

packages. Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 

.NET Technologies 2006 
Copyright UNION Agency – Science Press,  
Plzen, Czech Republic. 

• Insufficient functionality for Customer 
Relation Management (CRM), or integration 
with third-party CRM systems. 

• Cannot operate in a distributed environment, 
for example - over the Internet. 

• Do not support built-in declarations of hours 
and costs. 

 

.NET Technologies 2006  Short papers 21 ISBN 80-86943-11-9



This paper describes a Customer-Support System 
(CSS), which is aimed to enable multi-national 
companies provide high-quality support services to 
their customers by offering an affordable and flexible 
solution, which overcomes the limitations stated 
above.   

A major advantage of the proposed CSS is the 
automated translation-request system.  This system 
monitors and assigns translation tasks to appointed 
personnel, when information is crossing language 
boundaries within the organization.  For example, a 
call from the client needs attention from a higher 
level of support, where responsible employees do not 
speak the client’s language.  In this case the system 
assigns all the information, as provided by the client, 
to a translator.  Also, all information, which is to be 
communicated back to the client, is translated before 
being made available to the client. 

The architecture of the Customer Support System is 
four-tiered and is based on an object-oriented 
framework for development of distributed 
applications. The system infrastructure and is build 
upon Microsoft Windows Server 2003, Microsoft 
SQL Server 2000 and Microsoft Information Server. 
The four tiers are: database server, application server, 
functional objects and thin client.  The system is 
implemented using technologies, based on Microsoft 
.NET Framework. 

2. ROLES IN CSS 
The design of CSS identifies the following roles for 
participants in the process of customer support: 

• Central office (management). 
• Branches 
• Partners 
• Development 
• Clients 

Central office represents the management of the 
company, providing the services.  This role performs 
the highest level of support and supervision of the 
performance of all other levels.  Central office is the 
only instance, which communicates with 
development, thus providing a centralized and 
controlled information flow towards development. 

Branches are head offices for countries.  There is 
only one branch per country.  Branches provide 
support for all customers from the corresponding 
country.  Branches also serve as a bridge between 
clients and the Central Office, and enhance 
communication flow to and from the Central Office 
by providing translations whether necessary. 

Partners are agents within one country, and 
subordinates of the corresponding branch.  Partners 
provide first level of support, education and other 

services like installations, configuration on-site, 
demonstrations.  They communicate most actively 
with existing clients and potential clients. 

Development is a department, which provides 
software services like bug fixing, product extensions, 
new versions, etc.  Issues, which cannot be solved 
otherwise, are ultimately sent to development by the 
Central Office.  Development never has a direct 
contact with clients and other levels. 

The following diagram represents the structure of the 
roles, as defined by CSS. 

 
Figure1. Roles Structure in CSS 

Figure 1 gives an example of the relations between 
different roles in CSS.  The direct link between 
Branch 2 and Client 4 means that the role of a 
Partner is not required and can be skipped in certain 
cases.  For example, in a relatively small market 
partners may not contribute to the efficiency of the 
organization and, therefore, will not be established. 

Clients are the end-customers of the organization.  
They contact with the organization always via a 
Partner or a Local Branch. 

3. SERVICES FOR PARTICIPANTS IN 
CSS 

Services for Clients 
Clients in CSS are provided with a browser-based 
Internet application – thin client, with which they can 
do the following: 

• Enter new issues (tickets). 
• Attach documents and files to tickets. 
• Review status of tickets. 
• Provide additional information on existing 

tickets on request. 
• Close tickets when solved. 
• Review existing known issues. 
• Review new releases, fixes and release notes. 
 

.NET Technologies 2006  Short papers 22 ISBN 80-86943-11-9



Tickets are entered under pre-defined categories, and 
with different urgency level.  Clients enter a 
description of their problem / question, and can 
attach an external file – office document, screenshot, 
etc to a ticket.  Clients can check existing known 
issues and their solutions to determine if there is a 
ready answer to their problem.  Clients can monitor 
the progress on each of their tickets, and provide 
additional information if the customer support asks 
for it.  Certain actions the customer support produce 
an e-mail to the client to emphasize on issues that 
would need quick attention. Clients can also see all 
new releases, patches and fixes, to determine if they 
should upgrade their software. 

Services for Partners 
Partners use the desktop-based client of CSS.  
Partners can see all tickets, entered by their clients, 
and take actions on them.  Partners can provide 
solutions, request additional information, or send 
tickets to branches for higher level of support if the 
solution is beyond their competency. 

Partners are provided with access to the database 
with all their clients, including contact and address 
information, plus all application releases, fixes, and 
special consultancy documentation, which is 
provided by the central office. 

Services for Branches 
Branches use the desktop-based client of CSS.  They 
see all tickets, entered by clients in the corresponding 
country.  In this way branches can monitor the 
performance of all their subordinate partners and take 
necessary measures.  Branches see tickets, received 
directly from their clients, and tickets, for which 
partners cannot provide a timely solution.  Branches 
can provide solutions, request additional information, 
or send tickets to the central office, if the solution is 
beyond their competency.  Branches have tools to 
provide translated information to the central office, if 
necessary. 

Just like partners, branches are provided with access 
to the database with all their clients, including 
contact and address information, plus all application 
releases, fixes, and special consultancy 
documentation, which is provided by the central 
office. 

Additionally, branches have access to a database 
with all their partners. 

Services for Central Office 
The Central Office uses the desktop-based client of 
CSS. They see all tickets, and thus can monitor the 
performance at any sub-level.  There is an automated 

system, which automatically escalates tickets, which 
are not processed timely by the responsible sub-level.   

The Central office has all necessary facilities to 
provide solutions and request additional information. 
It can also assign tickets to development department, 
if the problem cannot be solved with other means.  
There are tools for on-line discussions and solution 
design. Other tools exist for authoring of release 
notes, and creating known issues from similar tickets. 
The Central office can also monitor the performance 
of the development department. 

There is a special tool, which provides summarized 
information about the status at any level within the 
organization, with special emphasis on overdue 
work, or work, approaching its designated deadline.  
This tool enables management to quickly spot 
problematic nodes in the company structure and take 
the necessary measures to resolve the issues. 

When a client is updated to a new version of the 
application, and the update is actually a new 
application, not simply an upgrade of the old one, all 
its existing information has to be converted.  This 
includes all tickets, installation information, etc.  
There is a special tool, which facilitates this process. 
It archives all data, relevant to the previous version, 
and creates the necessary structures for the new 
application. 

Services for Developers 
Development department uses the desktop-based 
client of CSS. They see only tickets, assigned to 
development by the central office.  Developers can 
use the tool for on-line discussions to receive logged 
additional information.  Developers report their work 
to the Central Office, which is responsible for testing 
their work before delivering the solution to the 
customer, and for authoring the necessary release 
notes for both clients and other levels of support.  
Development department is isolated from clients, and 
direct communication between these two parties is 
not allowed. 

Other Services 
CSS contains a system for automatic escalation of 
tickets.  It monitors if a ticket is not processed timely 
at any level below the central office.  In such a case, 
the ticket is escalated automatically to the higher 
level.  This system also monitors ticket deadlines.  If 
a deadline is approaching, the system sends 
notifications by e-mail to the responsible employees 
at the current level of support and the central office. 

There is and integrated Customer Relation 
Management system, available to partners, branches 
and the central office, is.  It provides an extensible 

.NET Technologies 2006  Short papers 23 ISBN 80-86943-11-9



data structure for storing client-related commercial 
information.  This system focuses on development of 
new clients, and management of sales. 

Another integral part of CSS is the system for 
registration of visit reports.  Visit reports summarize 
all agreements and arrangements, negotiated during 
meetings between clients, company personnel and 
representatives, and external consultants.  
Information includes all participants in meetings.  
The system prepares report documents for each 
meeting and sends those by e-mail to all participants. 

4. PROCESSES IN CSS 
CSS defines a schema of sequential processes for 
handling tickets. It goes in following steps: 

1. Ticket is entered by client. 

2. The appropriate partner sees the ticket.  The 
partner can solve the problem, and notify the 
client to approve the solution, or, escalate the 
ticket to the branch. If no partner is available, 
this step is skipped. 

3. The branch sees the ticket.  They can provide 
a solution, or escalate the ticket to the central 
office, if they cannot handle the ticket.  If a 
solution is found, the branch can directly 
implement the solution, or send the ticket 
back to the partner for implementation. Before 
escalating the ticket, the branch should 
translate the ticket into the language of the 
central office, if necessary. 

4. Ticket is received at the central office.  If the 
central office can provide a solution, the ticket 
is sent back to the branch for localization and 
implementation.  If the problem requires 
programming, the ticket is assigned to 
development with additional description and 
translation, where necessary. 

5. Development department receives a ticket 
with a detailed description, and scheduled 
dates for start and completion of work on 
every ticket.  When work is completed, the 
ticket is sent back to the central office for 
approval. 

6. A completed ticket is sent back to the central 
office. They test the solution and depending 
on the result, can sent it to the branch for 
implementation, or revert it back to 
development. 

At every level, except for development, support can 
request client to send more information, suspending 
the ticket.  The ticket is reopened automatically, 
when the client gives an answer. 

When a ticket is solved, the client is notified and the 
ticket is suspended.  It is the client who does close 
the ticket. 

Suspended tickets are automatically reopened if no 
action is taken on them for a specified period of time.  
This logic prevents tickets from being forgotten and 
stalled. 

5. ARCHITECTURE 
CSS is developed through the use of an object-
oriented framework for distributed business 
applications.  This section describes the key features 
of the framework. 

Four-tier Application Architecture 
The architecture of the framework is presented on 
figure 2. 

Figure 2:  Four-tier architecture 
The four-tiers (Figure 2) are: database server, 
application server, functional objects, and client. 

The database is responsible for storing the 
application data, as well as the internal framework 
data - application dictionary, security, and customer 
preferences.  Application and framework data are 
stored within one logical database, which improves 
encapsulation.  

The application server is an intermediate layer 
between the database and the functional objects.  It 
does not implement business logic; in stead, it 
provides a number of services to the other layers – 
services for data access and modification, security 
services, communication services and system 
services for initialization, multi-language support and 
maintenance.  It is the only layer that communicates 
directly with the database server, which enables 
development of applications for various database 
platforms by changing only the application server.  
Access to the database is realized with ADO.NET.  
The application server is multithreaded – each client 
is served by a separate thread, which improves the 
performance on SMP and Hyper-threading systems. 

The functional objects are specially designed 
program modules, which are integrated at run-time 
within the process of the client application.  They 
provide the functional core of the client application.  
The functional objects software components, which 
accomplish a certain task.  They realize the business 
logic of the application and a part of the user 
interface.   

.NET Technologies 2006  Short papers 24 ISBN 80-86943-11-9



The client application is an environment for 
execution of functional objects under a common user 
interface.  It provides a number of services for: 

• Common graphical user interface 
• Load, execute and release functional objects 
• Translate all user interface text items 

(commands, menus, and static texts) towards 
the active functional object 

• Data exchange between running functional 
objects 

The choice of desktop-based architecture for the 
client application is motivated by the significantly 
richer features for building of the graphical user 
interface (GUI), which desktop-based GUI 
technologies present.  The strong support of various 
infrastructures for distributed applications in 
Microsoft .NET Framework enables desktop-based 
applications to access resources and components 
over local networks and over the Internet - .NET 
Remoting, SOAP (Simple Object Access Protocol) 
based web-services, TCP/IP sockets, robust COM 
(Component Object Model) integration.  These are 
strong foundations for easily building applications 
with fully-featured, convenient and aesthetic user-
interface, while not being limited to client-server 
application architecture. 

Another significant benefit of desktop-based 
applications is that they make it possible to 
implement “push” callbacks – events.  Such events 
may be triggered when a user modifies a record in 
the database, thus notifying all the users, working in 
the same logical sub-domain, that a relevant data 
modification has taken place. 

The application framework, employed to develop 
CSS, is using .NET Remoting to realize the 
communication between the client and the server 
application.  .NET Remoting may be used over the 
Internet, though its callback features are not suitable 
for wide-area networks, due to technical and security 
restrictions.  Therefore the application framework 
implements callbacks via proprietary TCP/IP 
connections, established by the client application to 
the application server.  This is necessary to resolve 
issues with firewalls and NAT (network address 
translation), which “hide’ the clients from the server. 

Scaling 
The architecture of the framework defines two 
execution environments – servers and workstations.  
It is possible to run the database and application 
server on a single server, or scale the environment 
and have database(s) and the application server 
running on different server computers. For example, 
one way to scale up is to run the application server 

and the database with system data on one box, and 
the application user data on a separate box.  Further 
scaling is possible by using more than one 
application servers, each running on a separate 
computer.  This, however, has its drawback – 
callbacks (events) are not possible across multiple 
application servers. Proper organization of work may 
overcome the negative effect, because in large 
organizations each department has its own area of 
operation and it is less critical for immediate view of 
all data modifications, made across the organization.  
Additionally, in stead of using callbacks, the client is 
able to use “pull” technology to acquire events from 
the application server. 

Standard Functional Objects 
Targeting enhanced code reuse, the framework 
includes a set of functional objects, which implement 
security, data browsing and searching, data 
modifications, reporting, document integration with 
Microsoft Office and other external documents, and 
database integrity administration.  They are versatile 
and function according to the specific definitions in 
the application dictionary. 

Data overview: browsing, and sorting data, search 
for data, filtering data on user-selected criteria.  Data 
is displayed in table format, with options for 
additional information in addition to the table.  
Searching and filter can be performed on fields from 
the table, as well as on other related data – both one-
to-many and many-to-many relationships are 
supported. 

Data entry and modification: entry of data, with 
built-in facilities for client-level data validation.  
Additional services include copy of data, and edit of 
multiple records with a single operation. 

Reporting services: preview and print of reports.  
Custom reports can be created on any level, with a 
What-You-See-Is-What-You-Get (WYSIWYG) 
editor.  Reports can be exported into popular formats 
like Abode Portable Document Format (PFD), 
Microsoft Excel (XLS), and HTML. 

Integration with Microsoft Office (Microsoft Word): 
creation, storage and retrieval of Microsoft Word 
documents, which contain data from the database of 
the client application.  Active links between the 
documents and the data is maintained.  Microsoft 
Word document files are stored on an especially 
designated storage folder, which allows access to 
them even in case of system failure, and provides an 
organized depository of office’s files. 

Attachment of external documents (files) to existing 
application data.  An essential part is the descriptive 
definitions of relevant application data, which 

.NET Technologies 2006  Short papers 25 ISBN 80-86943-11-9



external files can be attached to.   Links between 
application data and the files attached are created. 
Attached files are stored on an especially designated 
storage folder, which allows access to them even in 
case of system failure, and provides an organized 
depository of office’s files. 

Security management: application administrators can 
assign access policies to application users and user 
groups.  There are two types of access policies: on 
application level, and on data level.  Application 
level security policies determine which screens and 
functions are available to a user, while data level 
access policies determine which data is accessible by 
a user. 

Data Integrity management: application 
administrators can overview all modifications, made 
by users, and take necessary actions to sustain the 
logical integrity of the application data.   

Those functional objects allow development with 
minimum, even no code pre-compilation by using the 
application dictionary. The application dictionary is 
the “heart” of the framework – it is a centralized 
repository of logical, functional and business 
definitions.  It describes the hierarchical structure of 
the application, the user interface – icons, menus, 
toolbars and forms, and the access security roles on 
both application and data level.  It contains all 
parameter definitions for the functional objects and 
thus determines their behavior in every part of the 
application.  

Application dictionary is created in a special 
descriptive language, based on Extensible Markup 
Language (XML).  The application dictionary is 
stored in the database of the application and is 
always interpreted on application startup.  The client 
application parses only the structure, to build the 
menus and screens, and the security policies for the 
current user.  Functional object parse their designated 
parameters on loading. 

An integral part of the framework is the special tool 

 for authoring of application dictionary contents. It 
features a schematic presentation of the application 
structure, plus syntax-highlight editor for the 
parameters.  Authoring of application dictionaries 
requires understanding of the client database 
structure, Structured Query Language (SQL), and of 
the specifics of parameter definition schemas for 
every functional object used.  As a result, application 
development and support can be performed by non-
programmers. 

Multi-language support is handled with a tool, which 
enables the application administrator to translate all 
text items in the application into virtually any 
number of languages.  It provides convenience 
facilities: incremental searching, filters for not-
translated items, searching for similar translations, 
etc 

CSS is developed on Microsoft .NET Framework. 
The communication between the database server and 
the application server is done via ADO.NET. The 
communication between the application server and 
the functional objects and the thin client is done via 
.NET Remoting over TCP/IP. Client front-end is 
realized as a ASP.NET, installed on Microsoft 
Information Server; it uses .NET Remoting to 
communicate with the application server. 

Microsoft SQL Server 2000 is used as a relational 
database server for CSS. 

6. REFERENCES 
[1] Object-Oriented Application Frameworks, Fayad 
M., Schmidt D., Communications of the ACM, 
Special Issue on Object-Oriented Application 
Frameworks, Vol. 40, No. 10, October 1997
[2] Ralph Johnson and Brian Foote, “Designing 
Reusable Classes”, Journal of Object-Oriented 
Programming. SIGS, 1, 5 (June/July. 1988), 22-35 
[3] Pavlov N., Rahnev A., Framework for 
Application Development, Scientific works of 
Plovdiv University, Bulgaria, vol. 35, book 3 - 
Mathematics, 2006 

.NET Technologies 2006  Short papers 26 ISBN 80-86943-11-9

http://www.acm.org/cacm


Design and Implementation of a Grid Architecture 
over an Agent-Based Framework 

 
Christian Vecchiola, Alberto Grosso, Roberto Podestà, Antonio Boccalatte 

DIST – University of Genoa 
Via Opera Pia 13 

 16142, Genova, Italy 
{christian, agrosso, ropode, nino}@dist.unige.it 

 
ABSTRACT 

Agent based programming presents several features appearing to be interesting for Grid and distributed 
computing needs. The typical environment required by Grid computing is complex, heterogeneous, and highly 
dynamic. The autonomous and flexible behavior provided by software agents meets various Grid requirements. 
In this paper we present the design and the implementation of a Grid architecture built over an agent based 
framework called AgentService. In this work we highlight the advantages in using the services of an agent 
oriented framework to develop a Grid application. 

Keywords 
Agent Mobility, Load Balancing Policy, Agent Framework, Grid computing 

 

1. INTRODUCTION 
Resource sharing through the Internet has become in 
the last years a paramount instrument for scientists, 
not only because it offers great advantages in 
distributed computing, but also because data sharing 
is becoming more and more useful in many scientific 
fields. Resources can be classified in three different 
groups: data, services, and computational power. By 
following this classification we can distinguish three 
types of grids [Fos01a]. Data Grids manage huge 
collections of geographically distributed data, which 
can be generated in many different ways, for 
example data streams are daily sent from satellites 
for weather forecast and climatic changes analysis; 
large collections of data generated from scientific 
experiments allow geographically distributed 
researchers to collaborate to the same research 
project. Service Grids provide services that could not 
be obtained from a single platform: for example 
streaming multimedia services or collaborative 
applications. Computational Grids provide the 
aggregate power of a collection of processors spread 

over the network as a unique, meta-computer. 

In general, grid computing system are intended to 
replicate in the computing world the notion of a 
distribution grid fostered by utility networks such as 
the electrical power grid. In the vision of grid 
computing, computational power, memory, and disk 
space should be obtained “on demand” from a 
network of “suppliers”, potentially belonging to the 
entire Internet. 

In the last decade, distributed high performance 
computing has been built mainly on cluster 
computing systems where the communication among 
the different components of an application is 
performed using the message passing model 
implemented by systems such as MPI [MPI] and 
PVM [Gei94a]. Current trends in the grid community 
aim at providing frameworks not more strictly tied to 
the classical parallel computing programming model. 
However, is very hard to migrate this model to a 
dynamically changing environment such as the 
Internet, thus, in order to cope with the new 
challenges, a more structured, service and object 
oriented approach has to be adopted. The evolution 
toward a heterogeneous, dynamic, distributed over 
multiple domains environment has brought to the 
definition of the Open Grid Service Architecture 
[Fos02a] (OGSA), which proposes the convergence 
between grid computing and Web Services 
technologies in order to get over the classical parallel 
programming paradigm.  The main, world-wide 
known Grid project, namely the Globus Toolkit 
[Fos05a], in its latest release implements the OGSA 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 

.NET Technologies 2006 
Copyright UNION Agency – Science Press,  
Plzen, Czech Republic. 
 

.NET Technologies 2006  Short papers 27 ISBN 80-86943-11-9



specification, and leverages on Web Services 
technologies and on the most widely known Internet 
standards. With this choice Globus is able to make 
available cluster-based high performance computing 
services to simple clients and end users without a 
specific parallel programming know-how too.  

Moreover, starting from analogue considerations was 
conceived the Alchemi project [Luth05a]. Its authors 
aim at involve into the grid community the unused 
computational power provided by the almost 
ubiquitous Windows-based desktops. The Alchemi 
platform is a .Net-based framework providing the 
runtime machinery and the programming 
environment required to construct enterprise/desktop 
grids and to develop grid applications. Alchemi is 
able to interface with a Globus grid too, leveraging 
on a Web Services interface. Another effort trying to 
port the grid computing towards an object oriented 
programming model is the H20 [H20] project. This 
project provides a platform independent Java-based 
framework able to build meta-computing application 
leveraging on various remote method invocation 
protocol, such as SOAP, Java RMI, and TCP-based 
RPC [Kur03a]. 

It is our opinion that moving from the parallel 
computing programming model to a services and 
object oriented model, built on top of widely known 
technologies, can not be considered the last step of 
the Grid programming paradigm evolution. For 
example, Agent technology [Jen99a] and the agent 
programming model could be very useful to build 
virtual, highly dynamic, and distributed  environment 
such as the context where typically operates a Grid 
framework. Agents are autonomous software entities 
with some level of intelligence; agents work better if 
they belong to a community such as a multi-agent 
system (MAS) [Wei99a]. Agents act in a distributed 
manner, cooperate, compete, and negotiate to solve a 
problem or to perform a task. These features make 
the agents an interesting technology to implement 
Grid infrastructures. 

In this paper we present the design and the 
implementation of a Grid Computing architecture 
over an agent based framework. The Grid 
infrastructure has been built leveraging on the 
capabilities of the .Net based AgentService 
programming platform [Boc04a].  

The paper is structured as follows: in section 2 we 
provide a  brief overview on agent technology and 
multi-agent systems, and we describe the related 
synergy with grid computing; section 3 includes the 
description of AgentService programming platform; 
in section 4 we provide a detailed description of our 
agent-based Grid Computing architecture; section 5 
shows a case study where our framework has been 

adopted; finally in section 6 we provide some 
concluding remarks, and we depict possible future 
works. 

2. AGENT TECHNOLOGY AND GRID 
A software agent is an autonomous software entity 
able to expose a flexible behavior. Flexibility is 
obtained by means of reactivity, pro-activity and 
social ability [Wei99a]. Reactivity is the ability to 
react to environmental changes in a timely fashion 
while pro-activity is the ability to show a goal 
directed behavior by taking the initiative. Social 
ability, that is the ability to interact with peers by 
means of cooperation, negotiation, and competition, 
is one of the most important features of agent 
oriented programming: agents do their best when 
they interoperate. Interaction is obtained by 
arranging agents in communities called multi-agent 
systems (MAS). MAS are generally decentralized 
open systems with distributed control and 
asynchronous computation: they provide a context 
for agents’ activity with the definition of interaction 
and communication protocols. In addition they are 
scalable, fault-tolerant, reliable, and designed for 
reuse. 

An abstract architecture specification of a generic 
multi-agent system has been proposed by the 
Foundation of Intelligent Physical Agents (FIPA), an 
international organization that promotes standards for 
agent technologies. The proposed architecture 
[FIP01a] is implemented by different multi-agent 
systems and has been taken as reference model in the 
comparison of different implementations of MAS. 

Agents are reliable components to build flexible and 
fail safe systems, since autonomy and reactivity 
allow recovering from fault conditions. Agent and 
multi-agent technologies provide a promising 
approach to make Grid technologies smarter, more 
flexible, and adaptable. To support Grid computing, 
agents can offer different roles, be organized into 
dynamic groups, and be able to migrate between 
groups to support load balancing. Therefore, agents 
could play an important role in Grid computing, and 
Grid computing can offer useful test-beds for 
investigating Agent services. The social ability, the 
autonomous and flexible behavior could play an 
important role for the communication and the 
interaction with different nodes, for example, in 
exchanging information about the resources available 
on each node. The intrinsic nature of Agent 
technology, explicitly oriented to model high 
dynamic and complex systems [Woo99a], seems to 
be well suited to meet the Grid computing 
requirements. Moreover, the adoption agent 
technology could bring to Grid users and 
administrators more friendly and understandable 

.NET Technologies 2006  Short papers 28 ISBN 80-86943-11-9



interfaces to interact with the system. Some projects 
have already proved that the agent oriented approach 
could be adopted for Grid computing. The Agile 
Architecture and Autonomous Agent [Cao02a, 
Cao01a] (A4) is an agent based methodology for grid 
resource management. The computational power of 
the Grid is managed with a hierarchy of identical 
agents used to provide an abstraction of the system 
architecture. Each agent is able to cooperate with 
other agents to provide service advertisement and 
discovery to schedule applications that need to use 
grid resources. The Bond Agent System [BOND] is a 
FIPA project on top of which is possible to build 
agent based applications able to manage the state of 
the nodes and the coordination of a distributed 
system such a Grid [Kha03a].  

3. THE AGENTSERVICE 
PROGRAMMING PLATFORM 
AgentService [Boc04a] is a framework designed to 
develop multi-agent systems. It provides a class 
library to implement agents, an agent platform 
hosting multi-agent systems and a set of monitoring 
and design tools supporting either the development 
or the management of the MAS. The framework does 
not enforce particular agent architectures, but 
provides developers with a flexible agent model 
based on the concepts of knowledge and behavior. 
An agent is modeled, and implemented, as a software 
entity whose state is defined a set of knowledge 
objects, and whose activity is carried out by a set of 
concurrent tasks known as behavior objects. A 
knowledge object is a shared object containing 
related items which together define a unit of 
information. Knowledge objects can be shared 
among behaviors objects which model the different 
capabilities of an agent. AgentService comes with a 
set of extensions to the C# programming language 
that simplifies the development of agent applications. 
The AgentService object-oriented model is hidden by 
the APX [Vec03a], so that a clear agent-oriented 
interface is offered to the developers with slight 
changes to the C# syntax. 

The platform provides a complete environment to 
execute agent instances which rely on the advanced 
services of the platform: repository, communication, 
and directory services. Some of these services 
become strategic when platform instances constitute 
the nodes of a computing grid. In particular directory 
and communication services are discussed in detail. 

Directory Service 
AgentService has been designed following the 
architectural specifications provided by FIPA which 
states that a set of basic services are required on each 

agent platform. These are implemented as agents and 
are:  

- Agent Management Service (AMS) - 
supervisor and controller of the platform 
services;  

- Directory Facilitator (DF) - providing yellow 
pages service;  

- Message Transport Service (MTS) - managing 
communication service.    

Directory services are fundamental in dynamic and 
distributed environments due to the fact that a single 
entity needs to know if, when, and where a specific 
service is available. For these reasons DF is a 
compulsory component for an agent platform. In 
AgentService each platform provides a directory 
service to agents. By registering to the DF agents can 
specify the services they offer and their 
communication profile. Directory Facilitator agents 
scattered on AgentService platforms can join 
together to form a federation, hence if an agent 
registers to the local DF, it becomes visible, and 
advertises its services, to all the platforms of the 
federation. When deregistration occurs the 
information is spread on all the nodes of the 
federation. DF agents maintain a distributed database 
of all the services available on the federation: each 
agent by interacting with the local DF gets access to 
an entire net of services. DF agents according to the 
service profile advertise it on all the nodes of the 
federation or just to a subset of it. The ability of 
controlling the advertising policy allows a better use 
of the network resource. 

Communication Infrastructure 
A dedicated agent, the MTS (Message Transport 
Service) is responsible of managing the platform 
messaging subsystem. The messaging subsystem is 
implemented within a module and by default 
AgentService provides a communication service 
based on message exchange and conversations 
(connected communication between two agents).  
The ability of changing the implementation and the 
communication channel among platform nodes in a 
transparent manner for agents is remarkable 
advantage of this architecture: the implementation of 
the module is hidden to the MTS, and then to the 
agents, which interacts with the module through the 
IMessagingModule interface. The messaging module 
creates and maintains a specific message queue for 
each agent hosted in the platform and can choose the 
best technology solution to store this information (a 
database, a file system, or a message queuing 
service). Messages exchanged among agents are 
compliant to the FIPA specifications and need to 
contain only serializable items, since messages may 

.NET Technologies 2006  Short papers 29 ISBN 80-86943-11-9



trespass the boundary of the single machine. The 
default messaging module provided with the 
AgentService installation comes with two 
fundamental services: conversations and inter-
platform message dispatching. Conversations are 
connected message exchange services and provide a 
useful abstraction to model interaction protocols. 
Inter-platform message dispatching allows the 
community of agents to extend beyond the single 
platform instance boundaries. The communication 
among different AgentService installations is based 
on the Web Service infrastructure provided by .NET 
framework. Hence soap messages are exchanged 
among platforms and a specific format of the xml 
content is defined by AgentService to ensure the 
secure and correct delivery of the messages. The 
.NET automatic serialization process for the soap 
messages has been customized to allow the 
serialization of agent messages and to decrease the 
amount of the transferred data without loss of 
information. 

Additional Services 
The platform has been designed to be an extensible 
software environment: the community of agents 
hosted in the federation of platforms evolves and 
additional features may be required when the system 
is installed. Hence the ability to extend the proper 
capabilities becomes a requirement. The architecture 
of the platform allows third party modules to be 
integrated into the platform core and to offer services 
to either the other modules or the agents. By using 
this technique the platform has been extended by an 
FTP service available to all the other platform 
components. Agents and other modules can require a 
folder space or just send files by using the service as 
a simple FTP client. 

The directory service, the communication 
infrastructure and additional services, together with a 
set of dedicated agents constitute the core of the grid 
infrastructure provided with AgentService. 

4. DESIGN OF A GRID 
INFRASTRUCTURE OVER THE 
AGENTSERVICE PLATFORM 
The elements defining the grid infrastructure are 
agents, platform components, and additional 
services. Agents encapsulate the logic of the system 
while platform components and additional services 
maintain its structure. This organization is replicated 
on each installation of the platforms participating in 
the grid. 

Figure 1 gives an overview of the entire system. The 
federation of the platforms defines the boundary of 
the grid. The structure of the systems is dynamic 

since AgentService instances can dynamically join 
the federation by sending a message to the agent 
managing one of the nodes. In the same way nodes 
can detach from the system. This is a fundamental 
feature for grid systems that are dynamic by nature. 
According to the configuration of the node each 
platform can act as a computational node, provide 
access to the system, or perform both the two roles.  

The System’s Logic: the Agents 
The logic of the system is composed by a community 
of specific agents deployed on each installation of 
the AgentService platform. In this section we will 
describe the tasks delivered to each agent and how 
they take advantage of the services offered by the 
platform to deploy and to manage the infrastructure 
of the computational Grid. 

Each node which is part of the grid infrastructure is 
equipped with an installation of the AgentService 
platform. On each node the platform hosts the 
following agents: 

- NodeManager: the NodeManager is the 
maintainer of the node, it coordinates all the 
activities required to implement the grid 
service. The NodeManager maintains a registry 
of the platforms which constitute the 
computational grid and manages the dynamic 
registration of platform instances. The 
NodeManager is responsible of assigning a task 
to a specific node by looking at the topology of 
the grid, at the computational load of each 
node, and at the services offered by that node.  

 
Figure 1. A graphical overview of the Grid 
Architecture based over the AgentService 

Framework 

- Carrier: the Carrier agent is responsible of 
transferring on the selected node of the grid all 
the resources required to perform the task. The 
Carrier relies on the file transfer service offered 
by the platform, by which it delivers to the 
selected node the object code containing the 
task and all the related input or data files. 

.NET Technologies 2006  Short papers 30 ISBN 80-86943-11-9



- Authenticator: an instance of the Authenticator 
agent manages the security of the node; it 
maintains a registry of user profiles, checks the 
user credentials when a task is submitted to the 
grid, and applies the security policies defined in 
the user management module. 

- Worker:  multiple instances of the Worker 
agent are hosted on each node and take care of 
tasks execution. On the selected node, the 
NodeManager contacts the worker agent every 
time a new task needs to be executed; the 
worker agent sets up the computing 
environment required for the task, executes the 
task, and eventually communicated the results. 
The NodeManager agent can limit the 
maximum number of concurrent Worker agent 
instances in order to control the computational 
load of the node. Worker agents can perform 
many tasks concurrently thanks to agent model 
adopted by AgentService. The tasks partition 
criteria among worker agents can be defined as 
configuration parameters of the node or 
dynamically decided by the NodeManager; a 
simple selection criterion could be dividing the 
tasks according to the permission of the users 
they belong to.   

Tasks are submitted to the grid and NodeManager 
agents cooperate to identify the candidate node on 
which the task will be executed. Since cooperation, 
negotiation, and competition are natural activities in 
multi-agent systems  this functionality is naturally 
obtained by using the agent oriented approach. In the 
same way localization of services and coordination 
within a single node are obtained with less effort.  

The Grid Structure 
The community of agents that is distributed on the 
nodes constituting the grid gives a high level view of 
the entire grid. The implementation of the 
infrastructure strongly relies on the core services of 
the platform. In particular, communication services, 
file transfer, and localization. These features are 
respectively implemented by using the messaging 
subsystem, the FTP service, and the DF agents 
spread on each node.  

The messaging subsystem is one of the core elements 
of both the multi-agent system and the grid 
infrastructure implemented on it. Software agents 
interact with peers by exchanging messages; hence 
the coordination of the elements defined in the 
logical layer is based on the messaging subsystem. 
The ability to communicate with peers hosted on 
other nodes is a requirement to distribute 
computation; hence, the installation of AgentService 
has been customized with a messaging module that 

uses the web services technology to deliver messages 
on other platforms. The use of web services provides 
a solid, well known standard allowing 
interoperability and integration with other 
applications. Agent messages are required to be 
serializable but not to be represented by using a 
SOAP message. The platform replaces the default 
XML serialization provided by the .NET framework 
with a custom technique that reduces the body of the 
SOAP message and allows the transport of any 
serializable managed type. The messaging module 
attaches the description of the type to the binary 
serialization of each item in the agent message; the 
binary instance is encoded into a base64 string and 
transmitted as an attribute of the XML element 
representing the item. On the target node each item is 
reconstructed according to the type information 
attached to the item: the full name of the type, its 
assembly name, and the public key token of the 
assembly are used to de-serialize the instance into the 
original object. This solution speeds up the 
transmission of any complex object via web services, 
avoids type mismatch,  and is completely transparent 
to developers which are not required to provide an 
XML serializer for every type they define. 

The ability to transfer objects among platform nodes 
is a requirement for distributing the computation. 
The messaging subsystem provides a simple way to 
transport messages but it cannot handle efficiently 
the transfer of large amount of data. Moreover, the 
communication infrastructure has been designed to 
send .NET instances and not for large files. For this 
reason, the installation of AgentService has been 
enriched with an additional module that handles the 
FTP protocol. The module integrates into the 
platform and provides this feature as service. The 
FTP service can be exploited either by software 
agents or platform modules and it is mainly used to 
move on the target node all the assemblies containing 
the code executing the task and the required data 
files. Modules and software agents can dynamically 
check the availability of the service and eventually 
require a personal folder or just submit a file to 
transfer. When files are uploaded to the server the 
owner of the folder is notified about the transfer. In 
this case the FTP service is mainly used by the 
Carrier agent who is responsible of transferring the 
assemblies containing the task to be executed on the 
target node. Carrier agents ask for a personal folder 
to the FTP service and the FTP service creates the 
corresponding directory in the root folder of the FTP 
server. When a task is moved to a node of the grid 
the Carrier agent on the source platform instruct the 
FTP service to upload the file on the target platform. 
When the upload is finished the FTP service of the 
target platform notifies the Carrier agent about the 

.NET Technologies 2006  Short papers 31 ISBN 80-86943-11-9



transferred files. The same interaction pattern is used 
by modules if they need to send or receive files. 

Localization and discovery of services play an 
important role in distributed systems. The ability to 
discover agents and the services they offer is a 
requirement for agent communities which are 
dynamic by definition. These are requirements for 
Grid systems too: nodes should be able to obtain 
information about other nodes in order to distribute 
the load. Within AgentService a distributed directory 
service is responsible of advertising and retrieving 
services available in the multi-agent system. 
Directory Facilitator agents constitute a federation 
sharing all the information about published services. 
DF agents provide information to NodeManager and 
Carrier agents: the first ones query the local DF in 
order to know all the other NodeManager agents and 
set up the topology of the grid; the second ones look 
for Carrier agents when they need to transfer files on 
a selected node. DF agents are also useful for 
connecting agents within a single node: each of the 
previously defined agents register its service profile 
to the local DF. Directory Facilitator agents can be 
instructed for a local search: in this way the agents 
defining the logical layer of the grid connect each 
other. 

Many of the elements constituting the infrastructure 
of the grid are provided by the environment hosting 
the agent. These elements are commonly required by 
the agents to perform their activities; hence the use of 
a multi-agent system for grid computing can strongly 
simplify the development of grid system. In addition, 
the modular architecture of the AgentService 
platform and its natural extensibility allows the 
simple implementation of the missing features as in 
the case of the FTP service. 

5. CASE STUDY 
A common computing task submitted to the grid can 
be taken as a case study since it is useful to describe 
the interaction among the agents modeling the logical 
layer of the grid and their connection with system 
components. 

Users that want to submit a job to the grid have to 
contact those nodes which are configured as access 
points to the grid. These nodes are the starting point 
of the entire process. The user authenticates by 
sending a message containing tis credentials to the 
Authenticator agent of the access point. Installations 
of the AgentService platforma provide a 
communication channel that can be used by GUIs or 
web applications for remote management and access: 
the common scenario involves a web application 
connecting to the access point through a web browser 
submitting a task by uploading all the required files. 

The web application connects to the platform with 
the credentials provided by the user and queries the 
DF for the Authenticator agent which checks the user 
permissions and validates the request of the user. The 
Authenticator agent sends a message to the 
NodeManager agent of the same platform which 
selects the best node of the grid according to: 

- the user profile; 

- the type of task to execute; 

- the availability of processor cycles on each 
node. 

In order to select the best node NodeManager 
interacts with the other NodeManager agents hosted 
on the other platforms. The NodeManager agents 
maintain updated the state of the entire grid by 
exchanging messages when interesting events occur 
(a task is finished, a task is started, a task has been 
aborted); hence, each NodeManager agent is always 
aware of the status of the grid. 

 
Figure 2. Sequence diagram describing the 

protocol for task execution 

Once the node has been selected the local 
NodeManager is contacted to start the task. The 
target node could require additional resources to 
perform the task and in that case the NodeManager 
agent instructs the local Carrier agent to accomplish 
the transfer on the target site. The local Carrier agent 
by querying the DF looks for the remote Carrier 
agent and then sets up the transfer by using the local 
FTP service.  On transfer completion the Carrier 
agent on the selected node notifies the local 
NodeManager that all the resources required to 
perform the task are available. This is the final step 
of the activation process: the NodeManager agent 
according to the computational load of the node 
requires a new Worker agent or submits the work 
request to an active Worker agent. The number of 

.NET Technologies 2006  Short papers 32 ISBN 80-86943-11-9



active Worker agent can change on each node and 
the NodeManager itself can dynamically decide the 
best policy to apply. Figure 2 depicts the sequence 
diagram describing task execution after the credential 
of the user have validated. 

The Worker agents picks up a new work request 
inspects the information describing the task to 
execute and by means of reflection creates a new 
instance of the type defining the tasks, starts its 
activity by using a configuration files transmitted 
along with the resources. Assemblies containing the 
tasks can be cached on the nodes in the platform 
storage and useless transfers can be avoided. The 
types must implement the following interface: 

interface ITask 
{ 
   bool IsReusable { get; } 
   Exception Error { get; } 
   bool Prepare(string configFile);  
   void Execute(); 
   bool Abort(); 
   bool Dispose(); 
} 

In order to execute a task the Worker agent creates 
an instance of the required type and invokes the 
Prepare method that configures the task to execute. If 
the method returns true the task will be executed by 
invoking the Execute method and upon completion a 
call to Dispose finalizes the execution and eventually 
communicates the results. Exceptions occurred 
during execution are obtained by looking at the Error 
property while, while IsReusable is true if the same 
instance can be used to perform many tasks of the 
same type in sequence. Two additional interfaces are 
provided to make tasks execution more flexible: 
IControllableTask and IIterativeTask. The first one 
adds facilities to control task execution with a pause-
resume pattern while the second one allows the 
execution of tasks one step at time. 

When the task is finished, the Worker agent notifies 
the NodeManager about completion which update 
the status of the grid. 

6. CONCLUDING REMARKS AND 
FUTURE WORKS  
Agent technology seems an interesting solution to 
implement distributed and dynamic computational 
environments: agents confer a certain degree of 
autonomy to the system components and simplify the 
creation of dynamic relations among them. Hence, 
the use of such technology in the field of grid 
computing is a reasonable and interesting approach. 
This paper has presented the design and the 
implementation of an infrastructure for grid 
computing which relies on agent technology and 

takes advantage of the AgentService framework. The 
community of agents defines the logic of the system 
while the extensible core of the agent platform 
implements the low level services required by a Grid 
architecture. This approach has two main advantages: 

- the coordination and task distribution policies 
can rely on the interaction capabilities of 
agents: they are high level system components 
which naturally embed negotiation, competition 
and cooperation capabilities; 

- the default  services provided by multi-agent 
system meet typical grid computing 
requirements; hence the use of a modular and 
extensible multi-agent system, like 
AgentService, as a backbone simplifies and 
improves the efficiency in the Grid architecture 
development. 

The structure of the system is based on a net of 
platform instances connected together by using the 
web services technology. Web services are used only 
for communication and AgentService implements 
custom technique which allows the transfer of any 
.NET serializable and complex object, keeps the 
SOAP packet small, and speeds up the transfer. The 
use of web services could lead to possible 
performance bottlenecks but message exchange 
among agents should have a small cost if compared 
to the time required to perform tasks submitted to the 
grid.  In addition, AgentService uses web services 
only for communication and has been enriched with 
an FTP service that is used to move object code and 
data files among node. 

The architecture described in this paper is 
specifically designed for computational Grids, but 
the underlying model can be applied also to other 
types of grids. A possible extension of the presented 
architecture could be the ability to move agents 
which are performing a task in order to apply load 
balancing policies. This service could be provided by 
adding a mobility module in order to provide a task 
migration service. This module allows agent 
instances to cross the platform boundaries and move 
among AgentService platform instances. 

7. REFERENCES 
[Fos01a] Foster, I., Kesselman, C., and Tuecke, S. 

The Anatomy of the Grid. Enabling Scalable 
Virtual Organizations. International Journal of 
Supercomputer Applications, 2001 

[MPI] Message Passing Interface Forum. Message 
Passing Interface, documentation available on 
line at www.mpi-forum.org 

[Gei94a] Geist, A., Beguelin, A., Dongarra, J., Jiang, 
W., Mancheck, B., and Sunderam, V. PVM: 
Parallel Virtual Machine a User’s Guide and 

.NET Technologies 2006  Short papers 33 ISBN 80-86943-11-9



Tutorial for Networked Parallel Computing. MIT 
Press, Cambridge, MA, 1994 

[Fos02a] Foster, I., Kesselman, C., Nick J., Tuecke 
S., The Physiology of the Grid: An Open Grid 
Services Architecture for Distributed Systems 
Integration, Global Grid Forum, June 22, 2002 

[Fos05a] Foster, I., Globus Toolkit Version 4: 
Software for Service-Oriented Systems, IFIP 
International Conference on Network and Parallel 
Computing, Springer-Verlag LNCS 3779, pp 2-
13, 2005 

[Lut05a] Luther, A., Buyya, R., Ranjan, and 
R.,Venugopal, S., Alchemi: A .NET-Based 
Enterprise Grid Computing System, Proceedings 
of the 6th International Conference on Internet 
Computing (ICOMP'05), June 27-30, 2005, Las 
Vegas, USA. 

[H20] H2O Project, 
http://www.mathcs.emory.edu/dcl/h2o/ 

[Kur03a] Kurzyniec, D., Wrzosek, T., Sunderam, V., 
and Slominski, A.. RMIX: A Multiprotocol RMI 
Framework for Java. In Proc. of the International 
Parallel and Distributed Processing Symposium 
(IPDPS'03), pages 140-146, Nice, France, 2003 

[Jen99a] Jennings, N.R., and  Wooldridge,  M., 
Agent-Oriented Software Engineering, 
Proceedings of the 9th European Workshop on 
Modelling Autonomous Agents in a Multi-Agent 
World : Multi-Agent System Engineering 
(MAAMAW-99), 1999 

[Wei99a] Weiss, G., Multi-agent Systems – A 
Modern Approach to Distributed Artificial 
Intelligence, G. Weiss Ed., Cambridge, MA, 1999 

[Boc04a] Boccalatte, A., Gozzi, A., and Grosso, A., 
Una Piattaforma per lo Sviluppo di Applicazioni 
Multi-Agente, WOA 2003: dagli oggetti agli 
agenti – sistemi intelligenti e computazione 
pervasiva, Villa Simius, Italy, September 2003 

[FIP01a] FIPA Abstract Architecture Specification, 
http://www.fipa.org/specs/fipa00001/ 

 [Woo99a] Wooldridge, M., Intelligent Agents, in 
Multi-agent Systems – A Modern Approach to 
Distributed Artificial Intelligence, G. Weiss Ed., 
Cambridge, MA, 1999, pp. 27-78 

 [Cao02a] Cao, J., Spooner, D. P., Turner, J. D., 
Jarvis, S. A., Kerbyson, D. J., Saini, S., and 
Nudd, G. R., Agent-Based Resource Management 
for Grid Computing, Proceedings of the 2nd 
IEEE/ACM International Symposium on Cluster 
Computing and the Grid (CCGRID’02) 

 [Cao01a] Cao, J., Kerbyson, D. J., and Nudd, G. R., 
Performance Evaluation of an Agent-Based 
Resource Management Infrastructure for Grid 
Computing, Proceedings of 1st IEEE/ACM 
International Symposium on Cluster Computing 
and the Grid (CCGrid '01), Brisbane, Australia, 
May 2001 

 [BON] BOND Project, http://bond.cs.ucf.edu/ 
 [Kha03a] Khan, M.A., Vaithianathan, S.K., 

Sivoncic, K., and Boloni, L. Towards an Agent 
Framework For Grid Computing, CIPC-03 
Second International Advanced Research 
Workshop on Concurrent Information Processing 
and Computing, Sinaia, Romania, 2003 

 [Boc04a] Boccalatte, A., Gozzi, A., Grosso, A., and 
Vecchiola, C. AgentService. The Sixteenth 
International Conference on Software 
Engineering and Knowledge Engeneering 
(SEKE’04), Banff Centre, Banff, Alberta, Canada 
20-24 June 2004 

[Vec03a] Vecchiola, C., Coccoli, M., and Boccalatte, 
A. Agent Programming Extensions relying on a 
component oriented infrastructure, Proceedings 
of the 2003 IEEE International Conference on 
Information Reuse and Integration (IRI - 2003), 
Oct. 26-29, Las Vegas, NV, 2003. 

 

.NET Technologies 2006  Short papers 34 ISBN 80-86943-11-9



A lightweight infrastructure to support  
experimenting with heterogeneous Transformations 

 
Wolfgang Lohmann 

Rostock University 
Albert-Einstein-Str. 21  

 18051 Rostock, Germany 

wlohmann@informatik.uni-
rostock.de 

Günter Riedewald 
Rostock University 

Albert-Einstein-Str. 21  
18051 Rostock, Germany 

gri@informatik.uni-
rostock.de 

Thomas Zühlke 
Rostock University 

Albert-Einstein-Str. 21  
18051 Rostock, Germany 

thomas.zuehlke@uni-
rostock.de 

 
ABSTRACT 

We report on a class library called Trane, which provides an infrastructure to support experimenting with trans-
formations interactively. Transformations here mean algorithms, which take software artifacts as input and output 
manipulated artifacts. Trane supports easy combination of transformations available in different languages, li-
braries and tools. Several combinations can be presented at the same time, parameters can be visually changed, 
and results can be compared. New transformations can be easily added. Generated transformations from experi-
ments can be integrated into the experiments at run-time. 
The paper presents the general model of the class library. We show how the class library profits by the features 
provided by .NET, such as language interoperability, foreign language interface, shell access, reflection, and web 
services by demonstrating five variants to integrate new transformations. 

Keywords 
Transformations, .NET, Language interoperability, cross-language inheritance, visual programming, component-
based transformation systems, platform independence 

1. INTRODUCTION 
We report on a lightweight infrastructure developed 
to support experimenting with transformations inter-
actively. Here, transformations mean algorithms, 
which take software artifacts as input and output ma-
nipulated artifacts or results of an analysis. We use 
.NET, as it facilitates integration and combination of 
heterogeneous transformations, i.e. transformations 
available as programs in different languages, existing 
command line tools, web services, libraries through a 
foreign language interface, and dynamic compilation 
and loading of DLLs resulting from a transformation. 

Experiments with Transformation Nets 
Some kinds of complex transformation are developed 
in an explorative way, where they are extended after a 

test with representative examples shows that the de-
velopment might be on the desired way. Examples 
vary from combinations of UNIX command line tools 
such as sed, awk, grep to extract and manipulate in-
formation in text files to more sophisticated exam-
ples, such as refactoring, where there are many ways 
to achieve an improvement of the source code, or to 
achieve software evolution by transformations 
[Läm04, Set04]. Another example is the collection of 
individually changes for maintenance in batch files 
for later reuse in [Klu05]. 

We intend to use Trane to experiment with transfor-
mations on language components, e.g. grammars, 
semantic descriptions, and language processors, 
though it is not restricted to those applications. We 
want to extend languages stepwise during their de-
velopment, explore several possibilities, how a 
grammar could be changed, compare the variants, 
extract parts of existing grammars and adapt them to 
form a sublanguage DSL, and directly connect the 
generated output to front end generators to test exam-
ple programs. There are tools, but they are available 
in different formats, e.g. command like tools like 
yacc and GDK [Kor02], left-recursion removal for 
attributed grammars in Prolog and TXL [Loh04], 
grammar representations in XML, BNF etc.  

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistrib-
ute to lists, requires prior specific permission and/or a fee. 
 

.NET Technologies 2006 
Copyright UNION Agency – Science Press, 
Plzen, Czech Republic. 
 

.NET Technologies 2006  Short papers 35 ISBN 80-86943-11-9



However, to the user, it should not matter, whether a 
transformation is a command line tool like yacc, or an 
analysis written in Prolog, and should be represented 
uniformly modulo their parameters. 

Using .NET 
We were interested in an implementation on .NET 
mainly because it comes with the promise of language 
interoperability and cross-language inheritance. With 
C# as main implementation language, we could make 
use of properties, generics, delegates, reflection, and 
web services. The implementation was also an ex-
periment in platform independence wrt. the availabil-
ity of .NET on Linux as well as Gtk# on Windows. 

Resulting Prototype 
We designed a simple class model. Transformations 
are represented by automatically generated or self-
designed boxes to be placed on a workspace, which is 
itself part of a box. The boxes have typed input and 
output ports, which can be connected using convert-
ers to describe dataflow. Boxes can provide facilities 
to control transformation parameters. Several se-
quences of transformations can be presented simulta-
neously, parameters are visually changeable, and re-
sults can be compared.  

Trane can be extended easily with new transforma-
tions. New boxes can be any program, a web service, 
an encapsulated command on shell level, etc., written 
in any .NET language, as long as the box interface is 
implemented. Thus, the user creates transformation 
nets without paying attention to the implementation 
of a transformation. Due to reflection, no extra con-
figuration files are necessary. Trane can also be seen 
as a wrapper architecture or an interpreter for call 
graphs of complex functions. It is a lightweight im-
plementation, because .NET already encapsulates 
much work for the integration of transformations. 

Remainder of the Paper 
In Section 2 we present the concept of Trane. In Sec-
tion 3 we discuss the model and the computation 
strategy. In Section 4 we show five categories of 
transformation and how they are integrated. Section 5 
discusses some related work. Finally, the paper fin-
ishes with concluding remarks. 

2. TRANE CONCEPT 
Trane provides facilities to model Transformation 
nets with heterogeneous transformations. In Figure 1, 
for example, an attribute grammar of a robot move 
language is sent to the Lisa web-service, which gen-
erates a compiler for that language. Using Lisa-
JavaCompile (wrapper for Java at command line), the 
Lisa generated code is compiled. In the second se-
quence, a description of a maze in XML is converted 

to Prolog by an XSLT based transformation. A 
Prolog-based transformation now analyses the inher-
ent graph and generates a program for robot moves to 
control its way through it. The program is saved, the 
filename is delivered to the generated compiler 
RunLisaCode for the robot language. The result of 
the execution, the final position of the robot relative 
to start position (0, 0), is delivered to the TextOutput. 

 
Figure 1. Trane in action 

The underlying structure is a directed graph with 
nodes representing transformations. Nodes have input 
and output ports, which possess types, and corre-
spond to input and output positions of the transforma-
tions. Output ports can be connected to input ports of 
other nodes by directed edges, assumed the types 
associated to the ports are equal. This way, the call 
graph of a composite transformation is modelled. 

Connections between ports of different types can be 
obtained indirectly by converters. These are special 
transformations, which map values of a given type 
onto values of a related type. In the graphical repre-
sentation, they are hidden behind connections to al-
low a simplified view on the net. For example, it 
should not matter that the result of a transformation is 
a grammar in XML format, but the next transforma-
tion expects it in a BNF style. An XML2BNF con-
nection can transport the grammar and hide the nec-
essary format conversion. The user simply chooses 
the connector with the desired type combination. 
Data transported can be text as in UNIX-pipes, struc-
tured data such as grammars, or file names for results 
in files. 

Transformations can be added at run time, e.g. trans-
formations created with Trane. Providing a new 
transformation means to embed a transformation into 
a node such that input and output ports are provided 
with data. To create a new converter means to pro-
vide a new transformation, which implements the 
desired type mapping. This requires knowledge about 
the structure of data. 

The order of computations is determined by the de-
pendencies between transformations in the graph. 
Cycles are not considered, as their role is not clear in 

.NET Technologies 2006  Short papers 36 ISBN 80-86943-11-9



this setting. The computations are performed always 
once, when a result is demanded and the required 
input data for the transformation is available. Results 
can be queried at any output port at any transforma-
tion, thus, comparing the values of different trans-
formations is possible. The intermediate results can 
be investigated, which is helpful, if the result of a 
transformation delivers unexpected values.  

3. OBJECT-ORIENTED MODEL 
Figure 2 shows the UML class diagram of the infra-
structure, which largely mirrors the concept. 

First Level: Combination Infrastructure 
The class Transformation defines minimal require-
ments of transformation nodes. As can be seen in the 
class diagram, it provides lists for input and output 
ports. These ports manage edges connected to ports 
of other transformations, data, and a type annotation, 
which constrains data accepted. Data is packed in a 
separate object, which provides its value and a type. 
This allows for a subtype concept, i.e. the value has 
to be a subtype of the type of the port. The values are 
used as input and output values for a transformation 
and the object representing the transformation. To 
define the port lists of a special transformation, it has 
to override method init_port_lists to configure the 
ports (e.g. with type annotations). Port lists are ex-
tendable dynamically at run-time. Ports of transfor-
mation objects are connected using the method con-
nect/4 of TransformationGraph, which tests on type 
conformance, creates an edge between the ports, and 
keeps track of transformation objects and their con-
nections. Edges store the nodes and indices of the 
ports connected. 

A subclass has to override execute, where the actual 
mapping from values of input ports to values of out-
put ports is defined or the embedded transformation 
is called. The computation can depend on several 
conditions, such as the actual computation strategy, 
or lazy computation (do not compute if input values 
have not changed). To save the user from uninterest-
ing management work, execute is wrapped by meth-
ods intern_execute and own_intern_execute, which 
take care of the conditions, and at a suitable point in 
the computation call execute. init_representation 
associates a representation to an instance of Trans-
formation. 

The difference between common kinds of transforma-
tion nodes and converters is expressed by classes 
Box, which box a desired transformation, and Con-
verter, whose main task is to provide some kind of 
type conversion. The provider of a converter will find 
it nice to implement it like any other transformation. 
They only differ from boxes through their representa-
tion and arity. This enables converters of all kinds, 
simple converters or arbitrary complex computations, 
from which the user would like to abstract in a model. 

The TransformationNet provides a method connect/5 
to connect two objects of type Box using a Converter 
at the ports specified with the port index each.  

We decided for overriding of some init-methods over 
configuration inside of a constructor, because in the 
chosen implementation language C# constructors of 
super classes are evaluated first before that of the 
actual class. For some tasks provided in the super 
class, e.g. for the generation of graphic representa-
tions, it is necessary that the actual class is configured 
already at least partially. 

Figure 2. Class model of Trane 

Graph

connect(N : Node,N : Node) : void

TransformationGraph

connect(T : Transformation,P : int,

                                       T2:Transformation,P2:int) : void

TransformationNet

connect(B1 : Box,P1 : int,C : Converter,P2 : int,B2 : Box) : void

Node

init_port_lists() : void

init_representation(T : Node) : void

Inputs : List<Port>

Outputs : List<Port>

Transformation

execute() : void

own_intern_execute() : void

intern_execute() : void

init_representation(T : Transformation) : void

views : List

Box Converter

Interpreter

traverse() : void

Backward Forward

Hierarchy IdC IntC XML2BNFCmd WebService

Representation

GtkRepresentation

GtkBox GtkConverter

DllLoader

Workspace

1..*

0..*

0..1

2

Edge

P1 : int

P2 : int

0..*

2

.NET Technologies 2006  Short papers 37 ISBN 80-86943-11-9



Second Level: Interactivity and Views 
The second level provides graphical representations 
for transformations. In the standard representation, 
rectangular boxes are generated for transformations 
(e.g. most representations in Fig. 1 are generated.). 
Lists of buttons, which also activate the execution of 
the associated box, represent input and output ports. 
Converters are represented as a line, which connects 
two boxes. This simplifies the view on the transfor-
mation net. 

If desired, the provider of the transformation can cre-
ate own representations for boxes and converters by 
inheriting GtkBox and GtkConverter respectively. 
Their instances are associated to the specific trans-
formation class by overriding init_representation. 
Objects of class GtkBox can be provided with addi-
tional buttons, fields, sliders, and other kinds of in-
put/ output support for users to control the transfor-
mation. 

Objects of transformation nodes can provide several 
views at them. The first level can already be consid-
ered as the most basic view. The main view used is 
the graphic representation on a workspace to combine 
them. In addition, more information and controlling 
facilities are possible, e.g. a description of the trans-
formation represented by the object, a description of 
its input/output, complex tables for the user to de-
scribe or influence the way the transformation is 
working, status messages, and logs. Note, the work-
space in Fig. 1 is just another view on a special box, 
allowing to create a hierarchical subnet interactively. 

Providing a New Box 
To create a new box, the following steps are fol-
lowed: 1) Choose a box to inherit from. 2) If desired, 
override init_port_lists to redefine input and output 
ports by simply adding new ports to a generic list. 3) 
Override execute to describe, how values of input 
ports are used by the transformation to compute val-
ues and copy them into output ports. 4) If a new rep-
resentation is desired, create a new subclass of 
GtkBox and redefine components or add new features 
to the inner frame, e.g. a button to show a new view, 
which can be any graphical object. Override 
init_representation in the box to assign it to the box. 

Computation Strategy 
There are several variants to initiate computation of 
the transformation net: backward and forward compu-
tation (similarly to demand-driven vs. data-driven) 
and direct vs. indirect data transport. The choice is 
realised through an instance of Interpreter, who per-
forms/initiates the traversal. 

With direct data transport, a transformation itself 
informs its successors / predecessors about results/ 

required results and calls their own_intern_execute. 
With indirect data transport a separate object of class 
TransformationNet controls the traversal process, e.g. 
calls intern_execute. Note, that by connect/5 the ob-
ject keeps book about created transformations and 
connections. This allows intercepting and changing 
values for experimenting. 

Backward computation is initiated by requesting the 
output port of the last transformation of a chain by 
initiating own_intern_execute /intern_execute, which 
then determine missing input values for the computa-
tion of the embedded transformation, and activate the 
preceding transformations. When all values are avail-
able, the wrapped execute is called. This strategy will 
be used mostly to compare several transformations at 
the end of a common sequence. 

The forward computation strategy is thought for ex-
periments to investigate the effect of a changed input. 
E.g. a composite transformation can be attached to a 
text editor, and show the results of a transformation 
chain immediately while typing e.g. a new part of a 
grammar (or delay start until a save-command is 
fired). Forward computation is simulated on top of 
the backward computation by calling the output ports 
of following transformations. This can be very expen-
sive, though. Cycles are not allowed in the computa-
tion though we have not included a check to avoid 
them yet (we could think of a graph analysis based on 
a term generated from the net). 

4. VARIANTS OF BOXES 
Many transformations will only inherit from the com-
mon box type, configure the input and output ports, 
and define a mapping between them to create 
different kinds of boxes. However, using .NET, sev-
eral different kinds of special box categories are vi-
able, e.g. hierarchy boxes (to provide subnets and 
workspaces), web service boxes, command line tool 
wrappers, compilers, foreign libraries wrappers, or 
DLL loaders. Here we show five variants to integrate 
different transformations in boxes. 

Web Services 
As an example for a web service transformation we 
show in Fig. 3, how to implement the compiler gen-
erator box LisaWS used in Fig. 1. Lisa [Mer99] is a 
compiler generator system also available as web ser-
vice. When sending an attribute grammar, it generates 
and delivers Java code of a compiler. The code can 
be compiled and the resulting compiler can be used 
for the programs of that language. 

LisaWS gets an input port for a string value, the at-
tribute grammar. An output port is configured to pro-
vide a string for a path (to store the generated files), 
and further ports, where the generated lexer, scanner, 
parser, and evaluator can be requested separately. 

.NET Technologies 2006  Short papers 38 ISBN 80-86943-11-9



 
We find it especially charming to integrate remote 
applications into transformation nets from locally 
existent algorithms. Problems might be that connec-
tions are unavailable, or slow. Depending on the kind 
of service boxed, the transformation could require to 
re-compute always, even if no input values have 
changed. 

Hierarchical Transformations 
Hierarchy in transformation nets means to hide a 
transformation subnet TSN behind a box BH, which 
looks and behaves like other boxes with input and 
output ports. Note, there are different types of hierar-
chy boxes. They can differ in the number of input/ 
output ports, or in the way they are to be used. Hiding 
requires mapping inputs and outputs of BH to inputs 
and outputs necessary for TSN. This can be easily 
done by providing two identity boxes BI and BO as 
interface for inputs and outputs, between which TSN 
is constructed. Since transformations use properties 
to connect to ports, .NET helps to redirect port access 
to the input ports of BH to input ports of BI as well as 
output ports of BH to those of BO by simply overrid-
ing the definition of the properties (see Fig. 4). The 
graphical representation is extended by a button, 
which when pressed provides a second view, namely 
the workspace of the hierarchy box. Figure 1 shows 
the inner view of a hierarchical box. We additionally 

added a transformation browser for choosing boxes 
and converters. This browser makes use of reflection 
to analyse DLLs in a chosen directory and to create 
instances of provided classes. 

 

Use of Native Libraries 
As an example for the use of existing DLLs outside 
of .NET we choose SWI-Prolog [Wie06], mainly 
because we want to use Prolog for experiments with 
transformation tasks similar to [Loh04, Loh03]. In 
Fig. 1, the PathFinder-box is based on Prolog. It de-
termines a path through a labyrinth and generates a 
control program in the Robot language for it. 

 
.NET offers the attribute DllImport to define access 
to foreign libraries. We created a DLL based on 
SwiCs.cs (cf. [Les03]) where for each exported func-

[ DllImport (DllFileName)]  
internal  static  extern  uint 

PL_new_term_ref(); 
     … 
// make a PlTerm from a C# string 
public  PlTerm( string  text) { 
  m_term_ref = libpl .PL_new_term_ref(); 

libpl .PL_put_atom_chars 
                    (m_term_ref,text); 

} // SwiCs.cs by Uwe Lesta  

Figure 5. Snippet from SwiCs.cs 

public  class  LisaWSBox  : Box { 
  public  override  void  init_port_lists(){ 
    Inputs.Add( new Port ( "String" )); 
    Inputs[0].data =  
           new ValueData ( null , "String" ); 
    Outputs.Add( new Port ( "String" )); 
    Outputs[0].data =  
           new ValueData ( null , "String" ); 
       … // some more output ports  
  } 
 
  public  override  void   execute(){ 
    CServiceBeanService  lisaService =  

new CServiceBeanService (); 
    System.Net. CookieContainer  container= 
  new System.Net. CookieContainer ();  
   lisaService.CookieContainer=container; 
   lisaService.mkdir( "wlohmann" );  
 
   // read file with lisa specifications 
   String path = Inputs[0].data.value; 
   FileStream  fs = File .OpenRead(path); 
   StreamReader  r = new StreamReader (fs); 
   String  Spec = r.ReadToEnd(); 
   lisaService.clearError(); 
 
    // compile and save specifications 
    bool  OK = lisaService.compile(Spec); 
    if  (!OK) { … /* error */ } else {  

String  scanner =  
 lisaService.getScanner();

 Outputs[0].data.value = scanner; 
        …  } 
 }  
}  

Figure 3. A web service box 

public  class  HierarchyBox   : Box {  
  public  IdBox  InputBox  = new IdBox (); 
  public  IdBox  OutputBox = new IdBox (); 
 
  // Hide Inputs of this box by pointing  
  // to corresponding interface box 
  public  override   List <Port > Inputs { 
      set { InputBox.Inputs = value ; } 
      get  { return  InputBox.Inputs;  } 
  } 
 
  public  override  List <Port > Outputs{ … } 
   
  public  override  void  init_port_lists(){ 
      base .init_port_lists(); 
      InputBox.Double_PortLists(); 
      OutputBox.Double_PortLists(); 
  } 
 
  public  override  void  execute() { 
      OutputBox.ownInternExecute(); 
      // Input execute not necessary  
  } 
  // save hierarchy in a separate subnet 
  private  TransformationNet  _TraNe =  

new TransformationNet (); 
  public  TransformationNet  TraNe { 
     get  { return  _TraNet; } 
  } 
  public  override  void   
 init_representation() { 
     this .Representation = new 
   Gtk_HierarchyBox_Representation ( this ); 
 } 
}  

Figure 4. A plain hierarchy box 

.NET Technologies 2006  Short papers 39 ISBN 80-86943-11-9



tion in the library its name is declared after the attrib-
ute (Fig. 5). The DLL provides .NET programs with 
methods and types to model Prolog terms and to 
query a SWI-Prolog engine; and is used by the box. 

 
Figure 6 shows how to interpret a string input as 
Prolog term directly and to call it. Combined with 
text boxes it can serve as interactive Prolog inter-
preter. Also, a Prolog box can provide programs that 
are more complex or initiate loading of a rule base. 

A problem is, in our opinion, that the attribute DllIm-
port expects a static string, which has to be known at 
compile-time. This makes replacing different versions 
of the Prolog DLL impossible without recompilation 
of the interface DLL SwiCs.cs, thus, reducing plat-
form independence (the name of the dynamic librar-
ies differ between e.g. Windows and UNIX systems).  

XSLT Boxes 
.NET comes with good XML and XSLT support. 
This offers a good basis to provide boxes to trans-
form XML documents. Fig. 7 gives an example for 
the contents of execute. 

The example takes some XML data from an input 
port and delivers transformed data to the output port. 

Note, that the XSLT script in this case is provided by 
a return value of Xslt_Scipt, a method to be overrid-
den by subclasses to specify a concrete transforma-
tion. Other variants of XSLT boxes might expect the 
script itself, or a filename for the script as input at a 
port, or configured in another box view. A subclass 
of this box is used in Fig. 1 to transform the descrip-
tion of a labyrinth into Prolog notation. 

Command Line Tools 
Many transformations are available as command line 
tools. Examples are compilers, but also yacc, lex, 
awk. Additionally, there are tools like grammar de-
ployment kit [Kor02], which could be made available 
through the integration in Trane. Figure 8 shows how 
to use the Java-compiler for Lisa-generated code (cf. 
Fig. 1). Here, the tool represented is hard coded into 
the box, but could also be provided through extra 
views with input fields or from input strings as part of 
the transformation. 

 
The problem with this kind of boxes is that platform 
independence is restricted to the availability of the 
integrated tools on the platform. 

Dynamic Compilation and Integration 
The command line tool approach can be used to 
compile a transformation for Trane and make it us-
able at run-time. Depending on given options, the 
resulting executable can be started as command 
(maybe again wrapped in a box, as in Fig. 8), or the 
DLL can be examined/loaded and classes instantiated 
using reflection, if it is written in a .NET language. If 
the compiler generates .NET code itself, the resulting 
class can be directly instantiated instead of generating 
a DLL first. 

F# and Other Languages 
Though the above examples can use transformations 
written in other languages, the boxes themselves have 
been specified using C#. It is better to use the lan-
guage of choice itself to define a box. This requires it 
is implemented on .NET. The resulting DLL can be 

public  override  void  execute(){ 
  String [] param = { @"H:\\ Projects" +  
               …  "\\Application.exe" }; 
  PlEngine  e = new PlEngine (1, param); 
 
  // Get query as Text, call it, e.g. 
  // (tell('log'),write('HiWorld'),told);  
  string  goal = ( string )  

 (Inputs[0].data.copy().value); 
  PlQuery  q = new PlQuery ( "call" ,  
      new PlTermv ( new PlCompound (goal)));  
  bool  b = q.next_solution();  q.free(); 
}  

  String  xml_input = ( String )  
     ((Inputs[0].data.copy()).value); 
  StringReader  xml_reader =  
      new  StringReader (xml_input); 
  XPathDocument  xpath_document   = 
      new XPathDocument (xml_reader); 
  XslCompiledTransform  transformation =  
      new XslCompiledTransform (); 
  StringReader  xsl_script_reader =  
      new StringReader (Xslt_Script()); 
 
  XmlTextReader  xsl_script = 
    new XmlTextReader (xsl_script_reader);  
  transformation.Load(xsl_script); 
  StringWriter  xml_output_writer = … 
  XPathNavigator  document_navigator =  
 xpath_document.CreateNavigator(); 
 
  transformation.Transform(  

document_navigator, null ,  
xml_output_writer); 

  Outputs[0].data.value = 
        xml_output_writer.ToString(); 

System.Diagnostics. Process  p = 
    new Process (); 

p.StartInfo.UseShellExecute = false ; 
p.StartInfo.CreateNoWindow = true ; 
p.StartInfo.RedirectStandardOutput= true ; 
p.StartInfo.RedirectStandardInput= true ; 
p.StartInfo.FileName = "cmd" ;  
p.Start(); 
StreamWriter  sw = p.StandardInput; 
StreamReader  sr = p.StandardOutput; 
sw.AutoFlush = true ; 
//sw.WriteLine("dir /AD");or any cmd/tool  
sw.WriteLine(@ "javac –classpath lisa.jar"  
                       +path+ "*.java" ); 
sw.Close();  p.WaitForExit();   
Outputs[0].Data.Value=TextBuffer.Text;  

Figure 6. Providing direct Prolog access 

Figure 7. Apply XSLT script to input 

Figure 8. Wrapping command line tools 

.NET Technologies 2006  Short papers 40 ISBN 80-86943-11-9



used in Trane, as if C# had been used due to cross-
language inheritance. Only then the real benefit of 
.NET occurs in our opinion, as the still existing prob-
lems of data conversion in approaches like command 
line tools or foreign libraries could be avoided. 

With F# [Fsh06] we were able to inherit from C# 
classes of Trane (the box), to create a new box (writ-
ten in F#) and to instantiate from it in Trane again. F# 
is functional and thus, similar to Prolog, suitable to 
describe transformations.  

Several languages on .NET are differently suitable. 
We had not the expected success with P#, but this 
might be our fault. With Eiffel# it is necessary to take 
care of the naming scheme during compilation. J# is 
not portable on Linux as it requires DLLs available 
on Windows only. We would be interested in a 
smooth integration of Haskell. There are some at-
tempts, but there is still a way to go. 

5. RELATED WORK 
Several tools provide a plugin structure and interac-
tive placement of components. They are either large, 
or provide a proprietary language to extend them with 
new objects. Trane has mainly been inspired by Can-
tata, the graphical user interface for the Khoros sys-
tem to analyse and manipulate graphics [You95]. 
Cantata allows to interactively construct such filter 
pipelines.  

[Spi02] considers UNIX tools as components. A GUI 
builder is used to create the visual programming envi-
ronment. The placing relation of the components de-
scribes dataflow, which is text. UNIX tools have to 
encapsulate as ActiveX components with much man-
ual work. Connectors are simply a visual encapsula-
tion of the operating system pipe abstraction. Con-
nector and glue-type components still need to be writ-
ten by hand. Trane is not restricted to one kind of 
data, though it is intended to be applied mainly to 
artifacts of language processors, i.e. data are gram-
mars, specifications, rewrite rules, parts of parsers, 
etc. We provide among others a system call box, 
which can take the command call directly as string. A 
new wrapper box for a special command can be eas-
ily written on top of the system box, which can take 
even the options at input ports. Our converters can 
transport structured data of any kind, they just have to 
inherit from a general converter class and implement 
additional treatment.  

Stratego/XT [Vis04] uses mainly ATerms [Bra00] to 
provide input and output for terms in Stratego, and to 
exchange terms between transformation tools. New 
created transformations are wrapped into stand-alone 
components, which can be called from the command-
line or from other tools. Those tools can be used 
similarly to Unix pipes, but can additionally work on 

structured data. For compositions of complex trans-
formations they provide the XTC model. A repository 
registers locations of tools. An abstraction layer im-
plemented in Stratego supports transparent access, 
allowing to call and use a tool like a basic transfor-
mation step in Stratego programs. Additionally, 
Stratego provides a foreign language interface to call 
C functions. Trane is designed mainly to reuse and to 
combine transformations for experiments. The XT 
tools could be wrapped in boxes, and used for ex-
periments. We cannot generate stand-alone tools from 
composite transformations.  

The Meta-Environment [Bra01] also allows the com-
bination of different tools, but separates strictly be-
tween coordination and computation. Basis is the 
TOOLBUS coordination architecture, a programma-
ble software bus based on process algebra. Coordina-
tion is expressed by a formal description of the coop-
eration protocol between components, while compu-
tation can be expressed in any language. Meta-
Environment is used to produce real life products, on 
the other hand, it is complex, and difficult to adapt a 
new tool to the tool bus. 

In Trane, coordination and computation are tangled. 
Evaluation of a transformation net is just traversing to 
each node and computing as given by the inherent 
dependencies between transformation nodes. Trans-
formations can be added easily by providing a wrap-
per, where only two methods have to be overridden. 

In Eclipse, GEF allows to create similar models and 
associate semantics to them. However, for new parts 
of the model (e.g. similarly to a new box in Trane) it 
requires a new compilation, while Trane nets are 
open. We do not need to compile the net. It is directly 
executable. New transformations can be added 
dynamically. Like other plugin systems, in Eclipse a 
plugin needs configuration files to add a new compo-
nent, while we use reflection to extract necessary 
information. The language plugins for Eclipse are 
Java classes in a JAR archive. Transformations in 
Trane do not need to be written in one specific con-
figuration language, as long it is supported by .NET. 

[San99] also try to spread transformation system 
technology over a set of reusable heterogeneous 
components. Using Java, CORBA and HTTP, they 
have instantiated a communication layer. To config-
ure components, a description in a hybrid architecture 
description language is necessary.  

Calling functionality from foreign DLLs is not new. 
However, usually the calls are determined at compile 
time. We offer to combine functionality, which might 
come from different DLLs without recompilation. 

Using Trane is similar to programming in dataflow 
languages. We refer to [Whi94] for further reading. 

.NET Technologies 2006  Short papers 41 ISBN 80-86943-11-9



6. CONCLUDING REMARKS 

SUMMARY 
We have presented a lightweight infrastructure, which 
allows to provide heterogeneous transformations with 
a uniform façade to combine and interact with them. 
The model has been given and the essential classes 
have been explained. We presented five categories of 
transformations such as integration of web services, 
or command line tools. Integration of new transfor-
mations is simple. Due to reflection, no extra con-
figuration files are necessary. Trane is lightweight as 
a large part of the work for integration is encapsu-
lated in .NET. The biggest advantages have lan-
guages that are implemented on .NET directly, but 
we still wait for more pure .NET languages, without 
name scheme or inheritance problems.  

FUTURE WORK 
We are aware that Trane is rather a proof of concept 
than a tool yet. The type system is currently very ad 
hoc. There are still conceptual. It is still matter of 
research, what types mean in our context. For exam-
ple, for some transformations grammars of different 
languages are of the same type, if they are in the same 
format such as BNF. On the other hand, grammars 
can be considered as different types despite their 
format, if the algorithm using it is language specific. 
We want to design an extensible type hierarchy.  

The Visitor pattern might help with flexible computa-
tions; also, to generate command line tools from a net 
as well as terms describing nets for analysis. As an-
other way to integrate transformations sockets should 
be examined. The usability has to be increased vastly. 
It might be interesting to initiate the evaluation of 
transformations in separate threads. A classification 
of boxes would be nice. We need more transforma-
tions with grammar typical support to perform the 
experiments. We are new to F# and need more ex-
periments with it and with other .NET languages. 

7. ACKNOWLEDGMENTS 
We thank the reviewers for their comments, which 
provided answers, literature, and suggestions for fu-
ture directions of the work, though we were not able 
to implement most of them in this paper. We thank 
Damijan Rebernak for help with the Lisa web service. 

8. REFERENCES 
[Bra01] v. d. Brand , M.G.J., and v. Deursen, A., and Heer-

ing,J, and de Jong, H.A., and de Jonge, M., and Kui-
pers,T., and Klint,P., and Moonen,L., and Olivier, 
P.A., and Scheerder,.J., and Vinju,J.J., and Visser, E, 
and Visser,J. The ASF+SDF Meta-environment: A 
Component-Based Language Development Environ-
ment, Procs. of the 10th International Conference on 
Compiler Construction, p.365-370, April 02-06, 2001 

[Bra00] v. d. Brand , M.G.J., and de Jong, H. A., and Klint, 
P., and Olivier, P. A., Efficient annotated terms, Soft-
ware- Practice & Experience, 30, pp. 259-291, 2000 

[Fsh06] F# Home Page (Feb.2006) 
http://research.microsoft.com/fsharp 

[Klu05] Klusener, S., and Lämmel, R., and Verhoef, C.: 
Architectural Modifications to Deployed Software. 
Science of Computer Programming 54, pp.143-211, 
2005 

[Kor02] Kort, J. and Lämmel, R., and Verhoef, C. The 
Grammar Deployment Kit, ENTCS 65, 3, Elsevier Sci-
ence Publ., 2002 

[Läm04] Lämmel, R.: Evolution of Rule-Based Programs. 
Journal of Logic and Algebraic Programming, Special 
Issue on Structural Operational Semantics, 2004 

[Les03] Lesta, U.: C# Interface to SWI-Prolog. 
http://gollem.science.uva.nl/twiki/pl/bin/view/Foreign/
CSharpInterface, Version Aug. 2003 

[Loh03] Lohmann, W., and Riedewald, G. Towards auto-
matical migration of transformation rules after grammar 
extension. In Proc. 7th European Conference on Soft-
ware Maintenance and Reengineering (CSMR'03), 
Benevento, Italy, March, 2003 

[Loh04] Lohmann, W., and Riedewald, R. and Stoy, M. 
Semantics-preserving migration of semantic rules dur-
ing left recursion removal in attribute grammars, 
ENTCS 110 C, Elsevier, 2004 

[Mer99] Mernik, M., and Zumer, V., and Lenic, M., Avdi-
causevic, E. Implementation of multiple attribute 
grammar inheritance in the tool LISA. ACM SIGPLAN 
not., June 1999, Vol. 34, No. 6, pp. 68-75. 

[San99] Sant’Anna, M., do Prado Leite, J.C.S., An Archi-
tectural Framework for Software Transformation, Pro-
ceedings of the International Workshop on Software 
Transformations; STS'99', ICSE'99, 1999 
http://www.dur.ac.uk/CSM/STS/  

[Set04] Proceedings of the Workshop on Software Evolu-
tion through Transformations: Model-based vs. Imple-
mentation-level Solutions (SETra 2004), ENTCS 127 
(3), April 2005 

[Spi02] Spinellis, D. Unix tools as visual programming 
components in a gui-builder environment. Software -
Practice & Experience. 32, pp.57-71, 2002 

[Vis04] Visser, E., Program Transformation with 
Stratego/XT: Rules, Strategies, Tools, and Systems in 
StrategoXT-0.9., in C. Lengauer et al., editors, Do-
main-Specific Program Generation, LNCS 3016, pp. 
216--238. Spinger-Verlag, June 2004. 

[Whi94] Whiting, P. G., and Pascoe, R. S. V. A History of 
Data-Flow Languages,  IEEE Annals of the History of 
Computing, Vol.16(4), pp.38-59, 1994 

[Wie06] Wielemaker, J. SWI-Prolog Home Page 
http://www.Swi-Prolog.org 

[You95] Young, M., and Argiro, D., and Kubica, S. Can-
tata: Visual programming environment for the Khoros 
system. Computer Graphics 29, 1995 

.NET Technologies 2006  Short papers 42 ISBN 80-86943-11-9



Sampling profiler for Rotor as part of optimizing 
compilation system 

 

Sofia Chilingarova 
St-Petersburg State University 

28, Universitetskiy pr., 
Petrodvorets 

 Russia 198504, St-Petersburg 

sofie-chil@hotmail.ru 

 Vladimir O. Safonov 
St-Petersburg State University 

28, Universitetskiy pr., 
Petrodvorets 

 Russia 198504, St-Petersburg 

v_o_safonov@mail.ru 

 

ABSTRACT 

This paper describes a low-overhead self-tuning sampling-based runtime profiler integrated into SSCLI virtual 

machine. Our profiler estimates how “hot” a method is and builds a call context graph based on managed stack 

samples analysis. The frequency of sampling is tuned dynamically at runtime, based on the information of how 

often the same activation record appears on top of the stack. The call graph is presented as a novel Call Context 

Map (CC-Map) structure that combines compact representation and accurate information about the context. It 

enables fast extraction of data helpful in making compilation decisions, as well as fast placing data into the map. 

Sampling mechanism is integrated with intrinsic Rotor mechanisms of thread preemption and stack walk. A 

separate system thread is responsible for organizing data in the CC-Map. This thread gathers and stores samples 

quickly queued by managed threads, thus decreasing the time they must hold up their user-scheduled job. 

Keywords 

SSCLI / Rotor, Just-in-time compilation, sampling-based profiling, de-virtualization, inlining. 

 

1. INTRODUCTION 
Optimization techniques based on profile data 

obtained at run time form the essential part of 

optimization strategy in modern dynamic compilation 

frameworks.[Arn02][Sug01][Jav02]  Static analysis 

alone cannot provide sufficiently full information by 

sufficiently low cost to make optimizations pay for 

themselves in dynamic compilers. Managed 

environments have the distinguishing capability to 

provide feedback and use it in compilation at the very 

time the program executes, and runtime profilers are 

designed to utilize this capability. With profile data 

enabling selective optimization of the “hot” pieces of 

code we gain much more. 

There are two main types of profile data optimizing 

compiler may be interested in: individual methods 

“hot counts”, i.e. precise or approximate estimation 

of method execution frequency, and some kind of 

“call graph” which can provide information about the 

frequency of calls from one method to another. The 

former is used to pick up the individual “hot” 

methods for recompilation, the later helps to plan 

optimizations in the broader context taking into 

account the hot paths through the whole application. 

Many techniques have been developed to collect and 

store runtime profile data. But the key point has 

always been a balance between the accuracy of 

profile data and low overhead of profiling facilities, 

which have to do their job at run time thus adding to 

compilation overhead. Experiment results show that 

strictly accurate profile is not necessary to make a 

good recompilation decision, so sampling profilers 

turned out an excellent tool to get rather complex 

information about program behavior with low 

overhead. 

Typical sampling profiler working as a part of a 

dynamic compilation framework acts as follows: 

periodically it launches a task that looks up a stack 

for managed methods frames, then forms collected 

data into some structure reflecting dynamic call 

context and stores it for the subsequent use. [Arn02] 

[Wha00]  Our profiler developed for SSCLI (Rotor) 

also utilizes this classical schema. It uses the 

mechanism for exploring stack that Rotor already has 

(we will cover it later) and stores data in Call Context 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 

fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute 

to lists, requires prior specific permission and/or a fee.  
 

.NET Technologies 2006 

Copyright UNION Agency – Science Press,  

Plzen, Czech Republic. 

 
.NET Technologies 2006  Short papers 43 ISBN 80-86943-11-9



Map structure that contains counters for individual 

methods calls, total count for every call done by one 

method to the other, and detailed information about 

the context in which the call occurs. 

Contributions 
This paper makes the following contributions: 

• Data structures.  It describes a Call Context 

Map (CC-Map) data structure used for encoding 

runtime profile information. It shows the 

advantages of the Call Context Map: its 

capability to provide the full information needed 

for recompilation decisions quickly and with 

minimum effort remaining at the same time a 

rather compact structure. It describes the 

algorithm for filling CC-Map from a raw stack 

samples containing references to managed 

methods metadata and offsets in code. 

• Profiling Techniques.  The paper presents a 

profiling technique based on profiler and 

managed threads cooperation and background 

processing of raw samples data, which allows 

maintaining a complex structure of profile data 

storage not causing the managed threads to 

postpone their jobs for a long time. The bunch 

processing of samples helps to minimize 

synchronization on the global samples cache. 

• Experience using SSCLI features. The paper 

shows how the SSCLI core functions and 

structures were used to help collecting stack 

samples and organizing profile data. It also 

describes the utilization of core SSCLI 

mechanism for threads cooperation and 

synchronization to provide cooperative behavior 

in gathering samples. 

• Evaluation of overhead and accuracy of 

profiling. The paper presents evaluation of 

accuracy and overhead of the profiler ran on the 

SSCLI quality test suit using simple execution 

counters statistical correlation and Arnold & 

Ryder overlap percentage measure[Arn02]. 

2. RELATED WORK 
Many papers published in the last years show the 

benefits of profile-driven optimizations and the ways 

profile data may be used in compilation decisions. 

Arnold[Arn02] in his PhD thesis paper describes in 

detail several kinds of profile-driven optimizations 

implemented in Jikes JVM. Suganuma et. al. 

[Sug01] in their review of IBM DK optimizing JIT-

compilation framework give a full picture of how 

instrumentation and sampling based profiling is used 

to collect profile data from interpreted and compiled 

code, respectively. They provide experiment results 

showing the evident advantages of profile-based 

selective optimizing compilation over both 

optimizing non-selective and fast non-optimizing 

non-selective compilation. 

Several studies show the practical use of dynamic 

profile data in such optimizations as inlining 

[Sug02] and devirtualization[Ish00]. These two types 

of optimization are very important for managed 

environments with intrinsic support of object-oriented 

languages where most method calls are virtual and 

many levels of indirection often present. Suganuma 

et. al. [Sug03] introduce an interesting optimization 

technique, Region-Based Compilation, that allows 

more effective use of profile data. 

Whaley[Wha00]  describes several different 

approaches to profile data organization: Dynamic 

Call Graph (DCG), Calling Context Tree (CCT), 

Partial Calling Context Tree (PCCT). Arnold et. al. 

[Arn00] shows in more detail how the DCG is 

constructed. We’ll look closer at these structures in 

the next section where we describe our data 

representation choice, Call Context Map (CC-Map), 

and compare it with the other options. CC-Map is in 

many respects similar to CCT and PCCT, but 

provides easier ways to retrieve full context 

information. Also we don’t place such restrictions on 

the length of a sample, as PCCT-based approach 

described by Whaley. In our profiling framework we 

allow sample buffers to grow when needed, although 

we define some rather high limit for the cases of 

incredibly deep stack, which are rare. 

Arnold and Grove [Arn05] propose an interesting 

variation of samples collection technique. Instead of 

taking one sample at a time, their profiler takes a 

bunch of samples: when profiling is requested, stack 

walk is performed several times over a short interval. 

Authors show how this approach helps eliminate 

inaccuracy in some situations. 

3. PROFILER DESIGN 
In this section we describe an overall structure of the 

profiler: how the sample data storage is organized 

and how the samples gathering mechanism works. 

We introduce a Call Context Map (CC-Map) that 

allows easy retrieving of many kinds of data needed 

for compilation/recompilation decisions. We present 

a sampling strategy that helps to maintain a rather 

complex CC-Map structure and at the same time not 

cause the user threads job to be postponed for long 

intervals. In the next section we’ll take a closer look 

at the Rotor-specific issues and show how the profiler 

uses intrinsic mechanisms of the SSCLI virtual 

machine to do its job. 

.NET Technologies 2006  Short papers 44 ISBN 80-86943-11-9



Call Context Map 

3.1.1 Previous approaches 
The common way to represent the sequences of calls 

with their relative frequency in runtime profile data is 

using some kind of call context tree. Call context tree 

consists of nodes correspondent to the method calls 

and directed edges, which denote caller-callee 

relations. The examples are Dynamic Call Graphs 

(DCG, DCG-E) described by Arnold et. al. 

[Arn00] and Calling Context Tree/Partial Calling 

Context Tree (CCT, PCCT) described by 

Whaley[Wha00] . Dynamic Call Graph is shown on 

the Figure 1b. Nodes represent method calls, edges 

mark associations between caller and callee, and 

weights assigned to edges mean the number of calls 

from the specified caller to the specified callee 

encountered in samples. This is rather compact 

representation but the information we can retrieve 

from it is limited. We can estimate how often one 

method calls the other, but with DCG alone we 

cannot determine, for example, that call chain ACD 

has never been encountered in samples, ABC has 

been encountered 2 times, and BCD – only once. 

Thus DCG can effectively represent only one-level-

depth profile. 

 

Figure 1. DCG and PCCT structures: a) samples 

collected from stack; b) correspondent DCG; c) 

correspondent PCCT 

Partial Calling Context Trees (CCT) shown on Figure 

1c provides more context information. Details of 

PCCT construction are covered in [Wha00]. They 

build PCCT using the fixed length buffer for samples, 

so that a delay does not be very long when the stack 

is extremely deep. When a sample is got and a PCC-

Tree with the outer caller as a root is found, profiler 

updates counters for edges in this tree, otherwise a 

new tree is created. Here we can point out longer call 

sequences, but still cannot know, without additional 

analysis, that calls from B to C have been 

encountered 4 times, totally. To retrieve this 

information we should examine all the trees looking 

for edges BC and adding the counters to the total 

sum.  

One more problem is illustrated by Figure 2a. Let we 

have a call graph shown at the left side of the figure. 

A and E call B and in both cases B calls C. Then C 

calls D or F. Also the samples with B as the outer 

frame are found, as shown on the figure. Let we build 

the Call Context Trees form these samples. We get 

three of them, with A, E, and B as roots. 

 

Figure 2. More complex call context 

Here the hottest path is actually BCD, which executes 

8 times. But we cannot retrieve this information 

automatically having only the CC-trees in hand. We 

cannot queue BCD path for possible recompilation 

automatically when the total counter exceeds 

threshold because we haven’s such a total counter. 

The solution might be to construct/update CCT for 

every caller in the chain when a sample is got, but 

this way we fail to distinguish the frequencies of call 

to BCD in different contexts. For example, if the 

situation is like the one shown on Figure 2b, we’ll fail 

to know that BCD path (executes 8 times totally) is 

actual only for calls from A. For E call site the path 

EBCF is really hot. The PCC-trees for this case (3 

trees shown at the right side of the Figure 2b) reveal 

it clearly. If we update counters for BC and CD in the 

tree with B root every time the path is encountered in 

a sample, at any place, we capture the information 

about the total number of execution of BCD, but 

loose the important context information. So we need 

some combination of the described approaches. 

3.1.2 Call Context Map Structure 
Call Context Map (CC-Map) structure is designed to 

address issues depicted in the previous subsection. 

The higher level of the CC-Map is a hash-table 

containing references to MethodProfile nodes. 

MethodProfile node stores a total counter for the 

method executions and references to the nodes

.NET Technologies 2006  Short papers 45 ISBN 80-86943-11-9



 

Figure 3. Call Context Map fragment

representing information about calls from this method 

to the others.  

The Callee nodes contain accumulated counters for 

the total number of calls from the concrete caller to 

the concrete callee, in any context. Additionally, the 

tree of reference nodes is constructed for every call 

sequence. These Ref nodes contain counters for calls 

done in the given context and references to the nodes, 

which store general information about the call. 

A fragment of CC-Map structure is shown on Figure 

3. Let method A calls method B, B calls C, and C 

calls D. Every caller profile refers to CallSite node 

that contains general information about the call site – 

offset, reference to the caller profile, etc. CallSite 

node refers to one or more Callee nodes, which store 

call counters and, in turn, refer to the profiles of 

callees. CallSiteRef and CalleeRef  nodes refer to the 

general  CallSite and Callee nodes and CalleeRef 

nodes store the context counters. Every node 

representing general call information has Context 

references to the nodes, which describe a context of 

the call. 

3.1.3 Advantages of CC-Map structure 
CC-Map accumulates a total call count for every 

caller-callee pair and at the same time it allows 

retrieving information concerning calls in the specific 

context. This information is easily available: a 

compilation controller may lookup contexts by the 

Context references when some counter exceeds a 

threshold, as well as move up and down through a 

call chain. 

From the CallSite and CallSiteRef nodes a controller 

can know whether the call has probably one target 

(and so consider devirtualization). CallSite node 

provides this information for all calls from a given 

site, CallSiteRef – only for calls done in a given 

context. 

CC-Map is a rather compact structure. Nodes don’t 

store duplicate data. CC-Map allows quick updating, 

as well as rather quick removing of nodes, which 

appear cold. Compilation controller need not perform 

additional analysis of trees to get information 

necessary for good decision: it can only follow 

references. 

Figure 4 shows an example: a simplified view of CC-

Map for the calling sequences presented on Figure 2a 

and 2b. The CallSite nodes are omitted for simplicity, 

as there is only one call site for each method in this 

example. You can see that a bi-directional association 

exists between a node with general information about 

method call and nodes representing the same call in 

the different contexts. When an event of a total 

counter exceeding threshold takes place, a 

compilation/recompilation controller can quickly 

look through the contexts to make an appropriate 

.NET Technologies 2006  Short papers 46 ISBN 80-86943-11-9



 

Figure 4. CC-Map for Fig. 2 examples. Bold arrows indicate references from nodes describing call in a 

given context, thin arrows indicate references form a general information node to call-in-context nodes 

(this association is represented by “Context” items on Fig. 3). The roots of the trees are MethodProfile 

nodes containing the total counters for method executions

compilation decision (for example, consider the 

common callers for de-virtualization or inlining too, 

especially if only one callee has been detected at the 

correspondent call sites so far). When analyzing a 

frequently executed call sequence a controller can 

browse all general call information nodes and access 

other contexts from them. It can move up and down 

the call sequence representation (see Fig. 3) to gather 

all the information about callers and callees that 

might affect a recompilation strategy choice. 

3.1.4 CC-Map filling and updating 
When a sample is being taken, all the data initially is 

written into a buffer. The stack lookup starts from the 

top of the stack and ends at the outermost frame or at 

the first managed method activation record that has 

already been visited by profiler. The profiler marks 

managed method activation records when looks them 

up (the JIT-compiler is configured to push the 

additional slot on the stack for this purpose), so 

during the following passes it can distinguish the new 

frames from the old ones. When the profiler 

encounters an old (marked as already visited) frame, 

it records this frame data (as it is needed to register a 

new call from the frame) and stops looking up the 

stack. 

So, at the start of the buffer we have a reference to 

the method correspondent to the activation record at 

the top of the stack (i.e., most inner call), and at the 

end of the buffer – the outer caller (or the innermost 

call that hasn’t returned from the previous lookup) 

reference. 

The pseudocode for sample buffer processing looks 

as follows: 

For(int i = 0; i < end_of_sample; i++) 

{ 

   update MethodProfile(buf[i]); 

   if (i > 0) 

   { 

      update Callee(buf[i],buf[i-1]); 

   } 

   for (j = i-2; j>=0;j--) 

   { 

      update CalleeRef(buf[j]); 

   } 

} 

The real code is a little more optimized and a little 

more complicated, but the underlying algorithm is the 

same. 

Profiling Algorithm 
Maintaining such a complex structure as the CC-Map 

requires some effort. Algorithm described in the 

previous section may take a long time to complete. 

But we cannot afford to stop user threads for 

observable intervals because of profiling. 

The solution we have chosen is to separate taking 

sample from thread stack from storing the sample 

data in the CC-Map. For this purpose we use two 

profiler worker threads, as well as thread-local and 

.NET Technologies 2006  Short papers 47 ISBN 80-86943-11-9



global queues for samples waiting for the profiler to 

process them. 

Profiling job is launched by the MarkThreadsWorker 

system thread which marks every live managed 

thread to make it know that it should take a sample 

when reaches a safe point. Every live managed thread 

has its own sample buffer and its own short samples 

queue. The sample is written into the thread local 

buffer and pushed into the thread local queue. When 

local queue length exceeds a threshold (rather low, 

now 10) all its contents is pushed to the global queue. 

This schema is aimed to decrease the need to grab a 

global queue lock, and thus to decrease possible 

pauses caused by waiting for the lock. Little delay in 

samples processing is not critical because only large 

numbers are considered when making compilation 

decisions. 

The CC-Map manager thread periodically grabs the 

global queue lock, takes out a bunch of samples and 

put them into its own queue. Then it releases the lock 

and proceeds with processing samples without hurry. 

Global queue hashes samples by thread id so the CC-

Map manager thread can return the processed sample 

buffers back to their thread so that it need not to 

allocate new memory. Local thread buffer grows 

automatically when needed, queued samples buffers 

grow then they need to adapt to local buffer size. So 

when threads get back their own buffers, previously 

queued, these buffers are likely to have appropriate 

size. If the thread is already finished when CC-Map 

manager returns processed sample buffers for it, this 

chain of buffers is put aside to be used by next new 

thread. 

Tuning Sampling Interval 
The profiler is, self-tuning, it adapts an interval of 

taking samples to the characteristics of environment 

where it runs. To do this it uses a simple heuristics: it 

tracks how often the same activation records appear 

on the top of the stack. It doesn’t take much effort or 

time: as the profiler already distinguishes between 

visited and not visited frames and stops at the first 

visited, we need only to reflect this condition in a 

sample and check whether this frame is the first in a 

sample (i.e. it is taken from the top of the stack) when 

processing the sample. If so, a special counter is 

incremented. 

There are two threshold values defined: maximum 

percentage of repetitions and minimum percentage of 

repetitions. CC-Map manager thread evaluates actual 

percentage of repetitions (of activation record 

appearance on the top of the stack) every 1000 

samples (more precisely, than processed samples 

portions is more than 1000, because the manager 

thread handles a bunch of samples in every pass). If 

percentage of repetitions is lower then minimum 

threshold, it is considered too low and sampling 

interval decreases. If percentage of repetitions is 

higher than maximum threshold, the sampling 

interval increases. 

4. INTEGRATION WITH ROTOR 
Rotor has a built-in mechanism for walking the stack, 

which is used for such purposes as exception 

handling and security checks[Stu03]. It involves 

several methods and functions of virtual machine and 

among them the StackWalkFrames method of the VM 

Thread class, which we use to take samples. 

StackWalkFrames takes a function to execute on 

every encountered stack frame as a parameter, so its 

work is easily customizable. The advantage of using 

it is that it already knows how to distinguish managed 

method frames from unmanaged method frames, can 

recognize context transitions (e.g. across application 

domain boundaries), encapsulates calls to Rotor 

facilities to get metadata references and offsets, and it 

provides a convenient interface to do jobs on the 

stack.  

We make managed threads call StackWalkFrames 

method at, so called, “safe points”, building upon the 

other intrinsic Rotor mechanism – trapping threads 

when they know that it is safe to suspend now. This 

mechanism has been originally used to trigger 

garbage collection. Checks for a suspension request 

have been inserted by the JIT-compiler at back edges 

and everywhere where the next piece of code may 

take long time to execute[Stu03]. Such checks are 

also performed by some of runtime helper functions 

extensively used in Rotor. We utilize this mechanism 

and add additional check points at the entry of every 

method. At that new check points we test only for the 

need to take sample. 

We also used the SSCLI core HashMap class to 

construct the CC-Map in Rotor. SSCLI HashMap 

class implements a hash table used by VM for its 

internal needs. It hashes pointer type values by the 

pointer type keys (so allows storing profile objects by 

the pointer-to-metadata keys), implements locking for 

insert, delete and lookup, and takes care of cleaning 

up itself. It is just what we need. So we choose 

HashMap as a hash table to store MethodProfile 

references at the highest level of CC-Map and as a 

hash table to hold queues of samples waiting for 

processing in the global samples store. 

5. RESULTS 
We tested our profiler on SSCLI 1.0. To measure 

overhead and accuracy of profiling we used tests 

from a suite supplied with SSCLI. To estimate 

overhead we chose a set of base tests from bcl\system 

.NET Technologies 2006  Short papers 48 ISBN 80-86943-11-9



and bvt subdirectories and tests from bcl\threadsafety 

subdirectory of Rotor tests directory. To estimate 

accuracy we used tests from bcl\threadsafety 

subdirectory, where multiple threads execute the 

same code. As measures we used statistical 

correlation of the total executions counters stored in 

MethodProfile nodes and Arnold & Ryder overlap 

percentage[Arn02] for the whole tree comparison. 

Overlap percentage of trees T1 and T2 is computed 

as follows:  

∑N in T1,T2 [min ( Weight (NT1), Weight(NT2)] 

where Weight (NTx) is:  

value(NTx)/∑N in Txvalue(N), 

N is a node holding a counter, value is a value of the 

counter. When N is not found in Tx (thought it exist 

in Ty and thus in TxTy set), it is assumed that 

value(NTx) = 0. 

For performance test the low threshold for repetitions 

(cases when the same method appears on the top of 

the stack) was set to 1%, high threshold for 

repetitions was set to 15%. For the correlation and 

overlap measurement tests the self-tuning was turned 

off, because it can affect the correlation results 

distinctly for short-running tests, as those we used. 

However the great deal of these differences is 

produced at the interval when the profiler is tuning, 

so such results do not reflect the real picture in steady 

state. Logging of sample interval changes in the 

process of tuning revealed that the sample interval 

becomes stable after 1-2 changes. We measured 

correlation and tree overlap with different sample 

intervals (with self-tuning turned off) and the best 

results (95-99%) were obtained with the same 

interval that the profiler found automatically. 

In accuracy test we recorded and compared 

executions counters and the whole CC-Maps from 10 

subsequent runs. The results of every run were 

compared with results of every other and an average 

value was computed. 

To make the CC-Map accessible even after the VM 

was stopped running, we dumped the CC-Map (in the 

fastchecked mode) to an XML file at VM shutdown. 

Then original CC-Maps were restored from XML 

representation and compared (in XML dump of CC-

Map managed methods are identified by the full name 

and signature to make comparison possible, though at 

runtime they identified only by pointer to metadata). 

Table 1 shows the average correlation for 10 

subsequent runs of the same test and average tree 

overlap percentage. All the tests are from 

bcl\threadsafety suite.  

Test Name  
Correlation, 

% 

Overlap, 

% 

co8545int32 99 97 

co8546int16 99 92 

co8547sbyte 99 94 

co8548intptr 99 98 

co8549uint16 99 95 

co8550uint32 99 95 

co8551byte 99 97 

co8552uintptr 99 97 

co8553char 99 96 

co8555boolean 99 96 

co8559enum 98 75 

co8788stringbuilder 99 67 

co8827console 99 77 

co8830single 99 98 

Table 1. Average correlation for total executions 

counters and overlap percentage extracted from 

comparison of results of 10 subsequent runs   

We can see that though the correlation of simple 

execution counters is always good (98-99%), overlap 

percentage sometimes appears lower than 80%. We 

think, however, this can be probably explained by the 

fact than the tests themselves were very short. 

Tests were run on Celeron433 processor, 256M 

RAM. Sampling interval was set to 10ms.  This is 

rather short interval for this hardware configuration 

and for long-running programs in may be longer. 

However, the tuning mechanism can adjust the 

interval well. When testing we started from interval 

50ms, and for the tests, which performed bad with 

such an interval, the profiler made it less. For the 

tests, which performed well, the interval remained 

unchanged. We see also in Table 1, that for some 

tests accuracy is even redundant. 95-97% would be 

enough to consider results statistically significant. For 

the cases when we can get such accuracy with longer 

interval, it will not decrease (or it can even increase if 

the initial interval appears too short). 

The profiling overhead was measured on the free 

build against unchanged Rotor free build, on the same 

hardware configuration, on the tests from bcl\system, 

bvt, and bcl\threadsafety subsets of Rotor core test 

suit. Initial sampling interval was set to 50ms. Tuning 

was turned on. Tests were run 2 times, and the total 

overhead did not exceed 3%. In the future we intend 

to consider automatic turning off tuning after a 

certain period of time so that to lower overhead. 

.NET Technologies 2006  Short papers 49 ISBN 80-86943-11-9



6. REFERENCES 
[Arn00]  Arnold, M., Fink, S., Sarkar, V., Sweeney, 

P. A comparative study of static and dynamic 

heuristics for inlining. In ACM SIGPLAN 

Workshop on Dynamic and Adaptive Compilation 

and Optimization, Jan. 2000. 

[Arn02]  Arnold, M. Online Profiling and Feedback-

Directed Optimization of Java. PhD thesis, 

Rutgers University, October 2002. 

[Arn05] Arnold, M. and Grove, D. Collecting and 

Exploiting High-Accuracy Call Graph Profiles in 

Virtual Machines. In Proceedings of the 

international Symposium on Code Generation and 

Optimization, March 20 - 23, 2005. 

[Jav02] The Java HotSpot™ Virtual Machine, v1.4.1, 

d2, A Technical White Paper. Sun Microsystems, 

September 2002. 

[Ish00] Ishizaki, K., Kawahito, M., Yasue T., 

Nakatani, T. A study of devirtualization 

techniques for a Java just-in-time compiler. In 

ACM Conference on Object-Oriented 

Programming Systems, Languages, and 

Applications, Oct. 2000. 

[Stu03]  Stutz, D., Neward, T., Shilling, G. Shared 

Source CLI Essentials. O’Reilly, 2003. 

[Sug01] Suganuma, T., Yasue, T., Kawahito, M., 

Komatsu, H., Nakatani, T. A dynamic 

optimization framework for a Java just-in-time 

compiler. ACM Conference on Object-Oriented 

Programming Systems, Languages, and 

Applications (OOPSLA), October 2001. 

 [Sug02] Suganuma, T., Yasue, T., Nakatani, T.: An 

empirical study of method inlining for a Java Just-

In-Time compiler. In: Proceedings of USENIX 

2nd Java Virtual Machine Research and 

Technology Symposium (JVM'02), pp. 91–104, 

2002. 

[Sug03] Suganuma, T., Yasue, T., Nakatani, T., A 

Region-Based Compilation Technique for a Java 

Just-In-Time Compiler, ACM SIGPLAN 2003 

Conference on Programming Language Design 

and Implementation (PLDI 2003), pp. 312-323, 

June 9-11, 2003. 

[Wha00] Whaley, J. A portable sampling-based 

profiler for Java virtual machines. In ACM 2000 

Java Grande Conference, June 2000. 

 

.NET Technologies 2006  Short papers 50 ISBN 80-86943-11-9



State Machine Design Pattern 
 

Anatoly Shalyto 

Head of Programming 
Technologies Department 

St. Petersburg State University of 
Information Technologies, 

Mechanics and Optics 
14 Sablinskaya Street 

 Saint-Petersburg, Russia 197101 

shalyto@mail.ifmo.ru

Nikita Shamgunov 

Software Design Engineer, SQL 
Server Engine, Microsoft, 

11407 183rd Pl NE #M1071 
USA 98052, Redmond, WA 

u04921@mail.ru 

Georgy Korneev 
Assistant Professor of 

Programming Technologies 
Department 

St. Petersburg State University of 
Information Technologies, 

Mechanics and Optics 
14 Sablinskaya Street 

 Saint-Petersburg, Russia 197101 

kgeorgiy@rain.ifmo.ru 

 

ABSTRACT 

This paper presents a new object-oriented design pattern — State Machine design pattern. This pattern extends 

capabilities of State design pattern. These patterns allow an object to alter its behavior when its internal state 

changes. Introduced event-driven approach loosens coupling. Thus automata could be constructed from 

independent state classes. The classes designed with State Machine pattern are more reusable than ones designed 

with State pattern. 

Keywords 

design, pattern, automaton, automata, finite automata, finite state machine, behavior, state, transition, state chart 

 

1. INTRODUCTION 
Finite automata have been widely used in 

programming since the appearance of [Kle56] which 

introduced regular expressions and proved an 

equivalence of a finite automaton and of a regular 

expression.  

Another area where finite automata are widely used is 

object oriented programming, in which they are used 

to design object logic. In this area states that have 

major impacts on object’s behavior (control states) 

are being extracted. Note that these automata are 

significantly different from those used for regular 

expression matching. In particular, objects are 

designed in terms of interfaces and methods (terms 

that don’t exist in classical automata) not in terms of 

recognizable strings. This paper discusses automata 

that are used in OOP.  

In OOP, when people think of object behavior, they 

consider the functionality of its methods. But in many 

real world applications this definition is insufficient 

— the internal state of an object should also be 

considered. 

The most famous implementation of an object whose 

behavior depends on its state is the State pattern 

[Gamma98]. However, pattern description is far from 

being complete, in different sources [Ster01, Gra02] 

it is implemented in different ways, sometimes even 

too verbose. Another disadvantage of the pattern is 

that the implementation of states in different classes 

causes distribution of the transition logic among these 

classes. This adds dependencies between the state 

classes which lead to different issues in class 

hierarchies design. In spite of these issues State 

pattern is used in many practical projects including 

JDO [JDO01]. 

This paper addresses issues of State pattern by 

introducing a new pattern named State Machine. Note 

that [San95] introduced a pattern with the same name 

for parallel system programming in Ada95 but still 

the authors have chosen this name. 

To make reuse of state classes possible we introduce 

an event mechanism. Events are used to let the 

automaton know that the state should be changed. 

This allows centralization of the automaton transition 

logic and loosens coupling between state classes. 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 

fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute 

to lists, requires prior specific permission and/or a fee.  

 

  

  

Copyright UNION Agency – Science Press,  

Plzen, Czech Republic 

.NET Technologies 2006  Short papers 51 ISBN 80-86943-11-9



More than twenty possible implementations of 

State pattern are described in [Ada03]. State Machine 

pattern might continue this list. The closest pattern 

from the list is a combination of State and Observer 

patterns [Odr96]. However, this pattern is too 

complicated and it also introduces a new abstraction 

layer: ChangeManager class. In contrast to 

relatively verbose Observer implementation, in State 

Machine transitions between states are based on 

event-based mechanism. In [San95] another 

implementation of State was introduced. State classes 

coupling was loosened through a state change 

mechanism based on a state name. This 

implementation doesn’t reduce semantic 

dependencies between classes and doesn’t provide 

type safety. 

2. Pattern Description 

Intent 
An intent of State Machine is the same as an intent of 

State: to make it possible for an object to alter its 

behavior when its internal state changes (it looks like 

an object has changed its class). More extensible 

design is required, than one provided by State.  

Note that in the intent description so called control 

states are considered. The difference between control 

and evaluation states can be illustrated in the 

following example. In an imaginary bank 

management system it might make sense to identify 

two modes: normal mode and bankrupt mode. This 

modes would be control states. On the other hand 

particular amount of money on the clients’ accounts 

would be an evaluation state. 

Motivation 
Consider a class Connection that represents a 

network connection. A simple connection has two 

control states: Connected and Disconnected. A 

transition between these states occurs either in case of 

an error or intentionally — via execution of methods 

connect or disconnect. In the Connected state a user 

can call methods send and receive of a 

Connection object. In case of an error 

IOException is thrown and connected breaks. If an 

object is in the Disconnected state, send and 

receive methods will throw an exception as well. 

Consider an interface, implemented by Connection 

class. 

public interface IConnection { 

 public void connect(); 

 public void disconnect(); 

 public int receive(); 

 public void send(int value); 

} 

The basic idea of State Machine is to separate classes 

which implement transition logic (Context) and state 

classes. To provide an interaction between Context 

and state classes we use events which are basically 

objects that state objects pass to Context. A difference 

from the State pattern is the way the next state is 

determined. In State next state is explicitly pointed 

out by the current state. In the proposed pattern it is 

done by notifying the Context with an event. After 

that it’s a Context’s responsibility to react and 

possibly change the state. This is done according to 

the state chart. 

The advantage of this design solution is that state 

classes may be designed independently. They don’t 

need to be aware of each other. 

Note that the state charts that are used in State 

Machine are different from those described in 

[Aho85]. 

They consist only of states and transitions marked 

with events. Transition from the current state S to the 

next state S* occurs on receiving event E if there is a 

corresponding transition in the state chart. 

State chart for the Connection class is shown on 

figure 1.  

 

Figure 1. State Chart for class Connection 

 

State classes are called ConnectedState and 

DisconnectedState. Event CONNECT is used to 

establish a connection and event DISCONNECT is used 

to break it. ERROR is used to indicate an i/o error. 

To illustrate the work of the network connection let us 

take a closer look at its breach in case of an i/o error. 

If it were implemented through State its 

ConnectedState would tell context to switch to 

DisconnectedState. In the State Machine case it 

notifies the context through ERROR that an i/o error 

has occurred and the context changes its current state. 

Thus in State Machine case ConnectedState and 

DisconnectedState classes are not aware of each 

other. 

.NET Technologies 2006  Short papers 52 ISBN 80-86943-11-9



Application 
State Machine could be applied wherever State is 

applied but it also provides additional level of 

flexibility allowing to reuse the state classes in 

different automata. It also allows building state class 

hierarchies. 

Structure 
Figure 2 shows a structure of State Machine. 

 

Figure 2. Structure of State Machine 

IAutomatonInterface is an interface of an object 

to implement, operation1, operation2, … are the 

methods of this interface. This interface is 

implemented by the main class Context and by the 

state classes ConcreteState1, ConcreteState2, 

… . Events event1_1, event2_1, …, event2_1, 

event2_2, …, are used to change state. They are 

instances of the Event class. The Context class has 

references to all of the state classes 

(ConcreteState1 and ConcreteState2) and a 

reference to the current state. The state classes have a 

reference to the data model (dataModel) and to the 

event notification interface (eventSink). For the 

purpose of brevity, relations between the state classes 

and the Event class are not shown in the figure. 

Members 
State Machine consists of the following parts. 

• Automata interface (IAutomatonInterface) 

— is implemented by the context and is the only 

way of interaction between the automata and a 

client. This interface is also implemented by state 

classes. 

• Context (Context) — is a class that 

encapsulates transition logic. It implements the 

automata interface and holds an instance of the 

data model and the current state. 

• State classes (ConcreteState1, 

ConcreteState2, …) — determine behavior in 

a particular state. Each of them implements the 

automata interface. 

• Events (event1_1, event1_2, ...) — initiated 

by the state classes and passed to the context that 

does a transition depending on the event and the 

current state. 

• Event notification interface (IEventSink) — 

implemented by a context. This is the only way 

of interaction between the state classes and the 

context. 

• Data model (DataModel) — is a class to 

provide a shared storage between the state 

classes. 

Note that automata interface in the proposed pattern 

is implemented by the context and by the state 

classes. This allows making certain compile-time 

consistency check. In the State pattern such a check is 

impossible because the context interface doesn’t 

match state classes’ interfaces. 

Relations 
During its initialization the context creates an instance 

of data model and uses it to create instances of states. 

It passes the data model an event notification 

interface (which is a this pointer). 

During its lifetime an automaton delegates its 

methods to the current state class. While executing a 

delegated method the state object might generate an 

event and notify the context using event notification 

interface. 

The next state is determined by the context on the 

basis of the current state and the event. 

Results 
• As in the State pattern, the state-dependent 

behavior is localized in the state classes. 

• Unlike the State pattern in the proposed pattern 

transition logic is separated from the behavior in 

a particular state. The state classes should only 

notify a context of a particular event. 

• Implementation of an automata interface is trivial 

and could be generated automatically. 

• Transition could be implemented as a simple 

index lookup. 

• State Machine provides pure (no unneeded 

methods) interface to a client. To prevent a client 

from using IEventSink we could use private 

inheritance (in C++) or define a private 

constructor and a static method that creates an 

instance of Context.  

.NET Technologies 2006  Short papers 53 ISBN 80-86943-11-9



• State Machine, unlike State, doesn’t contain 

redundant interfaces for the context and the state 

classes — they all implement the same interface. 

• It is possible to reuse state classes; moreover, 

state classes’ hierarchies can be created. Note 

that it is mentioned in [Gam98] that new 

subclasses are easily added to the state classes. In 

fact, adding a subclass to a state class causes 

modification of all the rest of the state classes 

because the transition logic should be changed. 

Thus extension of a particular automaton 

implemented using State is being problematic. 

Code Sample 
The following sample in C# implements 

Connection class described in 2.2. It is a simplified 

model that allows transmitting and receiving data. 

First let’s describe interfaces and base classes that are 

used in this example. These classes are implemented 

in an assembly ru.ifmo.is.sm. Class diagram is 

shown on figure 3. 

 

Figure 3. Class diagram for assembly ru.ifmo.is.sm 

Let us describe all classes and events from this 

package: 

• IEventSink — event notification interface: 

public interface IEventSink { 

 void castEvent(Event ev); 

} 

• Event — event class: 

public sealed class Event { 

 private readonly String name; 

 

 public Event(String name) { 

  if (name == null) throw new 

NullReferenceException(); 

  this.name = name; 

 } 

 

 public String getName() { 

  return name; 

 } 

} 

• StateBase — base class for all state classes. 

public abstract class StateBase<AI> { 

 protected readonly AI automaton; 

 protected readonly IEventSink 

eventSink; 

 

 public StateBase(AI automaton, 

IEventSink eventSink) { 

  if (automaton == null || eventSink 

== null) { 

   throw new 

NullReferenceException(); 

  } 

  this.automaton = automaton; 

  this.eventSink = eventSink; 

 } 

 

 protected void castEvent(Event ev) { 

  eventSink.castEvent(ev); 

 } 

} 

• AutomatonBase — base class for all automata. 

It provides a method addEdge for its subclasses. 

In addition AutomatonBase implements 

IEventSink: 

public abstract class AutomatonBase<AI> 

: IEventSink { 

 protected AI state; 

 private Dictionary<AI, 

Dictionary<Event, AI>> edges 

= 

   new Dictionary<AI, 

Dictionary<Event, AI>>(); 

 

 protected void addEdge(AI source, 

Event ev, AI target) { 

  Dictionary<Event, AI> row = 

edges[source]; 

  if (null == row) { 

   row = new Dictionary<Event, 

AI>(); 

   edges.Add(source, row); 

  } 

  row.Add(ev, target); 

 } 

 

 public void castEvent(Event ev) { 

  state = edges[state][ev]; 

 } 

} 

Classes created according to the State Machine 

pattern form an assembly Connection. Class 

diagram is shown on a figure 5. 

.NET Technologies 2006  Short papers 54 ISBN 80-86943-11-9



 

Figure 4. Class diagram for assembly connection 

We use class Socket as a data model. It implements 

IConnection interface in this example. Control 

states of the automaton are ConnectedState and 

DisconnectedState. In ConnectedState we can 

expect ERROR and DISCONECT events and in 

DisconnectedState we can expect CONNECT and 

ERROR (figure 1). 

The code of the state classes follows.  

public class ConnectedState <AI> 

 : StateBase<AI>, IConnection  

    where AI : IConnection 

{ 

    public static readonly Event 

DISCONNECT = new 

Event("DISCONNECT"); 

 public static readonly Event ERROR = 

new Event("ERROR"); 

 

 protected readonly Socket socket; 

 

 public ConnectedState(AI automaton, 

IEventSink eventSink, Socket 

socket) 

  : base(automaton, eventSink) 

 { 

  this.socket = socket; 

 } 

 

    public void connect() { 

    } 

 

    public void disconnect() { 

     try { 

      socket.disconnect(); 

     } finally { 

      

eventSink.castEvent(DISCONNEC

T); 

     } 

    } 

 

    public int receive() { 

     try { 

      return socket.receive(); 

     } catch (IOException e) { 

      eventSink.castEvent(ERROR); 

      throw e; 

     } 

    } 

 

    public void send(int value) { 

     try { 

      socket.send(value); 

     } catch (IOException e) { 

      eventSink.castEvent(ERROR); 

      throw e; 

     } 

    } 

} 

Note that state classes only partially specialize 

generic parameter of StateBase. It is used to 

support inheritance. 

Class DisconnectedState: 

public class DisconnectedState <AI> 

 : StateBase<AI>, IConnection  

  where AI : IConnection { 

    public static readonly Event CONNECT 

= new Event("CONNECT"); 

    public static readonly Event ERROR = 

new Event("ERROR"); 

 

    protected readonly Socket socket; 

 

    public DisconnectedState(AI 

automaton, IEventSink 

eventSink, Socket socket) 

     : base(automaton, eventSink) 

    { 

     this.socket = socket; 

    } 

 

    public void connect() { 

     try { 

      socket.connect(); 

     } catch (IOException e) { 

      eventSink.castEvent(ERROR); 

      throw e; 

     } 

     eventSink.castEvent(CONNECT); 

    } 

 

    public void disconnect() { 

    } 

 

    public int receive() { 

     throw new IOException("Connection 

is closed (receive)"); 

    } 

 

    public void send(int value) { 

     throw new IOException("Connection 

is closed (send)"); 

    } 

} 

Note that state classes define only event generation 

logic — transition logic is defined in the context. 

.NET Technologies 2006  Short papers 55 ISBN 80-86943-11-9



3. Pattern extensibility 
An extension of Connection will demonstrate how 

we can extend automata interface. Let’s extend 

automata interface in the following way. 

public interface IPushBackConnection : 
IConnection { 

 void pushBack(int value); 

} 

When calling pushBack the value passed as an 

argument is pushed on top of the stack to be popped 

in the next call of receive. If the stack is empty at 

the moment when receive is called, then the value is 

being pulled from the socket as in the previous 

example. 

In this case the number of control states doesn’t 

change but the state classes and the automaton must 

implement an extended interface. Let’s call a context 

of the new automaton PushBackConnection and 

the new state classes PushBackConnectedState 

and PushBackDisconnectedState. Here is an 

implementation of PushBackConnectedState. 

Note that this class extends ConnectedState 

inheriting its logic. 

public class PushBackConnectedState <AI> 

: ConnectedState<AI>, 

IPushBackConnection  where AI 

: IPushBackConnection  

{ 

 Stack<int> stack = new 

Stack<Integer>(); 

 

 public PushBackConnectedState(AI 

automaton, IEventSink 

eventSink, Socket socket)  

        : base(automaton, eventSink, 

socket) { 

 } 

 

 public int receive() { 

  if (stack.empty()) { 

   return base.receive(); 

  } 

 

  return stack.pop(); 

 } 

 

 public void pushBack(int value) { 

  stack.push(new Integer(value)); 

 } 

} 

PushBackDisconnectedState class is 

implemented in the same way. So we’ll only show the 

PushBackConnection code. 

public class PushBackConnection : 

AutomatonBase<IPushBackConnec

tion>, IPushBackConnection { 

 private PushBackConnection() { 

  Socket socket = new Socket(); 

 

  IPushBackConnection connected = 

new 

PushBackConnectedState<PushBa

ckConnection>(this, this, 

socket); 

  IPushBackConnection disconnected = 

new 

PushBackDisconnectedState<Pus

hBackConnection>(this, this, 

socket); 

 

  addEdge(connected, 

PushBackConnectedState<IPushB

ackConnection>.DISCONNECT, 

disconnected); 

  addEdge(connected, 

PushBackConnectedState<IPushB

ackConnection>.ERROR, 

disconnected); 

  addEdge(disconnected, 

PushBackDisconnectedState<IPu

shBackConnection>.CONNECT, 

connected); 

 

  state = disconnected; 

 } 

 

 public static IPushBackConnection 

createAutomaton() { 

  return new PushBackConnection(); 

 } 

 

 public void connect(){ 

state.connect(); } 

 public void disconnect() { 

state.disconnect(); } 

 public int receive() { return 

state.receive(); } 

 public void send(int value) { 

state.send(value); } 

 public void pushBack(int value) { 

state.pushBack(value); } 

} 

 

A class diagram for PushBackConnection is 

shown on figure 5.  

 

Figure 5. Class diagram interface extensibility example 

.NET Technologies 2006  Short papers 56 ISBN 80-86943-11-9



In a similar way we can reuse state classes when 

creating a new automaton.  

4. Conclusion 
State Machine pattern improves State and inherits its 

main idea — to encapsulate the state-dependent 

behavior in a separate class. 

The new pattern improves State in the following 

aspects. 

• When using State Machine it is possible to 

design state classes independently. Thus the same 

state class could be used in several automata. 

This eliminates the major disadvantage of State 

— reuse issues. 

• In State transition logic is distributed throughout 

state classes which introduces coupling between 

them. State Machine addresses this issue. It 

separates transition logic and the behavior in a 

particular state. 

• As opposed to State, State Machine doesn’t 

cause interface redundancy. 

In State Machine you still need to implement trivial 

delegation of the automata interface methods to the 

current state. Such a delegation could be done 

automatically with the aid of CASE tools. Another 

option is to modify a programming language to 

support automata in a natural way. The authors are 

working on such language. 

 

5. REFERENCES 
[Aho85] Aho A., Sethi R., Ullman J. Compilers: 

Principles, Techniques and Tools. MA: Addison-

Wesley, 1985, 500 p. 

[Ada03] Adamczyk P. The Anthology of the Finite 

State Machine Design Patterns. 

http://jerry.cs.uiuc.edu/~plop/plop2003/Papers/Adam

czyk-State-Machine.pdf 

[JDO01] Java Data Objects (JDO). 

http://java.sun.com/products/jdo/index.jsp. 

[Kle56] Kleene S. C. Representation of Events in 

Nerve Nets and Finite Automata, 1956 //Issue [6]. — 

P. 3–41 

[Gamma98] Gamma E., Helm R., Johnson R., 

Vlissides J. Design Patterns. MA: Addison-Wesley 

Professional. 2001. — 395 

[Gra02] Grand M. Patterns in Java: A Catalog of 

Reusable Design Patterns Illustrated with UML. 

Wiley, 2002. — 544 p. 

[Odr96] Odrowski J., Sogaard P. Pattern Integration 

— Variations of State // Proceedings of PLoP96. 

http://www.cs.wustl.edu/~schmidt/PLoP-

96/odrowski.ps.gz [San96] Sandén B. The state-

machine pattern // Proceedings of the conference on 

TRI-Ada '96 

http://java.sun.com/products/jdo/index.jsp. 

[San95] Sane A., Campbell R.. Object-Oriented State 

Machines: Subclassing, Composition, Genericity // 

OOPSLA ’95. 

http://choices.cs.uiuc.edu/sane/home.html. 

[Ster01] Steling S., Maassen O. Applied Java 

Patterns. Pearson Higher Education. 2001, P. 608 

 

 

 

 

.NET Technologies 2006  Short papers 57 ISBN 80-86943-11-9



     

.NET Technologies 2006  Short papers 58 ISBN 80-86943-11-9



Building .NET GUIs for Haskell applications
Beatriz Alarcón

DSIC, UPV, Camino de Vera s/n,
46022 Valencia, Spain
balarcon@dsic.upv.es

Salvador Lucas
DSIC, UPV, Camino de Vera
s/n, 46022 Valencia, Spain

slucas@dsic.upv.es

ABSTRACT

.NET is an emerging Microsoft’s project which promotes a new framework for Software Development emphasizing the use of
Internet resources and the interaction between components written in different programming languages. Whereas functional
programming languages such as Haskell are well-suited for developing tools to analyze, verify and transform programs, typical
Haskell compilers do not provide sophisticated capabilities such as support for XML-Web services, assisted GUI development,
HTML processing, etc., which are frequent in most .NET development frameworks. We show how to integrate software
components developed in a functional language as Haskell together with (graphic) components developed in C# or another
.NET language. To achieve our objective we use the facilities offered by .NET to import COM components, on the one hand,
and the technology developed to generate COM components from Haskell modules, on the other.

Keywords: COM, Haskell, Interoperability, .NET, Programming environments.

1 INTRODUCTION
International efforts to develop a global framework to
use software resources have in Java and .NET their
most well-known exponents. .NET is an emerging Mi-
crosoft’s project which promotes a new framework for
Software Development emphasizing the use of Inter-
net resources and the interaction between components
written in different programming languages [Cha02].
Within the .NET platform we can integrate already ex-
isting technologies and products as well as new ele-
ments. The XML project promoted by the WWW con-
sortium1 is also related to this effort through the use
of XML to document programs in .NET, the support of
Web services based on XML, etc.

The scientific communities that develop languages
and declarative software technology are carrying out
an important effort to make use of this kind of initia-
tives. Functional languages like Haskell2 offer many
programming features and resources which make them
powerful tools for developing software projects and
rapid prototypes. However, typical Haskell compilers
(e.g. GHC, Hugs,...) do not provide visual tools for eas-
ily defining graphical user interfaces (GUIs), as, on the
contrary, many other programming languages have. Al-
though there are several libraries and systems which can
be used to develop GUIs in Haskell (e.g., wxHaskell3,
Gtk2Hs4, HToolkit5, etc.), a Haskell programmer can
waste too much time in giving form to his application if
he make use of such tools due to the lack of a graphic
assistant which makes easier the design of a GUI. With
an Integrated Development Environment (IDE) like Vi-

1 http://www.w3c.org
2 http://www.haskell.org
3 http://wxhaskell.sourceforge.net
4 http://haskell.org/gtk2hs/
5 http://htoolkit.sourceforge.net/

sual Studio .NET, this is pretty simple. The support
to define Web services offered by the .NET platform is
a second aspect of Haskell applications for which we
could argue similarly.

Of course, having graphic libraries for functional lan-
guages is very interesting and useful. Unfortunately,
we can not affirm that such libraries (e.g., wxHaskell,
which we have used to develop a large Haskell appli-
cation like the termination tool MU-TERM [Luc04]) be-
haves like a completely stable and handy system (yet)
since you have to make sure that you have the same
version of the GHC compiler installed that requires the
version of wxHaskell you want to use. The design, de-
scription, and use of forms and graphic controls is not
very easy and it can take time to obtain what one is
looking for. Moreover, it is necessary to get a grip on
three basic concepts: widgets, layout and events.

This gave us a first motivation to start the research in
this paper. Another (more general) motivation comes
from the frequent need (in software development) of
combining software pieces of code written in different
programming languages. Of course, this is the well-
known problem of interoperability of software compo-
nents in sofware engineering and there are a number
of middleware solutions available for dealing with this
(also for Haskell applications, as we will see below).
However, as far as we know, no attempt to use the .NET
technology in practice (i.e., with a real Haskell appli-
cation) has been reported yet. We have also tackled
this task: In 1999, Finne et al. [FLMP99] explored
the possibility of encapsulating Haskell programs like
COM objects (Microsoft’s Component Object Model
[Rog97, COM04]). Why couldn’t we take a step fur-
ther and achieve our goal by means of COM and .NET
interoperability? Microsoft has left opened the possibil-
ity of using already existing COM components in .NET;
thus, a Windows programmer does not need to rewrite

.NET Technologies 2006  Short papers 59 ISBN 80-86943-11-9



all his applications to run them under .NET. In our case,
we show how to take advantage of this to pack Haskell
programs as software components and integrate them
into applications written in other languages, for exam-
ple in C#, the most popular .NET language. Let’s give
a brief overview of our approach.

Our starting point is HaskellDirect (HDirect [Fin99,
FLMP99, HDi99]) a framework for Haskell FFI (For-
eign Function Interface) based on the standard IDL (In-
terface Definition Language) which allows to specify a
programming interface in a programming language in-
dependent manner. There are many possibilities that
HDirect offer to the programmer: Creating Haskell
bindings to external libraries, creating external bindings
to Haskell libraries, creating Haskell client interfaces to
COM objects, and creating Haskell COM objects. In
our case, starting from a Haskell component, we build
a COM component which is encapsulated into a Dy-
namic Link Library (DLL), making it able to interoper-
ate with Windows applications and, in particular with
.NET applications. Our particular interest is furnishing
Haskell applications with .NET GUIs, but most of the
discussion is completely general and independent from
this concrete goal. HDirect implements in Haskell all
the required functionality to build a COM component
and exempts the programmer from the knowledge of the
COM specification since it is generated automatically.
Next, we make use of the .NET facility to import COM
components which can be used as external functions to
implement the C# event handlers for the controls in the
.NET GUI.

The paper is organised as follows: Section 2 briefly
describes .NET graphic controls. Section 3 introduces a
simple case study which we use to illustrate our devel-
opment. Section 4 explains how to build a COM com-
ponent from a Haskell module. Section 5 addresses the
problem of its integration into .NET. Section 6 reports
on the results obtained on a concrete (realistic) appli-
cation of our technique. Section 7 displays our conclu-
sions and lines of future research.

2 OVERVIEW OF .NET GRAPHIC
CONTROLS

When a Windows programmer writes a .NET applica-
tion (in, e.g., C#), he or she can take advantage of the
System.Windows.Forms namespace, which provides a
variety of control classes for developing rich user in-
terfaces. Some controls are designed for data entry
in the application (e.g., TextBox and ComboBox con-
trols). Other controls display application data (e.g.,
Label and ListView controls). The namespace also
provides controls for invoking commands within the
application, such as the Button and MainMenu con-
trols. In this paper we are specially interested in show-
ing how Haskell applications can take advantage from
.NET technology, specially from .NET GUIs. Thus,

we only consider the information (or data) that graphic
controls and Haskell components should (usually) ex-
change. Although other control properties (e.g., con-
trol labels, colors, etc.) could also be managed through
Haskell components, we will not consider them in de-
tail here; we center the attention on the non-graphic part
of this information exchange . Extending the treatment
of controls to achieve such more generality would be
managed in a similar way, if necessary.

The hierarchy of .NET controls is very large. Here,
according to [FPB+03] we mention the most common
controls (which are also the most frequently used, in our
personal practice). We consider that these controls suf-
fice for giving a complete account of the problems and
solutions that any other control could rise and require
to achieve our purpose.

The table in Figure 1 shows the Haskell-like data as
could be considered to be managed by each .NET con-
trol. This table shows that with few simple Haskell
datatypes can be managed all necessary information, re-
garding our main purpose of having the graphic part of
the application developed in .NET (C#) and the ‘logic’
of the program written in Haskell.

3 A SIMPLE CASE STUDY
In order to discuss the techniques developed here, we
use a simple case study. It includes a simple graphic
interface to introduce and manipulate strings by means
of simple transformations:

• converting the characters of the string into capital or
small letters,

• removing spare blank spaces, and

• simple encryption (based on the well-known Cae-
sar’s method)

The length of each string is also stored (as an integer
value). In order to highlight the role of Haskell as the
language which actually implements the logic of the ap-
plication, the use of C# here is strictly limited to provide
a GUI, i.e., to ease the introduction and visualization of
strings by means of graphic controls. The length of the
current string is displayed in a read only text control.
The different transformations are triggered by means
of buttons. The current string is selected from a Com-
boBox which shows the strings introduced so far (see
Figure 2).

In the Haskell part, we have the structures of func-
tional data which are necessary to control the state of
the system: we store each pair string-length in a list
that is indexed by a integer that points out at the current
position of the list (Focus):

.NET Technologies 2006  Short papers 60 ISBN 80-86943-11-9



WINDOWS FORMS ASSOCIATED DATA

Button, GroupBox, Panel, Label, Splitter -
CheckBox, RadioButton Bool
ListBox ([Int],[String])
ComboBox (Int,[String])
ListView [[String]]
TrackBar, ProgressBar, NumericUpDown Int
TextBox, RichTextBox String
MainMenu, OpenFileDialog, SaveFileDialog, FolderBrowserDialog -

Figure 1: .NET controls and data

Figure 2: Simple example of interoperability

type Focus = Int
type Length = Int
data HL = H_L [(String, Length)]

Focus deriving Show

The algebraic data type HL contains all necessary in-
formation to implement the required functionality ex-
plained above. The following mappings manipulate this
data structure:
- Adds a new string and its length
addPair :: HL -> String -> HL
- Obtains the ‘current’ string
getString :: HL -> String
- Updates the ‘current’ string
writeString :: HL -> String -> HL
- Length of the ‘current’ string
getLength :: HL -> Int
- Sets the (index of)‘current’ string
setFocus :: HL -> Int -> HL

The following mappings implement the transforma-
tions over strings.
toUpperCase :: String -> String
toLowerCase :: String -> String
deleteB :: String -> String
encrypt :: String -> String

Haskell files and other (IDL, C#, etc.) archives as ex-
plained below can be retrieved from
http://www.dsic.upv.es/~balarcon/

example.zip.

4 INTEROPERABILITY BY MEANS
OF COM IN HASKELL

Microsoft’s COM technology is used to create re-usable
components (possibly written in different programming

languages) and connect them together. In the follow-
ing, we show how to use COM technology to connect
Haskell with .NET components.

4.1 Haskell modules and COM compo-
nents

A Haskell program that implements a COM component
consists of four parts:

• The application code, written in Haskell by the pro-
grammer.

• An IDL specification establishing those Haskell
functions which we want to make accessible
through the DLL.

• A set of Haskell modules which are automatically
generated from the IDL by the HDirect tool.

• A Haskell library module, Com, that exports all the
functions needed to support COM objects in Haskell
and a C library module that provides some run-Time
support (RTS)

In the following sections we briefly describe and dis-
cuss these steps of the process.

4.2 The IDL of the Haskell component
IDL is a declarative language which is used to describe
interfaces and classes disregarding any programming
language [Hlu98]. An IDL specification describes the
interface of a component.

The IDL code in Figure 3 is used in our case study.
We have followed the example in [FLMP99], the indi-
cations of the manual of HDirect [Fin99] and the infor-
mation about IDL [Hlu98]. We declare all (and only!)
Haskell functions that we wish to have accessible from
C# code together with their arguments and the type of
the returned value.

Now we are going to describe the IDL code. This is
useful to understand what we are going to obtain from
COM [Rog97, Ste04, COM04]. On the basis of the
IDL code, we are going to build the skeleton of the ob-
ject that we want to encapsulate. For that purpose, we
have a library (Example), an interface (Iexam-
ple) and a class (EXAMPLE).

.NET Technologies 2006  Short papers 61 ISBN 80-86943-11-9



[ uuid(35E80A56-3664-4d91-9C6C-3018496A8D61) ,
helpstring("Haskell COM component") ,
version(1.0) ]

library Example {

importlib("stdole32.tlb");

[ object,
uuid(4DB0C045-CC9F-4607-B79A-26D27E0C1594)]

interface Iexample : IUnknown {

HRESULT addPair([in,string]BSTR in);
HRESULT getString([out,retval] BSTR *out);

HRESULT getLength([out,retval] int *out);
HRESULT setFocus([in] int in);
HRESULT toUpperCase();
HRESULT toLowerCase();
HRESULT deleteB();
HRESULT encrypt();

};

[ object,
uuid(49D98D24-DC88-4d24-8C5D-404FE510644D)]
coclass EXAMPLE {

[default]interface Iexample;

};

};

Figure 3: IDL code for the case study

A type library is a binary file that contains the same
information that we could find in a C or C++ header file.
It includes the names of the classes and the interfaces
which are implemented in the server and the number
and type of parameters for each method of their inter-
faces. Note that it also contains the GUID (Globally
Unique IDentifiers), a very important part of the model
of COM programming, for each class and interface. A
GUID is a structure of 128 bits “statistically guaran-
teed" to be unique. In our case we have used the tool
Create GUID (which is part of Visual Studio .NET) to
generate them.

A COM interface is a collection of linked methods
that perform a functionality. All are based on the IUn-
known interface; each of them receives a unique inter-
face identifier (IID).

A COM class is the implementation of one or more
COM interfaces, while a COM object is an instance
of a class. Each object has a class identifier (CLSID).
CLSID and IID are subgroup of GUID.

The name of our interface is Iexample and inher-
its from IUnknown the use of methods QueryInterface,
AddRef and Release. Inheritance from multiple inter-
faces is not allowed. The first attribute, object, which
is locked up in brackets next to the GUID, identifies
the interface as a COM interface. For each method
in the interface, we specify the parameters with which

the method will be called (from C#). The attribute in
indicates that the parameter is used as an input given
to the method (e.g., in addPair), out indicates output
(e.g., in getString). The attribute string is used
with parameters that are pointers to characters. The
retval keyword indicates that the parameter must be
interpreted as the returned value of the function. It must
do it in this way, because the literal return of the method
is a HRESULT type, which is used to give back the in-
formation of errors.

4.3 Encapsulating a Haskell component
as a COM component

Once the IDL has been specified, the next step is to
generate the proxy and the skeleton of our component.
In order to generate those modules we use the following
(HDirect) command:
ihc -fcom example.idl -s -skeleton

This generates two Haskell files: EXAMPLE.hs and
ExampleProxy.hs. The first one contains the skeleton
of the methods that implement our component, that
is, the Haskell structure for the methods declared in
the IDL. The second one provides a proxy that adapts
our methods behind an interface COM to make the
communication possible.

Regarding the definition of the skeleton, HDirect ac-
complishes three fundamental tasks:

• To import the necessary Haskell modules to give
support to the characteristics of the interface spec-
ified by the IDL.

• To introduce a State type to implement the (neces-
sary) persistence of the functional data by means of
a mutable variable that can be initialized, read and
modified by means of the functions of the IOExts
library of GHC6.

• To include Haskell declarations corresponding to the
functions defined in the IDL. Haskell functions will
have an additional argument corresponding to the
state of the application (that will be able to be read
or modified) and a monadic return type IO t where
t is the (non monadic) type returned as indicated in
the IDL (String or Integer, in our case).

The following step is to fill up the skeleton with the
Haskell code of our methods. In our case, the HList
module contains the methods in pure functional code,
so we will fill up the skeleton with the corresponding
calls to methods and the operations to read and write,
the state by means of readIORef and writeIORef
(defined in IOExts). For instance, for deleteB, we
have:

6 Glasgow Haskell Compiler, http://www.haskell.org/ghc.

.NET Technologies 2006  Short papers 62 ISBN 80-86943-11-9



module EXAMPLE where (...)

import IOExts

-Pure Haskell Component
import qualified Hlist

data State = State(IORef HList.HL)
.
.
.

deleteB :: State
-> Prelude.IO ()

deleteB (State st) = do
hl <- readIORef st

;str’ <- Prelude.return
(HList.deleteB (HList.getString hl))

; writeIORef st(HList.writeString str’ hl)

4.4 Creating a COM DLL from Haskell
modules

The next step is to compile the two new files to generate
the .hi and .o files and the stubs of the proxy:
ghc -c EXAMPLE.hs ExampleProxy.hs

Now we have to decide how to encapsulate our com-
ponent. HDirect provides solutions to build servers of
internal processes (DLLs) or servers of external pro-
cesses (EXEs). We have chosen to implement a DLL.
Although it entails a bit more effort, the user benefits
from a simpler use of the COM model, as the COM
object is loaded without any intervention from the user.

In order to implement a DLL, the next step is to in-
clude the ComDllMain.lhs and dll_stub.c modules in
the directory and compile them. Finally it is neces-
sary to provide a Main module (required by GHC for
descriptive purposes).

Once the module Main has been compiled, we build
the type library (.tlb) using HDirect from the IDL and
the proxy, generating example.tlb:

ihc -s -fanon-typelib -v -c example.idl -o

ExampleProxy.hs -output-tlb=example.tlb

The type library is a resource that we must bind to our
DLL. Resources are specified using a special and very
simple text file, called resource script or .rc file. The
file contains the specification of the resources that we
want to include in the program or DLL (in our case the
type library) for compiling it with the resource com-
piler. The resource compiler converts the file .rc into an
object file (.o). The resource compiler is a GNU binary
utility called windres. We use it along with cygwin to
include example.tlb in our project. Now, we can build
the DLL.

5 INTEGRATION OF COM INTO .NET
At this point, we must insert the COM DLL into our
Visual Studio.NET project7. Having the DLL, it is
necessary to register the generated component. The
simplest way is using regsvr32.exe, in the command-
prompt window. COM only uses a registry branch:

7 We use Visual Studio.NET 2003.

HKEY_CLASSES_ROOT. Under it, we can find all
the CLSIDs of the components installed in the system.
A CLSID is contained in the registry as an alphanu-
meric string with the following format: {xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxx}.

5.1 Using COM components in .NET ap-
plications

A .NET client cannot directly communicate with a
COM component because the interfaces exposed by
the COM component cannot be read from the .NET
application. The data types, the mechanisms for
managing errors, etc., are different for managed and
unmanaged objects8. In order to simplify the interoper-
ation between the components of .NET Framework and
the unmanaged code, the CLR (Common Language
Runtime) hides the differences between them both to
clients and servers. This is achieved by means of a
RCW (Runtime Callable Wrapper)(to understand the
whole process see Figure 4) . The .NET SDK provides
RCW to obtain it, thus a .NET application can see the
unmanaged component as if it was managed. In .NET
there are several ways to do this:

• Using the Type Library Importer utility (Tl-
bimp.exe), provided together with the .NET
Framework.

• Making reference to the COM component directly
from the C# application.

Tlbimp is a console application that converts the type
definitions found in a COM type library into equivalent
definitions in a .NET assembly. The assembly produced
by the Tlbimp.exe tool is a standard .NET assembly that
can be examined with Ildasm.exe (MSIL disassembler).

Figure 4: Interoperability with .NET from Haskell

After registering our DLL, we use Tlbimp and we run
VS.NET. From our Windows application we click the

8 The .NET native CLR code is called ‘managed’, in contrast to any
other machine-dependent code which is ‘unmanaged’ [Cha02].

.NET Technologies 2006  Short papers 63 ISBN 80-86943-11-9



right button on the References file in the VS Solution
Explorer, we select Add reference and look for the as-
sembly which we have just generated. Now it can be
used exactly as any other .NET assembly: we just cre-
ate an instance (denoted by h) of the appropriate class:
ExampleClass h = new ExampleClass();

Now we can access to Haskell functions as if they
were C# functions (see Figure 5).

Figure 5: Haskell functions in C#

We can use them to program the event handlers on
the GUI that we have developed.

6 A .NET VERSION OF MU-TERM

MU-TERM is a termination proof tool for (Context-
Sensitive) Rewriting Systems. (Context-sensitive)
Rewrite Systems are useful for describing seman-
tic aspects of a number of programming languages
(e.g., Maude, OBJ2, OBJ3, or CafeOBJ) and
analyzing the computational properties of the cor-
responding programs, in particular termination (see
[DLM+04, Luc01, Luc02]). The tool implements the
generation of the appropriate orderings and transfor-
mations for proving termination. MU-TERM is written
in Haskell and wxHaskell was used to develop the
graphical user interface. The system consists of around
30 Haskell modules containing more than 5000 lines
of code. We refer the reader to [Luc04] for more
information about the use and functionality of the tool.
Compiled versions and instructions for the installation
are available on the MU-TERM WWW site.

We have developed a new (hybrid) version of
MU-TERM which, having the same functionalities
(implemented by the same Haskell modules), includes
a GUI written in C# which replaces the old one. Let’s
take a look to the windows which constitute the GUI
of MU-TERM (see Figures 6 and 7) and let’s consider
the corresponding controls. As it can be noticed,
the controls to manage in the interface are MenuFile,
Button, ComboBox, CheckBox, TextBox, ListBox, etc.
In Section 2 we discussed them and their associated
data. We have applied the process described in Sections
4 to 5 to MU-TERM and the obtained results were very
satisfactory. The new version of MU-TERM is now
composed of the same number of Haskell modules but
the WinMuTerm.hs module, which contained about
1200 lines of code, has been replaced by a new module
WinMuTermNET.hs, that contains less than 800 lines.

On the other hand, the C# part of the .NET version of
MU-TERM (consisting of six new modules with about
2000 lines altogether, most of them generated automat-
ically(!) by the graphic assistant) includes a new C#
module WinMuTermNET.cs that implements the cre-
ation of the new user interface and manages the events
transforming them in function calls to Haskell code by
means of exchanges of strings and integers. This C#
component uses the COM DLL generated from Win-
MuTermNET.hs (together with the other Haskell mod-
ules). The .NET version of MU-TERM is available on
the MU-TERM WWW site.

7 CONCLUSIONS AND FUTURE
WORK

We have shown how to integrate software components
developed in Haskell together with (graphic) compo-
nents developed in C#, or other .NET language. Our
starting point is HDirect which permits to build a COM
component from a Haskell module, and making it avail-
able as a COM DLL which can interoperate with .NET
applications. We have shown the practicality of this ap-
proach by giving a new .NET GUI to a Haskell tool like
MU-TERM. Other remarkable aspects are:

• it is a complete experience of ’weak’ integration
of software components written in a functional lan-
guage like Haskell in a software development plat-
form like .NET that still does not manage the inclu-
sion of sources written directly in this language.

• it is a pioneer experience in the functional program-
ming community, since MU-TERM is the first com-
plex software written in Haskell that uses COM
technology by means of HDirect.

• it is also a pioneer experience for the academic com-
munity interested in the interoperability of program
analysis software tools, specially regarding tools for
proving termination, where interoperability of dif-
ferent tools can be important 9.

In the world of functional languages, there are
more or less complete approximations to .NET for
the languages10. Regarding Haskell, a full-featured
Haskell development environment has been recently
implemented. It is called Visual Haskell [AM05]. Al-
though it is an interesting contribution for the Haskell
community, it does not treat the possibility of building
graphic user interfaces for Haskell programs using
the .NET resources. In their project they have also
used HDirect, although they did not find it completely

9 See, for instance, http://www.lri.fr/~marche/
termination-competition.

10ML http://www.cl.cam.ac.uk/Research/TSG/SMLNET
or Mondrian http://www.mondrian-script.org.

.NET Technologies 2006  Short papers 64 ISBN 80-86943-11-9



Figure 6: Principal window of MU-TERM

Figure 7: Rest of MU-TERM windows

appropriate for their purposes. This is also in contrast
to ours: due to the simplicity of the information
exchange between the C#-based user GUI and the core
Haskell application, we find HDirect to be easy to use
(although it took time to reach a sufficient know-how).
For instance, HDirect limits the structures of Haskell
data that are directly interchangeable by means of
COM to strings and integers (of 32 bits). This can be a
problem for most applications, but it is not problematic
for developing GUIs, since the involved data types (see
Section 2) are easily exchangeable in such format.

These initiatives to integrate functional languages
into the .NET framework reveal the interest of the
community to converge to this platform. Our expe-
rience is also encouraging. We plan to develop the
theoretical aspects of our work, and also envisage
possible extensions of this experience to other tools
and programming languages in the future. In particular,
we want to explore the use of the .NET facilities for
using Web Services based on XML with these tools
and programming languages. A first candidate, again,

could be the termination tool MU-TERM.

ACKNOWLEDGEMENTS
Work partially supported by Spanish MEC grant SELF
TIN 2004-07943-C04-02, Acción Integrada HU 2003-
0003, and EU-India Cross-Cultural Dissemination
project ALA/95/23/2003/077-054.

REFERENCES
[AM05] K. Angelov and S. Marlow. Visual Haskell. In Proc.

of Haskell Workshop, Haskell’05, pages 5-16, ACM
Press, 2005.

[Arc01] T. Archer. Inside C#. McGraw-Hill, 2001.

[Cha02] D. Chappell. Understanding .NET. Addison Wesley,
2002.

[COM04] COM, Component Object Model. http://www.
etse.urv.es/EngInf/assig/ens4/2004/
net4a.pdf

[DLM+04] F. Durán, S. Lucas, J. Meseguer, C. Marché, and X.
Urbain. Proving Termination of Membership Equa-
tional Programs. In P. Sestoft and N. Heintze, editors,

.NET Technologies 2006  Short papers 65 ISBN 80-86943-11-9



Proc. of ACM SIGPLAN 2004 Symposium on Partial
Evaluation and Program Manipulation, PEPM’04,
pages 147-158, ACM Press, New York, 2004.

[Fin99] S. Finne. HaskellDirect UserÂ«s Manual. Novem-
ber, 1999.

[FLMP99] S. Finne, D. Leijen, E.Meijer, S. Peyton Jones. Call-
ing hell from heaven and heaven from hell. In Proc.
of 4th ACM SIGPLAN International Conference on
Functional Programming, ICFP’99, Sigplan Notices
34(9):114-125, 1999.

[FPB+03] J. Ferguson, B. Patterson, J. Beres, P. Boutquin, and
M. Gupta. C#’s bible. Microsoft Press, 2003.

[HDi99] H/Direct: supporting component programming
in Haskell. http://www.haskell.org/
hdirect/design.html#toc3

[Hlu98] B. Hludzinski. Understanding Interface Defini-
tion Language: A Developers Survival Guide,
1998. http://www.microsoft.com/msj/
0898/idl/idl.htm

[Hoa03] T. Hoare. The Verifying Compiler: A Grand Chal-
lenge for Computing Research. Journal of the ACM,
50(1):63-69, 2003.

[Luc01] S. Lucas. Termination of Rewriting With Strategy
Annotations. In Proc. of LPAR’01, LNAI 2250:669-
684, Springer-Verlag, Berlin, 2001.

[Luc02] S. Lucas. Context-sensitive rewriting strategies. In-
formation and Computation, 178(1):293-343, 2002.

[Luc04] S. Lucas. MU-TERM: A Tool for Proving Termina-
tion of Context-Sensitive Rewriting In V. van Oost-
rom, editor, Proc. of 15h International Conference
on Rewriting Techniques and Applications, RTA’04,
LNCS 3091:200-209, Springer-Verlag, Berlin,
2004. Available at http://www.dsic.upv.es/
~slucas/csr/termination/muterm.

[Rog97] D. Rogerson. Inside COM. Microsoft’s Component
Object Model. Microsoft Press, 1997.

[Ste04] P. Steele. 15 Seconds: COM Interop Exposed.
2004. http://www.15seconds.com/issue/
040721.htm

[Tro02] A. Troelsen. COM and .NET Interoperability.
Apress, 2002.

.NET Technologies 2006  Short papers 66 ISBN 80-86943-11-9



Self-contained CLI Assemblies 
 

Bernhard Rabe 
Haso-Plattner-Institute, 
University of Potsdam 

P.O. Box 90 04 60 
14440 Potsdam, Germany 

bernhard.rabe@hpi.uni-potsdam.de 
 

ABSTRACT 
High-level programming languages and bytecode-based virtual execution environments have become popular in 
software development. Bytecode-based runtimes extend embedded system by techniques to improve safety, help 
portability and interoperability. The ECMA/ISO Common Language Infrastructure (CLI) specifies a bytecode-
based execution environment (Common Language Runtime) and a comprehensive class library. CLI applications 
suffer from long startup time, high memory consumption and the amount of referenced assemblies. Startup time 
is determined by resolving references and high memory consumption through big class library assemblies. Often 
CLI applications use a small subset of the CLI class library, but the whole memory footprint is basically deter-
mined by the class library. To overcome memory requirements of the class library, a minimal application format 
that includes all essential class library functionality is reasonable. Self-contained CLI assemblies as an approach 
for size-optimized deployment format are presented in this paper. 

Keywords 
CLI, assembly format, space-optimization. 

 

1. INTRODUCTION 
High-level programming languages and bytecode-
based execution environment have become popular 
in development of desktop systems. The Common 
Language Infrastructure (CLI) [Int03a] as imple-
mented in the .NET Framework [Mic05a] has been a 
popular platform for creating component-based ap-
plications, because of: 

• Platform independence of bytecode-based ex-
ecutables 

• Fine granular security restrictions 

• Revisable code 

• Component model 

It would be beneficial if CLI applications could be 
executed on memory restricted systems that are not 

covered by existing CLI implementation. .NET de-
velopers could then reuse their code for these sys-
tems instead of reimplementing their applications 
from the ground up using C or C++. 

Embedded systems differ from desktop systems in 
various aspects: 

• Hardware resources are often limited: memory 
size, processing power, power supply. 

• Software capabilities: Faulty programs can 
crash the system, because memory protection is 
not available. 

• Capabilities for developer interaction, for de-
bugging, or communication bandwidth are often 
limited. 

CLI technology is integrated seamlessly in Rapid 
Application Development tools as Microsoft's Visual 
Studio suite for desktop development just as for em-
bedded development. Compiler and tools are avail-
able for multiple programming languages e.g. C#, 
C++ .NET, or Delphi. The CLI could offer develop-
ers of embedded systems the same advantages as for 
desktop systems. 

Due to the predictable nature of the sandbox-mode 
execution of CLI instructions, programming errors 
never result in system crashes, but cause exceptions 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to 
lists, requires prior specific permission and/or a fee.  
 

.NET Technologies 2006 
Copyright UNION Agency – Science Press,  
Plzen, Czech Republic. 
 

.NET Technologies 2006  Short papers 67 ISBN 80-86943-11-9



to be thrown. This allows for a simpler postmortem 
analysis of a fault. Due to the support for rapid proto-
typing, simulators for the target can be more easily 
created. Ideally, much of the code would only use 
standard library functions of the CLI, so that simula-
tors are only necessary for the target-specific hard-
ware. 

The CLI as implemented in the Microsoft .NET 
Framework, the Microsoft Compact Framework 
[Mic05b], or the Mono Project [Mon06a] does not 
meet the requirements of limited resources of sys-
tems. There are few implementations of the CLI for 
small mobile devices e.g. for Symbian OS based 
[Gef05a], or for Linux based [Dot06a]. 

The memory footprint of an executable assembly is 
calculated by the assembly itself, the custom libraries 
used, the Base Class Library (BCL) and the Common 
Language Runtime (CLR). These are four items 
where size optimization can occur. In this paper the 
first three items were focused on. CLR optimization 
would harm the "compile once run everywhere" ap-
proach of CLI. 

In this paper we present an approach to reduce the 
memory footprint of an executable assembly in that 
way the unused library functionality is not required 
to be present at runtime. 

This can be achieved by compacting an assembly 
with its used library functionality into a self-
contained assembly. The self-contained assembly 
will contain only required library functionality and 
will become smaller than the combined libraries. 
Furthermore the number of referenced assemblies 
which are required to be loaded is reduced to the 
self-contained assembly itself. The self-contained 
assembly is smaller than the sum of previously refer-
enced assemblies. 

This work is based on the PERWAPI [Gou05a] li-
brary, which is extended to the needs of creating self-
contained assemblies. 

The rest of this paper is structured as follows: Sec-
tion 2 briefly reviews the Common Language Infra-
structure. In Section 3 the mechanism of executing 
CIL-code is discussed in detail. Next, self-contained 
assemblies as approach for optimized memory foot-
prints and predictable behavior in are presented in 
section 4. Section 5 gives an overview of related 
work followed by conclusions and future plans. 

2. COMMON LANGUAGE INFRA-
STRUCTURE 
The CLI standard specifies the executable format, a 
virtual runtime environment (Virtual Execution Sys-
tem (VES)) and a set of libraries as implemented in 

the Microsoft .NET Framework, Shared Source 
Common Language Infrastructure (SSCLI) [Mic02a], 
or in the Mono project.  

CLI executables, called assemblies are encoded in 
the Common Intermediate Language (CIL) instruc-
tion set. An assembly is the deployment unit of the 
CLI and may consist of multiple files (modules). An 
assembly is loose coupled with the BCL and other 
assemblies in a way similar to native applications and 
shared libraries. 

CIL is a stream of bytecodes similar to processor 
instructions. Most opcodes are one byte long, a few 2 
bytes long and may have an optional parameter (up 
to 8 bytes long). Every method consists of a header, a 
body and a possible footer. To evaluate opcodes a 
stack is used. Bytecodes are located in the method 
body. 

Metadata 
Assemblies are equipped with metadata about refer-
ences, type names, method names... Metadata are 
organized in a number of named streams. These 
streams are divided into 2 types: metadata heaps and 
metadata tables. For executing assemblies the follow-
ing metadata tables are basically involved: 
• Assembly: Assembly defined in the PE file. 

• AssemblyRef: For execution required assem-
blies. 

• TypeRef: Used types defined in external assem-
blies. Every type in this table refers its resolu-
tion scope that is located in the AssemblyRef-
table for the relevant cases. 

• TypeDef: Contains all types that are defined 
within an assembly. 

• Method: All methods that are declared by types 
in TypeDef-table. Every row in the Method-
table is owned by one and only one row in the 
TypeDef-table. 

• MemberRef: All methods or fields of external 
defined types that are accessed within the as-
sembly. There is merely a 'forward-pointer' 
from each row in the TypeRef-table. 

References in metadata tables are tokens into table 
rows and heaps or relative virtual addresses within 
the assembly. Heaps are constant pools used for 
metadata and CIL code.  
Costa and Rohou [Cos05a] show that metadata size 
varies from 40 percent up to 80 percent of the whole 
assembly size for representative set of programs. The 
metadata split 70 percent to 30 percent into constant 
pool (heaps) and tables. Section 3 will show that ma-
jor parts of the #String are not required for executing 

.NET Technologies 2006  Short papers 68 ISBN 80-86943-11-9



CIL code. For example textual descriptions of vari-
ables and properties are needed for reflection pur-
poses only. 

Version compatibility 
To overcome the problem resulting from different 
versions of dynamic libraries on Windows systems 
[And00a] the CLI introduced a version management 
that builds up on version numbers and public keys. 
An assembly version number consists of four parts: 
major, minor, build and revision number. To make an 
assembly reference distinct the assembly must have a 
strong name. Strong names guarantee name unique-
ness by relying on unique key pair. All shared as-
semblies that reside in the GAC must have a strong 
name. The BCL of actual CLI implementation have 
all the same standard public key that does not require 
a private key to sign. This is done to provide vendor 
independent execution of assemblies. That means an 
assembly which has references to the BCL (mscor-
lib.dll) may behave differently with different BCL 
implementations.  

3. EXECUTION OF .NET ASSEMB-
LIES 
 

 
Figure 1: Resolving of an external method 

When the CLR loads an assembly and starts execut-
ing a method all assemblies referenced within that 
method have to get loaded too. This means that all 
assemblies referenced in this assembly will be 
loaded, even though they might not be needed most 
of the time the application is executed. 
A way to reduce the number of loaded modules is to 
merge multiple modules into one [Mic06a]. In terms 
of the CPU, assembly loads have fusion binding and 
CLR assembly-loading overhead in addition to the 
LoadLibrary call, so fewer modules mean less CPU 
time. In terms of memory usage, having fewer as-

semblies also means that the CLR will have less state 
to maintain. 
To create the executable image the CLR has to locate 
referenced CIL code within an assembly. The com-
plexity of this task is different for assembly internal 
and assembly external references. Figure 1 shows 
how CIL code of an external method will be located: 
1. A CIL operation (call) has a token operand that 

points to a MemberRef-table row. 
2. The MemberRef-table row contains the name of 

the method and a token into the TypeRef-table. 
3. In the TypeRef-table row the namespace, the 

type name and a token into the AssemblyRef-
table are included. 

4. The AssemblyRef-table row provides the target 
assembly name and optional a version number 
as well as a public key token. 

5. Within the referenced assembly the CLR looks 
into the TypeDef-table for the requested type. 
This is done by a linear search with string and 
signature comparison until the matching row is 
found. 

6. The linear search for the matching method row 
in the Method-table is optimized in the way that 
the start of the relevant rows is known. 

7. The matching Method-table row provides the 
address to CIL code within the PE-file. 

This task must be repeated for every external 
method. In comparison with an external method call 
requires an internal method call a single lookup in 
the Method-table to get the address of the CIL code 
within the assembly. Recapitulating it has been re-
flected that loose coupling of assemblies and conse-
quential external references cause the following 
drawbacks: 
• Memory consumption: each external assembly 

must be loaded and metadata tables have to 
build up. 

• Processing power: multiple indirections, linear 
search, string and signature compare during ref-
erence resolving cause additional CPU time in 
contrast with internal references.  

• Memory footprint: combination of functionality 
into a single assembly (mscorlib.dll) causes a 
high CLR memory footprint if only a single 
type is referenced. 

• Revisable code: CIL within an assembly can be 
inspected for validity. External assemblies es-
pecially the BCL may be implemented differ-
ently and makes it impossible to predict the be-
havior of CIL code. 

.NET Technologies 2006  Short papers 69 ISBN 80-86943-11-9



These drawbacks can be minimized if all external 
referenced functionality is assembled to a single as-
sembly. This harms the loose coupling, but it allows 
lower memory footprints and to analyze the assembly 
in terms of CIL code. 

4. SELF-CONTAINED CLI ASSEMB-
LIES 
A key feature of the CLI is the revisable bytecode-
based execution of assemblies. The verification is 
done at runtime. But there are also needs for static 
revisable code before runtime e.g. prevent exceptions 
while runtime. 

The loose coupling and dynamic linking of applica-
tions and libraries assemblies does not permit an 
static evaluation of CIL code, because CLRs may 
provide different implementations of relevant assem-
blies. 

To overcome version conflicts of assemblies, CLI 
introduced strong names and side-by-side execution 
of different versions of the same assembly. 

This works fine for most strong named assemblies, 
but fails for the BCL. 

A static revisable assembly might not have depend-
encies to CLR-provided assemblies. With the self-
contained assembly approach a static revisable for-
mat based on CIL code is proposed. This approach 
lifts up problems through different implementations 
of referenced assemblies. 

Self-contained assembly features are: 

• Minimal memory footprint 

• Predictable behavior based on CIL-code 

• Reduced startup time 

The memory footprint of the runtime environment 
for an assembly is calculated by the CLR, the 
relevant libraries and the assembly itself. In general 
every assembly uses BCL features (e.g. 
System.Object). The BCL is represented as 
mscorlib.dll [Ecm02a]. But mscorlib.dll implementa-
tions of .NET Framework, Mono, Portable.NET 
[Dot06a] and Rotor provide different additional 
features, which are not used by most assemblies. 
Independently from the amount of mscorlib.dll 
features by an assembly the memory footprint for the 
BCL is fixed. Self-contained assemblies do not need 
additional library assemblies and form together with 
the CLR the minimal footprint for an execution 
environment. This feature targets mainly memory 
restricted systems. 

Prediction of execution behavior of a self-contained 
assembly is possible, because all executable CIL 

codes are within the assembly. A static behavior 
evaluation can be done before runtime and allows for 
example prediction of memory consumption.  

Dynamic linking of assemblies at load time causes 
delays until the first CIL code is executed. The time 
is needed for loading assemblies and resolving refer-
ences. Self-contained assemblies does not require 
additional assemblies, therefore the startup time is 
shortened. 
public class Hello{ 

  public static void Main(string[] args){ 

     Object obj=new Object(); 

     Console.WriteLine("Hello World!"); 

  } 

} 

Figure 2: Simple C# Hello world 

Figure 2 shows a C# program cutout that has a Main-
method where an instance of Object is created and 
"Hello World" is printed out. The second program in 
figure 3 shows the IL-code1 of the Main-method 
generated by the Ildasm tool. The local variable obj 
disappeared, because it is not used furthermore. A 
instance of System.Object is created with a call of 
.ctor() from the mscorlib assembly. Then the 
string "Hello World" is printed out by an call of 
System.Console::WriteLine from the mscorlib 
too. 

... 

.method public hidebysig static void  Main(string[] args) cil 
managed 
{ 
  .entrypoint 
  .maxstack  1 
  newobj     instance void [mscorlib]System.Object::.ctor() 
  pop 
  ldstr      "Hello World!" 
  call       void [mscorlib]System.Console::WriteLine(string) 
  ret 
} 
...  

  Figure 3: IL code of the compiled Main-method 

The program in figure 4 is generated from the second 
program where the System.Object type was in-
cluded. The System.Object::.ctor() call does 
not leave the assembly scope. The rest of the pro-
gram behaves the same. 

The two IL-programs differ also in the .maxstack 
value, because the Microsoft C# compiler generates a 
Fat-method header and the PERWAPI library a Tiny-

                                                           
1 The C# source code was compiled with .NET Framework 

v1.1 compiler and optimization (/optimize+) enabled.  

.NET Technologies 2006  Short papers 70 ISBN 80-86943-11-9



method header. None of the requirements for a Fat-
header are satisfied, so the 1 byte Tiny header is a 
better alternative for size optimization. 

.... 
method public hidebysig static void  Main(string[] args) cil man-
aged 
{ 
  .entrypoint 
  .maxstack  8 
  newobj     instance void System.Object::.ctor() 
  pop 
  ldstr      "Hello World!" 
  call       void [mscorlib]System.Console::WriteLine(string) 
  ret 
} 
...  

Figure 4: IL-code of Main-method with Sys-
tem.Object included 
This demonstrates the adaptable level of containment 
for specific aims. The System.Object type was 
included and the reference to System.Console 
::WriteLine() was kept. 

Creating self-contained assemblies 
Self-contained assemblies do not have any external 
references. This means a CLR should able to execute 
a self-contained assembly without loading the BCL 
or other managed assemblies. 
In contrast to statically linked native binaries, the 
CLI abstracts from the operating system and the un-
derlying hardware. This fact makes it feasible to 
build a CLR independent CLI assembly. 
To get a self-contained assembly, the relevant as-
sembly must be disengaged from type references to 
external assemblies. This work can be done by proc-
essing IL textual representation or by using an as-
sembly manipulation library. 
In this project the library approach is used, because 
ILDASM approach requires a lot of text substitution 
and depends on available CLI framework tools. 
The Reflection API of the .NET Framework does not 
supports access to CIL code. Microsoft's new com-
piler framework Phoenix allows assembly modifica-
tions within a compiler run. After evaluation of ca-
pabilities of different assembly manipulation frame-
works the work presented in this paper finally bases 
on PERWAPI [Gou05a] developed at the Queen-
sland University of Technology. PERWAPI provides 
an abstract representation of the PE-file embodied as 
object oriented structure. The library is implemented 
in C# and is released as available for free. PERWAPI 
was extended to support the creation of self-
contained assemblies. 

Figure 5 shows the creation of self-contained assem-
blies with the Linker tool and an optional configura-
tion. The assembly on the left side references the 
BCL (mscorlib) and may have references to multiple 
custom libraries. 

Figure 5: Creation of self-contained assemblies 
The PERWAPI-based linker tool resolves references 
controlled by an optional configuration file. The con-
figuration allows the instrumentation of the assem-
bling process inside the linker tool. The source for a 
type to import could be set or types that should kept 
as references. 
Every type defined in an assembly must be reviewed 
for the following list of elements: 

Custom Attributes 
A Custom Attribute points to a type constructor 
method and contains optional constructor values. 
Attributes can occur at assembly level, type level, 
and method level. 

Type 
A Type has a parent type except System.Object 
and may implement a number of interfaces. Methods 
describe operations that may be performed on that 
type. Fields are named subtypes of a type.   

Interface 
Interfaces are special types that do not have a super 
type and contain no CIL code. 

Method 
A Method is a named operation and is characterized 
by the types of its parameters. Besides the parameter 
types also the return type and possible Custom At-
tributes have to set to the resolved type. Local vari-
ables are unnamed subtypes within a method resolu-
tion scope. CIL code may have a type, method or 
field parameter. Exception clauses are defined by a 
code range and the type of the exception. 

Event 
Events are handled like fields of a type. 

CIL code 
The following types of IL codes must be checked for 
references to types, methods or fields references: 
• Type Op.: castclass, newarr, initobj, ... 

.NET Technologies 2006  Short papers 71 ISBN 80-86943-11-9



• Method Op.: call, calli, callvirt, newobj, ... 

• Field Op.: ldfld, ldflda, stfld, stflda, ... 

The challenge of assembling self-contained assem-
blies is to verify types for references and generate a 
consistent PE-file. The current version of self-
contained assemblies addresses CLI v1.1 features 
only. There are further size optimizations practicable. 
To reduce the size of the constant pool, some kind of 
type descriptions can be shorten or eliminated. Cus-
tom type names not required by the CLR, except 
special names e.g. type constructor. 

Proof of concept results 
The current implementation of self-contained assem-
blies targets desktop CLR like .NET, Rotor, Mono or 
Portable.NET.  
public static int Main(string[] args){ 
  Object obj=new Object(); 
  return 1; 
} 

The above C# program has a single external refer-
ence (System.Object::.ctor) in CIL representa-
tion. But for the self-contained version a second 
method from System.Object must be imported, 
because the CLR calls the destructor (Finalize()) 
of the CLI-base type without further reference.  
The compiled1 assembly with mscorlib reference had 
a size of 3072 bytes. The size of the CLR is not con-
sidered, because it assumed to be constant. So the 
memory footprint with .NET v1.1 mscorlib.dll is 
2141184 bytes.  
The self-contained version has an oval size of 2048 
bytes and contains no references. These results are 
prestigious in no means, but the potential of self-
contained assembly optimization. 
To process more complex programs a clean BCL 
implementation is reasonable, because existing 
mscorlib.dll implementations are using none BCL 
features2 for BCL functionality. 

CLR implementation issues 
The CLI defines a lot of possibilities for optimized 
CLR implementations. This section discusses these 
optimizations in terms of portability of self-contained 
assemblies among different CLR. 
The CLR is responsible for resolving references to 
assemblies and loading types. References to external 
types are available in textual representation. CLI 
metadata are organized as a number of cross refer-

                                                           
1 csc /optimize+ simple.cs 
2Class attribute System.Runtime.InteropServices. 

ClassInterfaceAttribute::.ctor in .NET v1.1 
System.Object implementation 

enced tables. A referenced in type in an external as-
sembly can have references to the same assembly or 
the external assemblies. The CLI suggests resolving 
all references before start the execution. Therefore all 
related assemblies must be loaded to create a consis-
tent memory image.  
For optimization issues the CLI introduced build in 
primitive types e.g. bool, char, object, 
string, ..., which does not induce type refer-
ences as long no type specific operation were per-
formed. 
In contrast to Java the CLI provides an internal map-
ping of primitive type to their wrapper types. The 
CLR knows the mapping of primitive types to their 
wrapper types e.g. object≡System.Object. The 
mapping of primitive types to BCL types, inside the 
CLR, is realized with string compare, because a type 
reference is given in textual representation. For types 
implemented inside a self-contained assembly this 
mapping is possible further on. 
The CLI supports multiple ways to implement type 
methods. Possible implementation flags [Lid02a] for 
types inside the BCL: 
• cil: The method is implemented in CIL code.     

• internalcall: This flag indicates that the method 
is internal to the runtime and must be called in a 
special way.  

• runtime: The method implementation is pro-
vided by the runtime itself. 

• pinvokeimpl: The method has unmanaged im-
plementation and is called through the platform 
invocation mechanism P/Invoke. 

A cil implemented method can be executed by any 
CLR. An internalcall method is not portable among 
CLR implementations. This flag can occur in the 
BCL and additional features provided by the CLR. A 
runtime supplied implementation is also CLR de-
pendent. The pinvokeimpl flag indicates the CLR 
provided mechanism (P/Invoke) to call native code. 
Figure 7 shows three different implementations of 
the System.Object::Equals(object ) method. 
The Microsoft .NET Framework uses the internalcall 
manner to perform the comparison. This implies the 
existence of a dispatch table for internalcalls. 
Microsoft .NET v1.1.4322 
.method public hidebysig newslot virtual instance bool 
Equals(object obj) cil managed internalcall {} 
 

.NET Technologies 2006  Short papers 72 ISBN 80-86943-11-9



Mono v1.1.13.2 
.method public hidebysig newslot virtual instance bool 
Equals(object obj) cil managed 
{ 
  .maxstack 8 
  IL_0000: ldarg.0 
  IL_0001: ldarg.1 
  IL_0002: ceq 
  IL_0004: ret 
} 
 

Compact Framework v1.0.500 
.method public hidebysig newslot virtual instance bool  
Equals(object obj) cil managed 
{ 
  .maxstack  8 
  IL_0000:  ldarg.0 
  IL_0001:  ldarg.1 
  IL_0002: call  bool System.PInvoke.EE::Object_Equals(object, 
object) 
  IL_0007:  ret 
}  
.method public hidebysig static pinvokeimpl("mscoree" as "#17" 
winapi) bool Object_Equals(object obj1, object obj2) cil managed 
preservesig {} 

Figure 7: Implementation of System.Object:: 
Equals(object) in .NET, Mono and Compact 
Framework 
Mono provides a implementation based on CIL code, 
which makes the implementation portable. 

In the Compact Framework BCL System.Object 
::Equals(object) is implemented with a 
additional call through the P/Invoke mechanism. 

The current version of self-contained assembly’s 
implementation is portable among different CLR as 
long as no implementation specifics are used. One 
can benefit from self-contained features as long as is 
executed with the CLR that provided the BCL im-
plementation. 

5. RELATED WORK 
There are several approaches to optimize Java class 
files to meet the requirements of small embedded 
devices. The optimizations are often done on a per 
class basis.  
IBM’s WebSphere® Studio Device Developer 
(WSDD) [IBM06a] includes the SmartLinker tool 
(formerly JAX [alp06a]) to optimize J2ME [Sun06a] 
applications.  
SmartLinker removes unused code, merges classes, 
and introduces short identifiers to reduce the overall 
code size. Resulting applications are composed in the 
Java Executable format (JXE), which is not interop-
erable with jad/jar format as specified in J2ME.  

Rayside et al. [Ray99a] propose a modified Java 
class file format with significant space reduction with 
little or no runtime penalty. 
Clausen et al. [Cla00a] use macros for multiple oc-
currences of code fragments and an extended JVM 
with macro support. 
The JamaicaVM[aic06a] developed by aicas GmbH 
includes a builder tool for integrating Java bytecode 
and a corresponding Virtual Machine implementation 
into a single executable application binary. Bytecode 
is embedded as C-Array definition and linked with 
the JamaicaVM library.  
TinyVM[Sol06a] is a firmware replacement for the 
Lego™ Mindstorm™ RCX hardware. The firmware 
executes (interprets) Java programs that are com-
pacted into custom images. 
The Lego.NET [Osm05a] project has developed a 
GCC front-end which translates CIL code into native 
machine code of the Lego™ Mindstorm™ RCX 
processor. 
Microsoft's .NET Compact Framework is a subset of 
the .NET platform for mobile and embedded devices. 
The Compact Framework class libraries occupy at 
least 2 Megabyte of memory. The assembly format 
and execution environment differ only in trifles from 
the desktop version.  
Microsoft’s ILMerge[Mic06a] is a utility that can be 
used to merge multiple .NET assemblies into a single 
assembly. ILMerge does not support a selection of 
types which should be merged together. 
AppForge, Inc. offers with Crossfire[App06a] a 
product for multi-platform applications for mobile 
and wireless devices based on .NET. The CIL byte-
code is transferred into a custom executable format 
that is executed by platform specific Crossfire-Client 
software. 

6. CONCLUSION AND FUTURE 
WORK 
This paper proposes an approach of self-contained 
assemblies to reduce memory consumption and 
shorter startuptime while executing the assembly. 
CLI assemblies are loose coupled with other assem-
blies (shared class libraries, custom libraries).   
Creating of self-contained assemblies is done at type 
level with a customized version of the PERWAPI 
assembly manipulation library. The compaction of 
assemblies bases on referenced types of an assembly 
and requires no source code, nor compiler support. 
Self-contained assemblies are size optimized in terms 
of assembly footprint and memory consumption 
while execution.  

.NET Technologies 2006  Short papers 73 ISBN 80-86943-11-9



Furthermore the effect of an executed self-contained 
assembly is identical among the acceptance the CLR 
is CLI-complaint and no CIL-code is executed out-
side of the assembly. 
The customized PERWAPI library allows adaptive 
compaction at type level that means certain types 
remain as references.  
It has to be analyzed to what extent the abstraction of 
CLR internals from the BCL implementation could 
be realized CLI-compliant. 
The proof-of-concept results must be analyzed in 
terms of memory consumption, startup time and exe-
cution performance with CLR implementations.    
Self-contained assemblies could offer useful features 
for embedded systems development, for predictable 
execution behavior and more generally for an adap-
tive deployment format. 

7. ACKNOWLEDGMENTS 
We would like to thank the reviewers for their useful 
comments and suggestions. 

8. REFERENCES 
[Aic06a] aicas GmbH. JamiacaVM. Available at ai-

cas.com, 2006 
[And00a] Anderson R. The End of DLL Hell. Micro-

soft Cooperation. Available at 
msdn.microsoft.com/library/en-
us/dnsetup/html/dlldanger1.asp, 2000 

[App06a] AppForge, Inc. Crossfire homepage. 
Available at www.appforge.com/products/ 
crossfire, 2006. 

[Cla00a] Clausen L.R., Schultz U.P., Consel C., and 
Muller G. Java bytecode compression for low-
end embedded systems. ACM Transactions on 
Programming Languages and Systems, 
22(3):pp.471–489, 2000. 

[Cos05a] Costa R.,and Rohou E. Comparing the size 
of .net applications with native code. in 
CODES+ISSS ’05: Proceedings of the 3rd 
IEEE/ACM/IFIP international conference on 
Hardware/software codesign and system synthe-
sis, pp. 99–104, ACM Press, 2005. 

[Dot06a] The DotGNU project. Portable.NET. Avail-
able at www.dotgnu.org, 2006 

[Ecm02a] Ecma international. Standard Ecma-335, 
Common language infrastructure (Cli). Available 
at www.ecma-international.org/ publications/ 
standards/Ecma-335.htm, 2002. 

[Gef05a] Gefflaut A., van Megen F., Siegemund F., 
Sugar R. Porting the .NET Compact Framework 
to Symbian Phones – A Feasibility Assessment. 
.NET Technologies’05 conference proceedings, 
UNION Agency – Science Press, ISBN 80-
86943-01-1, 2005 

[Gou05a] Gough J., and Corney D. PERWAPI-a pe 
file reader/writer. Available at  
www.plas.fit.qut.edu. au/perwapi, 2005. 

[IBM06a] IBM. WebSphere Everyplace Micro Envi-
ronment. Available at www-306.ibm.com/ soft-
ware/wireless/wsdd, 2006 

[Int03a] International Standards Organisation. In-
formationtechnology – Common Language Infra-
structure, ISO/IEC 23271:2003(E) First edition, 
2003. 

[alp06a] alphaWorks/IBM. JAX. Available at 
www.alphaworks.ibm.com/tech/JAX, 2006 

[Lid02a] Lidin S. Inside Microsoft .net il assem-
bler.Microsoft Press, 2002. 

[Mic02a] Microsoft Corporation. Shared source 
common language infrastructure. Available at 
msdn.microsoft.com/net/sscli, 2002. 

[Mic05a] Microsoft Corporation. .NET Framework. 
Available at msdn.microsoft.com/netframework, 
2005. 

[Mic05b] Microsoft Corporation. .NET Compact 
Framework. Available at msdn.microsoft.com/ 
netframework/programming/netcf, 2005. 

[Mic06a]  Microsoft Research. ILMerge, Available 
at  re-
search.microsoft.com/~mbarnett/ILMerge.aspx, 
2006 

[Mon06a] The Mono project. website. Available at 
www.mono-project.com, 2006. 

[Osm05a] Operating systems and middleware group. 
Lego.net website. Available at 
www.dcl.hpi.unipotsdam.de/research/lego.NET/, 
2005. 

[Ray99a] Rayside D., Mamas E., and Hons E. Com-
pact java binaries for embedded systems. In 
CASCON ’99: Proceedings of the 1999 confer-
ence of the Centre for Advanced Studies on Col-
laborative research, page 9. IBM Press, 1999. 

[Sol06a] Solorzano J.H. TinyVM website. Available 
at tinyvm.sf.net, 2006. 

[Sun06a] Sun Microsystems, Inc. Java Platform, Mi-
cro Edition. Available at javasoft.com/j2me, 2006 

 

 

.NET Technologies 2006  Short papers 74 ISBN 80-86943-11-9

http://www.alphaworks.ibm.com/


PMPI: A multi-platform, multi-programming 
language MPI using .NET 

 
Mohammad M. El Saifi Edson Toshimi Midorikawa

Department of Computer Engineering and Digital Systems 
Polytechnic School – University of São Paulo 

Sao Paulo - SP - Brazil 

{mohamad.saifi, edson.midorikawa}@poli.usp.br 

 
ABSTRACT 

 

Implementation of the MPI standard on heterogeneous platforms is desirable because it permits using resources 
discarded by existing MPI implementations of homogenous systems. This paper describes PMPI, as partial 
implementation of the MPI standard on a heterogeneous platform. Unlike other MPI implementations, PMPI 
permits MPI processes written in different programming languages to run on multiplatform system. PMPI is built 
on top of .NET framework. PMPI can span multiple administrative domains distributed geographically. To 
programmers, the grid looks like a local MPI computation. The model of computation is indistinguishable from 
that of standard MPI computation. This paper studies the implementation of PMPI with Microsoft .NET 
framework and MONO to provide a common layer for a multiprogramming language multiplatform MPI 
application. We show the obtained results using PMPI, and compare them to MPICH2. The obtained results will 
show that the use of .NET framework for PMPI is feasible and can be optimized for performance. 
 
Keywords 
MPI, Parallel Computing, HPC, .NET Framework, MONO 

 
1. INTRODUCTION 

 
For many years, parallel computation was always 
an attractive alternative for obtaining high-
performance computing [Dongarra et al. 2003] 
[Foster 1995]. With the use of multiple 
computational nodes interconnected by a high-
speed network, clusters of computers are the most 
common platform of parallel machines. The recent 
introduction of multi-core microprocessors will 
result in parallel computers becoming available on 
desktops.  
MPI is perhaps the best known standard used in 
parallel computation allowing nodes spread across 
the network to collaborate to achieve a common 
computational goal [Andrews 2000] [MPI Forum 
1994].  

The limitation of MPI is two fold. On the one side, 
most existing MPI implementations, such as 
MPICH2, execute only on homogeneous platforms 
[MPICH2 2006]. Accordingly, idle cycles that are 
spread across a variety of machine architectures and 

operating systems across networked PCs, are 
discarded because of the lack of an MPI that 
executes on a heterogeneous platform. These idle 
cycles are increasingly being recognized as a huge 
and largely untapped source of computing power 

On the other side, almost existing MPI 
implementations use C, C++ or FORTRAN 
programming language. Accordingly, researchers 
and programmers who collaborate on the solution 
of the same problem need to stick to one of the 
languages that supports the MPI library they intend 
to use. 

The implementation of MPI that can tap into those 
idle resources on heterogeneous platforms is 
desirable because it allows researchers and 
programmers, who need high performance 
computing and have available heterogeneous 
platforms around their campus, to use all available 
resources [Kelly, Roe and Sumitomo 2002][ Kelly 
and Roe 2002][ Kelly and Mason 2003]. Having the 
ability to use MPI on heterogeneous systems 
maximizes computational power resources.  

.NET Technologies 2006  Short papers 75 ISBN 80-86943-11-9

mailto:@poli.usp.br


In addition to using MPI on a heterogeneous 
platform, programmers want to use a variety of 
programming languages in their computational 
program. In the same MPI computation, 
programmers want nodes to run applications written 
in different programming languages simultaneously 
using MPI standards. This becomes a merit when 
we have multiple programmers participating in the 
solution of a unique problem, where each 
programmer is writing a program that runs on a 
separate node such as same data multiple program 
solutions. This permits programmers to explore 
their abilities and skills in their preferred 
programming language, and to use the 
programming language that best suit the solution of 
the problem. 
This paper studies the feasibility of implementing 
MPI standard on a heterogeneous platform by 
implementing the component PMPI. PMPI aims to 
provide programmers and researchers with a 
framework that takes care of a transparent 
communication infrastructure between the 
heterogeneous nodes in a MPI computation in a 
robust and secure manner. The programmer is left 
to concentrate only on the application specific 
computational aspects. We take advantage of the 
.NET framework to provide application 
programmers with a choice of the programming 
language, all of which can use the same PMPI 
framework classes. 

There are different choices that can be made to 
implement the PMPI component. We choose the 
.NET framework [Ritchter and Balena 2002] for 
this purpose as the first tentative and used .NET 
Remoting [McLean 2003] [Rammer 2002] as the 
communication infrastructure for PMPI. In this 
implementation, PMPI acts as a remote-object 
based framework for creating MPI parallel 
applications. The framework is built using the 
extensibility features of the .NET Remoting 
framework. 

Unlike the Java virtual machine, the .NET runtime 
is designed to be language independent. 
Accordingly, developers can create their 
applications using any language that targets the 
CLR such as: C#, Visual Basic, Visual C++ or one 
of many other .NET languages such as Eiffel, Perl, 
Cobol, Component Pascal, Smalltalk, or Fortran 
[Ritchter and Balena 2002]. Today there are about 
twenty six different programming languages that 
target the .NET framework [Ritchter and Balena 
2002]. PMPI enables programmers to program in a 
normal MPI fashion, without being concerned what 
platform or programming language other 
participating nodes will run.  

The main contribution of this paper is to study the 
feasibility of implementing MPI on a virtual 
machine and show performance results compared to 
other existing MPI implementation. This offers 
programmers who have heterogeneous systems with 
a library that can reap the available computational 
power on available machines. 

The remainder of this paper is organized as follows. 
Section 2 describes the architecture of PMPI. 
Section 3 describes the programming model of 
PMPI. Section 4 explains the sample application 
used in the tests. Section 5 describes the results and 
some preliminary performance figures. Finally, 
section 6 concludes and discusses future and related 
works. 
 

2. ARCHITECTURE 
PMPI architecture follows the standard 
structure of a layered networking architecture. 
PMPI is composed of three components. The first 
component is PMPI which contains MPI 
implementation. The second one is the agent that 
runs on each node participating in the MPI 
computation. The agent is responsible for starting 
MPI programs on nodes, and offers administrative 
information about nodes, in addition to information 
about administrative domains. The third component 
is PMPI Gateway, or PIP (Platform Interface 
Portal). The PIP serves as a gateway to 
administrative domains to overcome problems 
raised by firewalls and NAT separating different 
administrative domains.  

Each administrative domain has a PIP known to all 
agents. Inside PMPI component, there is an address 
resolution layer that is transparent to programmers. 
This layer decides on whether to direct MPI calls 
directly to other nodes or to their corresponding 
PIPs. This permits programmers the freedom to 
concentrate on their problem rather than 
communication implementation.  

 
Figure 1: Four nodes using PMPI 

 

Ethernet 

Process 

Node 

PMPI Agent 

Process 

Node 

PMPI Agent 

Process 

Node 

PMPI Agent 

Process 

Node 

PMPI Agent 

.NET Technologies 2006  Short papers 76 ISBN 80-86943-11-9



Figure 1 shows a basic PMPI infrastructure. The 
figure shows a structure with four nodes running on 
one administrative domain connected by local 
Ethernet network. The processes may be running on 
different platforms, and each process may be 
written in a different programming language.  
PMPI communication infrastructure is constructed 
on .NET Remoting, and in turn, is based on 
TCP/IP. .NET Remoting can be customized to 
support other protocols [Rammer 2002]. 

 

  
Figure 2: PMPI layered view 

 

Figure 2 shows PMPI component layers. On the 
top, we have the MPI interface that is available to 
programmers. When a MPI call is made, it passes 
through the address resolution module to check 
which administrative domain the destination node 
belongs to, and what communication method is to 
be uses to reach the node that costs less. For 
example, nodes behind firewalls may be reachable 
only through port 80 using the SOAP protocol 
which is firewall friendly in contrast to the binary 
protocol. On the other hand, SOAP consumes more 
network bandwidth and is less efficient than binary 
formatting [McLean 2003]. 

 
Figure 3 shows a sketch of a MPI computation 
spanning two administrative domains where each 
administrative domain is located behind a firewall. 
In this figure, MPI calls made from one 
administrative domain to the other are done through 
the PIPs of the administrative domain. The PIP will 
serve as a proxy on behalf of nodes making the call. 
The scenario in figure 3 assumes that we have 
barriers in both administrative domains. In other 
words, nodes in administrative domain 1 cannot 
reach nodes in administrative domain 2 directly 
using remote object calls. Instead, they should use 
the PIP proxy service to exchange messages. 

 
Figure 3: Using PMPI on two administrative 
domains 

 

To better understand the idea, let’s take an example 
where node A in administrative domain one will 
make MPI call to node B in administrative domain 
two. The address resolution layer of PMPI running 
on node A detects that node B is running on another 
administrative domain and there is no way to reach 
node B directly because of a firewall or NAT. The 
address resolution layer directs the call to the PIP 
node of administrative domain one. The PIP in turn 
directs the MPI call to PIP of administrative domain 
two. The PIP of administrative domain two receives 
the call and directs it to node B of its domain. If the 
call is synchronous, then the PIP of administrative 
domain one block node A until it receives a 
notification from PIP of the other administrative 
domain that node B has received the call. The PIP 
acts as proxy on behalf of the nodes in their 
corresponding administrative domain. 

The rest of this section is divided into two 
subsections. The first describes MPI standard. The 
second describes PMPI architecture and constructs. 
 

 

  

Ethernet 

Process 

Node 

PMPI Agent 

Process 

Node 

PMPI Agent 

Process 

Node 

PMPI Agent 

PMPI 
Gateway 

Node 

  

Ethernet 

Process 

Node 

PMPI Agent 

Process 

Node 

PMPI Agent 

Process 

Node 

PMPI Agent 

PMPI 
Gateway 

Node 

F i r e w a l l

F i r e w a l l

.NET Technologies 2006  Short papers 77 ISBN 80-86943-11-9



2.1 MPI: Message Programming Interface 
In the message-passing library approach to parallel 
programming, a collection of processes executes 
programs written in a standard sequential language 
augmented with calls to a library of functions for 
sending and receiving messages. MPI is a complex 
system. In its entity, it comprises 129 functions, 
many of which have numerous parameters of 
variants [Foster 1995]. 

In the MPI programming model, a computation 
comprises one or more processes that communicate 
by calling library routines to send and receive 
messages to other processes. In most MPI 
implementations, a fixed set of processes is created 
at program initialization, and one process is created 
per processor. However, these processes may 
execute different programs. Hence, the MPI 
programming model is sometimes referred to as 
multiple program multiple data (MPMD) to 
distinguish it from SPMD model in which every 
processor executes the same program. 

Processes can use point-to-point communication 
operations to send a message from one named 
process to another; these operations can be used to 
implement local and unstructured communications. 
A group of processes can call collective 
communication operations to perform commonly 
used global operations such as summation and 
broadcast. MPI’s ability to probe for messages 
allows asynchronous communication. Probably 
MPI’s most important feature from a software 
engineering viewpoint is its support for modular 
programming. A mechanism called a communicator 
allows the MPI programmer to define modules that 
encapsulate internal communication structures 
[MPI Forum 1994]. 

 

2.2 PMPI Basic Architecture 
PMPI is built on top of .NET framework. We are 
using Microsoft .NET framework 1.1 for Microsoft 
Windows and Mono 1.0.5 for Linux. Although 
Mono can run on Power PC, BSD and other 
operating systems and architectures, we based our 
initial implementation on Windows and Linux 
operating systems although this can be expanded to 
other operating systems without any modification in 
the code. 

The initial implementation of PMPI was devoted to 
implement functionality rather that performance. 
Because of this, we selected higher level 
implements of the .NET framework to implement 
PMPI. For the communication layer, we used .NET 
Remoting which is based on remote object 
communication. The classes that make up the .NET 

framework are layered, meaning that at the base of 
the framework are simple types, which are built on 
and reused by more complex types. .NET Remoting 
is one such complex type which in turn is built as 
layers where each layer can be customized to 
programmer needs [Jones et al 2004]. This adds 
extra overhead compared to using simple raw 
classes such as socket class [Rammer 2002]. 

We used C# as the programming language. All 
.NET programming language compilers targets the 
CTS (common type system) of the framework. C# 
compiler helps the programmer adhere to CTS 
types by setting the “CLSCompliantAttribute” 
attribute to true [Bock 2003]. In this way, the 
compiler generates an error whenever you try to use 
a non CTS type. This guarantees that the generated 
code is accessed by all .NET programming 
languages since all .NET programming languages 
target the CTS [Ritchter and Balena 2002]. 

Each node participating in the MPI computation 
should have the .NET framework installed. Nodes 
running Windows operating systems should install 
Microsoft Framework 1.1 on their machines. Nodes 
running Linux should install Mono 1.0.5. Although 
there are newer versions of the framework for both 
platforms, PMPI has been tested on earlier 
frameworks. 

In addition to the framework installed on the 
machines participating in the MPI computation, the 
nodes should have PMPI installed on each node. 
The initial implementation of PMPI needs to have 
bidirectional communication between the nodes. 
Accordingly, firewalls can cause problems. The 
implementation of PIP is not yet implemented. 
Initially, PMPI implemented 20 MPI functions. 
Those functions cover basic, asynchronous, 
collective and modular commands. When MPI 
computation starts, each node registers PMPI object 
at a known end point to other nodes using .NET 
remote object. With .NET remoting, the framework 
creates a thread pool to receive the calls made 
against the remote object. When node A sends data 
to node B within the same administrative domain, 
node B’s PMPI will receive the data and releases 
the calling object immediately, node A in this. 
When node B calls MPI_Receive, PMPI will check 
to see if there is a message with the corresponding 
tag and source. If it finds a corresponding message, 
then a pointer to the message is passed to 
MPI_Receive, and the call returns immediately in 
node B. If no corresponding message is found with 
the requested tag-source, the call in node B is 
blocked until node B receives the requested 
message. If node A uses synchronous MPI_SSend, 
then PMPI layer on node A blocks until node B 

.NET Technologies 2006  Short papers 78 ISBN 80-86943-11-9



sends a release signal after the process in node B 
makes a call to MPI_Receive. 

PMPI uses a hash table data structure to control 
received message. The key of the hash table is a 
combination of the source, tag, and communicator 
ID. The value of the hash table points to a queue 
whose elements contains a data structure composed 
of the received message, message size, message 
type and synchronization objects that the receiving 
thread will block on. When the node calls 
MPI_Receive with a particular tag, source and 
communicator, PMPI checks the hash table for 
pending messages in the queue. If it finds a 
message, it pops the message from the queue in a 
FIFO manner and wakes up the thread using the 
synchronization objects found in the read queue 
element. When the waked thread terminates, the 
message is passed to the MPI_Receive call. Note 
that if the call is made using MPI_Ssend, which is a 
synchronous send, the receiving thread will block 
the sending thread until it is waked up again by 
MPI_Receive in the manner explained above. If it 
comes that MPI_Receive is called before a 
MPI_Send and PMPI finds the queue empty, then it 
blocks the call on synchrozination objects, enqueue 
the call with the synchronization objects in the 
queue whose pointer is stored in a hash table. Later, 
when PMPI is invoked by MPI_Send, PMPI checks 
first if a pending MPI_Receive exists. If it find a 
pending receive, then it pops the queue, wakes the 
thread using the popped synchronization objects 
and returns.  

When it comes to collective operations, PMPI uses 
a thread pool to perform the collective task. PMPI 
uses a simple algorithm for collective tasks. Each 
communicator has a master node known to all 
participating nodes. The communicator master node 
is responsible for coordinating the collective calls. 
In other worlds, its the master communicator node 
who decides when the collective call is done. PMPI 
implements this by using a thread pool in the 
communicator master node. When the collective 
call is made, PMPI checks if the node is the master 
in the target communicator. If it is not, then it uses a 
methodology similar to Send_Receive explained 
before. If it finds the node to be the communicator 
master, then it creates one thread for each node in 
the communicator, and blocks on the 
synchronization object. When the thread in the pool 
terminates, it verifies if other threads in the pool 
had terminated; if not, then the thread blocks on a 
synchronization object. If the thread happens to be 
the last one, then the thread wakes all other threads 
using the synchronization object. By this means, the 
communicator master manages the collective 
operation. 

The agents will be a separate component. For MS 
Windows, the agent is implemented as Windows 
Service. The agent will be responsible for starting 
the programs on participating nodes. In addition, 
the agent will supply managing data about the 
nodes themselves such as available memory, CPU 
load, speed, administrative domains and other 
managing data. Today, most operating systems 
implement the Web-Based Enterprise Management 
(WBEM), which is an industry initiative to develop 
a standard technology for accessing management 
information in an enterprise environment. WMI is 
the Micorsoft implementation of WBEM.   

The PIPs are part of PMPI architecture but are not 
yet implemented. PIPs will be implemented using 
Web Services. The remote object model explained 
will be substituted by Web Service model. The PIP 
will be a gateway on behalf of the calling node. The 
architecture and implementation of PIP will 
consider having two communicating PIPs on behalf 
of the send and receiving nodes.  

 
3. PROGRAMMING MODEL 
The programming model is as simple as any 
existing MPI implementation. The master node 
initializes the MPI computation using a XML 
computation file. PMPI is object based. Therefore, 
the MPI functions should be called as object 
methods.  

When PMPI is initialized, it publishes a remote 
object at a known end point. Each participating 
node knows the address and port of all other nodes 
in the MPI computation. When the program calls a 
MPI function, PMPI receives the function call and 
transmits it to the corresponding node after 
resolving its address internally. Although current 
implementation did not target nodes running behind 
NATs and firewall, PMPI layered implementation 
makes it easy to build semantics to solve the 
complications raised by firewalls and NATs with 
out programmer awareness. This helps the 
programmer to devote his efforts on programming 
rather than MPI communications. Future works will 
customize the real proxy of the .NET Remoting 
object to intercept message calls and select the 
destination accordingly. 

We wrote applications in VB.NET, C#, managed 
C++, and J#. We ran each application on a different 
node. All four nodes ran under Microsoft Windows 
XP operating system. For MONO running on Linux 
Redhat 9, we were limited to C# since it is the only 
existing non-beta compiler. For simplicity, we used 
only the above programming languages, but this 
can extend to any available .NET programming 
language. The MPI computation ran as if programs 

.NET Technologies 2006  Short papers 79 ISBN 80-86943-11-9



at all nodes were written in the same programming 
language. 

 
Figure 4 shows part of the sample application 
written in C# where the code initializes an MPI 
computation, gets its task Id within 
COMM_WOLRD, gets COMM_WORLD size, 
sends data to “dest” node and later receives data 
from “dest” node. Note that the MPI functions are 
methods of a PMPI object called “obj”. These 
methods are either static or instance methods. Static 
methods of PMPI enable us to write multithreaded 
programs running on a machine where all threads 
use the same PMPI object. Also, it is possible to 
start multiple PMPI objects where each object 
participates in a different MPI computation with out 
the need to MPI communicators. 

 
4. SAMPLE APPLICATION 
We used as a sample application the master-worker 
model for matrix multiplication (A x B = C). The 
results of this sample are compared to MPICH2 for 
Windows in the next section. 
The master (task Id 0) sends matrix B to all 
participating nodes (workers), and distributes the 
rows of matrix A into worker nodes evenly. 
Workers perform the multiplication and send back 
the result to the master node. Master node 
accumulates the results from all workers into matrix 
C. The sample application was taken from the 
examples that install with MPICH2. In this sample 
application, the master does not participate in the 
MPI computation. It just sends the data to workers 
and gets back the results into matrix C. 

 
5. RESULTS 
The performance tests are done with the sample 
application written in C#. We set the number of 
columns in matrix A to 1200 and the number of 
columns of matrix B to 500. We varied the number 
of rows of matrix A to 2400, 4800, 9600 and 19200 
respectively. For each problem size, we executed 
the application on one to all six nodes.   

The tests are executed in three sets. The first set of 
tests is the results obtained executing the sample 
application on a homogeneous platform corporate 
network. The second test is done on the same 
corporate network with both PMPI and MPICH2. 
The last test is done on a cluster using 
homogeneous and heterogeneous platforms.  

 

5.1 Results using Corporate Homogenous 
Platform 
We tested the application first on standalone 
machines with out using parallel MPI computation. 
We rewrote the application taking out all MPI 
commands and compiled them using Microsoft 
Visual C++, Microsoft C# and MONO C# 
compilers. 
The corporate network was composed of AMD 1.5 
GHZ, 512 KB cache CPUs with 256 MB RAM and 
40 GB HD. The nodes run under Windows XP. One 
node had dual operating systems: Windows XP and 
Redhat 9. The obtained results are as follows. C# 
managed code application executed 27% slower 
than C++ application on machine running Windows 
XP or Windows 2003 operating system. On 
machine running Linux Redhat 9 with mono .NET 
framework, C++ executed 10 times faster than C#!  
Comparing .Microsoft NET C# running on 
Windows XP to MONO 1.05 C# compiler Running 
under Linux Redhat 9, Microsoft C# executed 5 
times faster than MONO C#. 

Before going any further, let me clarify some 
details about array access in managed world and 
some performance issues. Each time an element of 
an array is accessed, the CLR ensures that the index 
is within the array’s bound. This prevents you from 
accessing memory that is outside the array, which 
would potentially corrupt other objects. If an 
invalid index is used to access an array element, the 
CLR throws a System.IndexOutOfRangeException 
exception.  

The index checking comes at a performance cost. If 
we have confidence in our code, we can access an 
array without having the CLR perform index 
checking. This feature is not allowed in all .NET 
languages and is not CLS complaint. Accordingly, 
only .NET languages that have this feature will 
benefit from fast array access such as C#. 
To give an idea on how much gain we get using fast 
array access, we show the following results. C# 
using managed array access executes 20% slower 
than C# using fast array access on the machine 
running Windows XP. On Linux, C# using 
managed array access, executed 5 times slower than 
C# using fast array access. As we note, the 
performance gain in Linux is huge (500%). 

Figure 4: Part of the sample application 

MPI obj = new  MPI(); 
obj.MPI_Init(args); 
id=obj.MPI_Comm_Rank(MPI_Comm_World); 
tasks=obj.MPI_Comm_Size(MPI_Comm_World); 
obj.MPI_Send(offset, 1,           
             MPI_Integer, dest, mtype,  
             MPI_Comm_World); 
obj.MPI_Send(rows, 1, MPI_Integer, dest,  
              mtype, MPI_Comm_World); 

.NET Technologies 2006  Short papers 80 ISBN 80-86943-11-9



The problem with fast array is that not all .NET 
languages support it since it is not a CLS compliant. 
In addition, it is harder to code than managed array 
access since it uses pointers. Accordingly, the 
benefit of using fast array is limited to only a subset 
of .NET programming languages. 
Later, we executed the application using both 
MPICH2 and PMPI using managed array access 
with PMPI. The sample application running on 
PMPI nodes was written with C#, Java.NET, 
managed C++ and VB.NET. The compiler choice 
did not affect the result. We used a various 
combination of the programming languages and we 
got the same results. The results are shown only for 
Windows OS since we used MPICH2 for windows.  
In figures 5, we show a comparison between PMPI 
and MPICH2 for different problem sizes executing 
on 6 nodes. The results demonstrate that PMPI 
executed slower than MPICH2 between 40% and 
70%. 

Figure 6 shows the linear relation ship between the 
number of nodes and the execution time. As we 
increase the participating nodes, the execution time 
decreases linearly. 

 
Figure 5: comparison between PMPI and MPICH2 

 
Figure 6: Execution time as a function of 
participating nodes  

 

5.2 Results using cluster with a 
Heterogeneous Platform 

The cluster, named BIO, is composed of 8 nodes 
each with dual 2.0 GHZ, 512 KB cache CPUs with 
512MB RAM and 40 GB HD.  

As before, we tested the application first on a 
standalone machines with out using parallel MPI 
computation. We rewrote the application taking out 
all MPI commands and compiled them using 
Microsoft C# compiler and mono C#.  

Later, we executed the application on the cluster 
using up to six nodes where nodes varied between 
nodes running Windows 2003 server and nodes 
running Linux Redhat 8. The result is shown below 
in figure 7. As the figure shows, Microsoft .NET 
platform performed better than MONO .NET 
framework. When we mixed the nodes between 
Windows and Linux operating systems, PMPI 
executed with performance equivalent to the 
average of executing on each platform 
independently.   

 
Figure 7: PMPI on a heterogeneous platform 

5.3 Result analysis 
As shown in section 5, PMPI executes as a linear 
function of the problem size. The execution time 
increased linearly as we increased the matrix size.  
Also, as we increase the number of nodes, the 
execution time decreased almost linearly. 

Although PMPI executes slower than MPICH2, the 
main overhead is a result of managed array access 
and the use of high construct communication 
construct of the .NET framework. This overhead 
was expected and is subject for future work. 

In addition, we detected that the use of thread 
pool within the program structure, degraded PMPI 
performance in a master-worker model. This loss of 
performance resulted from the fact that the 
operating system has full control of the thread pool 
which resulted in activating threads to receive the 
results from nodes while other threads were still 
sending data to other nodes. With a custom thread 
pool, PMPI will have full control on the executing 
thread, and in turn, can block receiving threads 
while PMPI is sending. This will improve a lot 
performance especially when we have large number 
of nodes. This happens because as we increase the 
number of nodes, we have greater the tendency of 
nodes completing their jobs before the master. 

PMPI with multiPlatform 

0 50 100 150 200 250 300 350 400 450 500 

2 3 4 5 6 
nodes 

Tempo 

Windows Linux Mixed 

Time x Number of Nodes 

60.0 
70.0 
80.0 
90.0 

100.0 
110.0 
120.0 
130.0 

3 4 5 6 
Number of nodes for size=9600 

Time 

Time x Problem size ( n = 6 ) 

0 
20 
40 
60 
80 

100

120

140

160

180

2400 4400 6400 8400 10400 12400 14400 16400 18400 
Problem Size PMPI MPICH2 

.NET Technologies 2006  Short papers 81 ISBN 80-86943-11-9



Moreover, there are some other code tuning of 
PMPI that can improve performance such as 
reducing .NET framework boxing, a mechanism 
that .NET framework exchange data between the 
allocated stack and managed heap. Boxing in .NET 
managed code is known to have performance cost 
and minimizing it can improve performance a lot. 

 

6. RELATED WORKS 
In this section we discuss related work the can be 
use parallel computing on a multiplatform. In 
[Fer05], experiment with implementation of parallel 
programs using C# running on Unix and Windows 
is done. In [Will01], a binding between an already 
implemented MPI interfaces and C# is done. In 
[Car00], a Multiplatform MPI implementation is 
done for JAVA programming language. However, 
none of the above works have focused and worked 
with a Multiprogramming Language MPI.  

  

7. CONCLUSION AND FUTURE 
WORKS 
The first implementation of PMPI was shown to be 
feasible and it is possible to execute MPI standards 
on a multi-language and multiplatform systems. 
Although the first implementation showed that 
PMPI is slower than MPICH2, the difference is 
explained by known issues and these issues can be 
eliminated. Care should be taken when using a 
heterogeneous system including Linux with 
managed array access. As shown in the preliminary 
results, mono performs very poor with managed 
array access. In such a case, we should consider 
using fast array access. 

The next step in this project is to span PMPI to 
multiple administrative domains that span 
geographic area across the internet. In addition, 
lower communication constructs can improve 
performance in addition to use a custom thread pool 
to manage threads instead of the operating system 
thread pool. This will give us a complete control on 
the threads. Also, we will do a comparison between 
JavaMPI to PMPI . 

  

REFERENCES 
[And00a] Andrews, G.R. Foundation of 

Multithreading, Parrallel, and Distributed 
Programming, pp 115-243, 2000. 

[Rit02a] Ritchter,J. and Balena,F. Applied 
Microsoft Dotnet Framework Programming in 
Microsoft C# 2002. 

[Fos95a] Foster, I.. Designing and Building Parallel 
Programs, pp  275-310, 1995 

[Don03a] Dongarra,J. and Foster,I. and Fox,G. and 
Gropp, W., Kennedy,K. and  Torczon,L. 
White,A. Sourcebook Of Parallel Computing. 
2003. 

[Ram02a] Rammer, I. Advanced Dotnet Remoting 
in C#.2002. 

[Boc03a] Bock,J. and Barnaby,T. Applied Dotnet 
Attributes. 2003  

[East04a] Easton, M.J.  and King, J. Cross-Platform 
Dotnet Development. 2004  

[Jon04a] Jones, A., Ohlund,J. and Olson, L. 
Network Programming for the Microsoft 
Dotnet Framework. 2004. 

[Ard02a] Ardestani, K. and Ferracchiati, F. and 
Gopikrishna,S., Redkar,T., Sivakumar, S., 
Titus, T.  Visual Basic Dotnet Threading. 2002. 

[Sha03a] Sharp, J. and Jagger, J. Microsoft Visual 
C# Dotnet. 2003. 

[McL03a] McLean, S. and Naftel,J.  and 
Williams,K. Microsoft Dotnet Remoting. 2003. 

 [Mar04a] Mariani,R. , Bohling, B., C.Smith, and 
S.Barber. Improving Dotnet Application 
Performance and Scalability. 2004. 

[MPI94a] MPI FORUM. 1994. The MPI message 
passing interface standard. University of 
Tennesse,Knoxville. 

[MON05a] The MONO project. http://www.go-
MONO.com 

[ECMa] ECMA ISO/IEC 23270, ISO/IEC 23271 
and ISO/IEC 23272. http://www.ecma.ch and 
http://msdn.microsoft.com/net/ecma 

 [Kel02a] Kelly,W., Roe,P. and Sumitomo,J. , G2: 
A Grid Middleware for Cycle Donation using 
Dotnet , The 2002 International Conference on 
Parallel and Distributed Processing Techniques 
and Applications, Las Vegas, June 2002.  

[Kel02b] Kelly,W. and Roe,P., Donating Cycles 
over the Internet Using Web Services , The 
Eighth Australian World Wide Web 
Conference, Sunshine Coast, July 2002 

[Fer05] Ferreira, F and Sobral, Joao, ParC#:   
         Parallel Computing with C# in .Net*,                  
         Springer-Verlag Berlin Heidelberg 2005 
[Will01] Willcock,J and Lumsdaine,A and  
         Robison,A, Using MPI with C# and the  
         Common Language Infrastructure Indiana           
           University Computer Science Department  
        Technical Report 570 
[Car00] Carpenter,B, Getov,V, Judd,G, Skjellum,T 

and Fox,G MPJ: MPI-like Message Passing for 
Java. Concurrency: Practice and Experience 
Volume 12, Number 11. September 2000 

.NET Technologies 2006  Short papers 82 ISBN 80-86943-11-9

http://www.go
http://www.ecma.ch
http://msdn.microsoft.com/net/ecma

	NET_2006_Short_Papers_All_label.pdf
	A11-full.pdf
	INTRODUCTION
	BACKGROUNDS AND RELATED WORK
	CONTRIBUTIONS
	Estimation of the Model Parameters
	Model Evaluation
	Model validation

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	A41-full.pdf
	INTRODUCTION
	ROLES IN CSS
	SERVICES FOR PARTICIPANTS IN CSS
	Services for Clients
	Services for Partners
	Services for Branches
	Services for Central Office
	Services for Developers
	Other Services

	PROCESSES IN CSS
	ARCHITECTURE
	REFERENCES



