

.NET Technologies 2006

University of West Bohemia
Campus Bory

May 29 – June 1, 2006

Posters papers proceedings

Edited by

Jens Knoop, Vienna University of Technology, Austria
Vaclav Skala, University of West Bohemia, Czech Republic

.NET Technologies – Poster papers conference proceedings

Editor-in-Chief: Vaclav Skala
 University of West Bohemia, Univerzitni 8, Box 314
 306 14 Plzen
 Czech Republic
 skala@kiv.zcu.cz
Managing Editor: Vaclav Skala

Author Service Department & Distribution:

 Vaclav Skala - UNION Agency
 Na Mazinach 9
 322 00 Plzen
 Czech Republic
 Reg.No. (ICO) 416 82 459

Hardcopy: ISBN 80-86943-12-7

CONFERENCE CO-CHAIR

Knoop, Jens (Vienna University of Technology, Vienna, Austria)
Skala, Vaclav (University of West Bohemia, Plzen, Czech Republic)

PROGRAMME COMMITTEE

Aksit, Mehmet (University of Twente, The Netherlands)
Giuseppe, Attardi (University of Pisa, Italy)
Gough, John (Queensland University of Technology, Australia)
Huisman, Marieke (INRIA Sophia Antipolis, France)
Knoop, Jens (Vienna University of Technology, Austria)
Lengauer, Christian (University of Passau, Germany)
Lewis, Brian,T. (Intel Corp., USA)
Meijer, Erik (Microsoft, USA)
Ortin, Francisco (University of Oviedo, Spain)
Safonov, Vladimir (St. Petersburg University, Russia)
Scholz, Bernhard (The University of Sydney, Australia)
Siegemund, Frank (European Microsoft Innovation Center, Germany)
Skala, Vaclav (University of West Bohemia, Czech Republic)
Srisa-an, Witawas (University of Nebraska-Lincoln, USA)
Sturm, Peter (University of Trier, Germany)
Sullivan, Kevin (University of Virginia, USA)
van den Brand, Mark (Technical University of Eindhoven, The Netherlands)
Veiga, Luis (INESC-ID, Portugal)
Watkins, Damien (Microsoft Research, U.K.)

REVIEWING BOARD

Alvarez, Dario (Spain)
Attardi, Giuseppe (Italy)
Baer, Philipp (Germany)
Bilicki, Vilmos (Hungary)
Bishop, Judith (South Africa)
Buckley, Alex (U.K.)
Burgstaller,Bernd (Australia)
Cisternino, Antonio (Italy)
Colombo, Diego (Italy)
Comito, Carmela (Italy)
Ertl, Anton,M. (Austria)
Faber, Peter (Germany)
Geihs, Kurt (Germany)
Gough, John (Australia)
Groesslinger, Armin (Germany)
Huisman, Marieke (France)
Knoop, Jens (Austria)
Kratz, Hans (Germany)
Kumar,C., Sujit (India)
Latour, Louis (USA)
Lewis, Brian (USA)

Meijer, Erik (USA)
Midkiff, Sam (USA)
Ortin, Francisco (Spain)
Palmisano, Ignazio (Italy)
Pearce, David (New Zealand)
Piessens, Frank (Belgium)
Safonov, Vladimir (Russia)
Schaefer, Stefans (Australia)
Scholz, Bernhard (Australia)
Schordan, Markus (Austria)
Siegmund, Frank (USA)
Srinkant, Y.N. (India)
Srisa-an, Witawas (USA)
Strein, Dennis (Germany)
Sturm, Peter (Germany)
Sullivan, Kevin (USA)
Tobies, Stephan (USA)
van den Brand, Mark (The Netherlands)
Vaswani, Kapil (India)
Veiga, Luis (Portugal)

Contents

• Safonov,V., Novikov,A., Smolyakov,A., Cherepanov,D., Sigalin,M.:
Knowledge .NET Ontology-Based Knowledge Management Toolkit for
Microsoft .NET (Russia)

1

• Boccalatte,A., Grosso,A., Vecchiola,C.: Implementing a Mobile Agent
Infrastructure on the .NET Framework (Italy)

5

• Chu,S.E., Kim,J.N., Kang,D.W.: RMI Object Consistency Maintenance
Techniques at Distributed Computing (Korea)

9

Knowledge.NET ontology-based knowledge
management toolkit for Microsoft.NET

Vladimir Safonov
St. Petersburg university

28 Universitetsky prospect
Petrodvorets

 St. Petersburg 198504 Russia

v_o_safonov@mail.ru

Anton Novikov
St. Petersburg university

28 Universitetsky prospect
Petrodvorets

 St. Petersburg 198504 Russia

antonnovik@gmail.com

Alexey Smolyakov
St. Petersburg university

28 Universitetsky prospect
Petrodvorets

 St. Petersburg 198504 Russia

smlkvalex@mail.ru
 Dmitry Cherepanov Maxim Sigalin

 St. Petersburg university St. Petersburg university
 28 Universitetsky prospect 28 Universitetsky prospect

 Petrodvorets Petrodvorets
 St. Petersburg 198504 Russia St. Petersburg 198504 Russia

 hail@pochtamt.ru max_ilya@mail.ru

ABSTRACT

The integration of knowledge engineering to software engineering is one of the most promising software
development methodologies. It enables the combination of “traditional” programming features with knowledge
engineering constructs in one intelligent solution, which is desirable in modern software development.

Most of knowledge engineering tools are isolated, limited and based on very specific languages such as clones
of LISP[Car60a] or PROLOG[Der96a]. As such, they are prevented from integrating them with more
conventional languages and application packages.

In contrast, our Knowledge.NET knowledge management toolkit for Microsoft.NET is based on a hybrid
knowledge representation language, an extension of C# with knowledge engineering features – ontologies and
rule sets.

The system can be used to develop knowledge libraries (bases) and intelligent solutions for a variety of problem
domains. The knowledge can be developed using the Knowledge.NET system knowledge editor, or can be
extracted from the Internet or any text files.

The system also provides a knowledge converter from Knowledge.NET format to more commonly used KIF
(Knowledge Interchange Format).

Keywords
Microsoft.NET, knowledge management, ontology, rule set, C#, converter, knowledge extractor, knowledge
editor, Knowledge Interchange Format, knowledge converter, Microsoft Visual Studio.NET 2005, add-in

1. INTRODUCTION
Knowledge engineering originated in 1950s as a
part of Artificial Intelligence (AI). In general, it
studies how to create expert systems that solve
“creative” problems in certain problems domain
[Saf91a]. In reality, many problems can’t be

resolved by pure algorithms only. Problem solving
can be also related to some hierarchical
(conceptual), factual and heuristic knowledge.
Some of the popular methods of knowledge
representation listed below:

• Productions – represents knowledge as a
set of rules: IF condition THEN action.
Rules are convenient for representing
heuristic knowledge. Nowadays,
PROLOG is the most common language to
build rule-based expert systems;

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

• Frames – hierarchical knowledge
structures. A frame has a set of slots and
can be inherited from other frames. In
turn, each of the slots has a value which

.NET Technologies 2006 Poster proceedings 1 ISBN 80-86943-12-7

mailto:v_o_safonov@mail.ru
mailto:antonnovik@gmail.com
mailto:smlkvalex@mail.ru
mailto:hail@pochtamt.ru
mailto:max_ilya@mail.ru

can be a value of simple type as well as a
reference to another frame. The concept
of frame was introduced by Marvin
Minsky in 1970s [Min74a].

• Ontologies. The term ontology was
borrowed from philosophy in early 1990s.
The most known definition of ontology
was formulated by Tom Gruber: “An
ontology is an explicit specification of a
conceptualization”. More specifically, we
define the ontology as a kind of
specification of a problem domain in terms
of its concepts and their relationships that
allows to describe and to share hierarchical
and factual knowledge in very efficient
way. Knowledge Systems Laboratory of
Stanford University supports visualization
tool Protégé [Tut04a], which allows to
manage ontology-based and frame-based
knowledge.

Usually, knowledge engineering tool supports only
one type of knowledge and has a very specific and
limited semantic of base language, e.g. LISP,
PROLOG. In our opinion, it increases complexity
of usage of these tools. In contrast to many other
tools, Knowledge.NET supports hybrid knowledge
(productions, ontologies). More of that, as a base
language, we use C# [Spe05a] extended by
additional keywords and constructs for knowledge
representation.
In section 2 we briefly describe principles of the
Knowledge.NET system. In section 3 we present
our approach to convert knowledge into KIF
format. Section 4 briefly describes knowledge
extractor subsytem. The summary section
concludes and outlines the perspectives for the
future.

2. PRINCIPLES OF
KNOWLEDGE.NET
Seamless Integration to Visual Studio
Like Aspect.NET, the Knowledge.NET system is
implemented as an add-in to Visual Studio.NET
2005. It actually means that, on installing the add-
in, Knowledge.NET GUI becomes part of Visual
Studio GUI. Due to that, it is possible to use all of
VS.NET’s wide spectrum tools and features for
application design, implementation, debugging,
profiling, etc., when developing an intelligent
solution in Knowledge.NET. The add-in contains
the following components:

• Knowledge Editor and Coloring;

• Coloring and IntelliSense for
Knowledge.NET language;

• Add new type of projects:
Knowledge.NET

Hybrid Knowledge Representation
Language
The Knowledge.NET language is an extension of
C# by constructs for representing hybrid, ontology-
based knowledge. Semantics of ontology in
Knowledge.NET is similar to that of the OWL
knowledge representation language [Ove04a]
developed by the W3C consortium.

A Knowledge.NET source code is at first converted
into the ordinary C# code, and then compiled by the
.NET C# compiler into an assembly that can be
used as any other .NET application.

2.1.1 Program structure
A Knowledge.NET application source code
consists of the following parts

• С# source code;
• Knowledge .NET – specific source code

(concepts, properties, instances, rule sets)
The С# source code part is separated from
Knowledge .NET source code by the “#ontology”
keyword.

The user can use from her C# code concepts and
their properties using standard way of addressing:
[concept_name].[property_name]

Query language
The Knowledge.NET query language is one of the
ways of accessing its knowledge base. It allows to
select from ontology instances satisfying a given
criterion (query).
As an example, consider a query on the ontology
“Vehicles”: “All the vehicles whose maximal speed
is not more than 100 kilometers per hour”:
Individuals of concepts Vehicle where
HasMaximumSpeed <= 100
The result of the above request will be a set of
instances of the Vehicle concept whose
HasMaximalSpeed property’s value is not greater
than 100 km/hour.
The query language is supported by the
QueryEngine class defined in the Knowledge.NET
class library.

Rule sets
Besides conceptual knowledge representation,
Knowledge.NET also allows to define heuristic
knowledge using rule sets. Thus, the above

.NET Technologies 2006 Poster proceedings 2 ISBN 80-86943-12-7

mentioned hybrid knowledge framework is
supported. The format of rule set is very close to
that used in the KEE system. As a context of a rule
set, an ontology is used which contains that rule set.
To use rules, Knowledge.NET contains a classical
style implementation of forward and backward
chaining. If necessary, one can use her own
inference engine by implementing the
IProductionSystem interface.

Knowledge Editor
Besides the Knowledge.NET language, we also
developed a Knowledge Editor (see fig. 1). The
editor can be used to browse, update and enter
knowledge. So, the knowledge engineer can work
either in interactive mode or by creating knowledge
directly in Knowledge.NET source. The knowledge
editor also allows to navigate from graphical
knowledge representation to textual knowledge
representation and to call the converter from
Knowledge.NET into C#.

fig. 1

3. SUPPORTING FOR THE KIF
FORMAT

Knowledge.NET also contains a converter of
knowledge from Knowledge.NET to KIF
(Knowledge Interchange Format) [Spe98a], to
make the knowledge created in Knowledge.NET
available for experts working in more traditional
KIF format.
The conversion process consists of two stages. At
the first stage the input document in
Knowledge.NET is parsed and its internal
representation is generated, in the format of the
well known Ontolingua [Man97a] knowledge
representation language. Actually at this stage the
conversion process can be finished: the user can
now use the output document in Ontolingua format.
This approach is convenient because the user may
convert this document into any of the knowledge
representation languages supported by Ontolingua
(in particular, to use the Ontolingua’s KIF
compiler).
At the second stage, the knowledge is converted
into KIF format.

Overview of Ontolingua.
Ontolingua is a knowledge engineering
environment containing a set of functions to work
with ontologies (browsing, creating, updating and
using). The Ontolingua language is a superset of
KIF and contains constructs to represent frames and
ontologies. The system also has a number of
translators into other knowledge representation
languages – Loop, Epikit, Express, Generic-Frame,
Algernon, IDL and into KIF [Gru93a].

The Conversion Process
At the first stage, frames and concepts are
converted into structures corresponding to
Ontolingua’s define-class and define-instance (for
instances), properties – to define-relation.
At the second stage, the following happens:

1. All the used relations are determined.
Their representation in terms of KIF is written to
the output stream.

2. define-relation and define-class are
transformed into the DEFRELATION construct of
the KIF language the following way:
 :IFF-DEF replaced by ":="
 :DEF replaced bt ":=>"
 :CONSTRAINTS replaced by "=>"
 :EQUIVALENT replaced by "<=>"
 :AXIOM-DEF replaced by :AXIOM
3. For all primitive numbers used in the input
Knowledge.NET source, the appropriate relations
are generated (using the defrelation construct). The

.NET Technologies 2006 Poster proceedings 3 ISBN 80-86943-12-7

following two KIF built-in numeric relations are
used:
integer - expression(integer t) denotes
that the t object is an integer;
real and (real t) – the same for real
numberss.
For example, the byte type can be converted as
follows:
 (defrelation byte (?x) :=
 (and (natural ?x) (<= ?x 255)))
 (defrelation natural (?x) :=
 (and (integer ?x) (>= ?x 0)))

4. DATA MINING

Knowledge.NET contains a knowledge extractor.
This subsystem can be used to generate “raw”
ontology from an array of documents or from some
repository (e.g., from the Internet).
The scheme of functioning of the knowledge
extractor is as follows:

• Morphological analysis of the input text
and constructing a set of entities;

• Semantic analysis of the set of entities and
constructing the knowledge graph;

• Analysis of the knowledge graph.
Morphological Analysis
At this stage, each word is converted to its normal
form using MRD dictionaries and XML
dictionaries.

Semantic Analysis
At this stage, a knowledge graph is constructed,
with the nodes representing entities and edges
representing relations. Analysis of entities is
performed by customizable templates written in a
specialized macro definition language.

Analysis of the Knowledge Graph
At this concluding stage:

• Different properties can be unified into
one class. For example, the properties
“big” and “giant” can be united into one
class

• The graph is cleaned up to delete obsolete
relations. For example, if an ascendant
class has some property, the same property
can be omitted from its descendant classes.

5. SUMMARY

Currently the work on Knowledge.NET is at the
initial stage – the first prototype is developed and
will be used to solve a variety of practical tasks that
require using both “traditional” programming and
knowledge engineering.
In future, we plan to integrate Knowledge.NET
with Aspect.NET [Saf05a], to enable using
Knowledge.NET for aspect-oriented knowledge
engineering.

6. REFERENCES
1. [Gru93a] Gruber, T.R. A Translation

Approach to Portable Ontology
Specifications, 1993

2. [Man97a] Ontolingua Reference Manual at
http://www-
ksl.stanford.edu/htw/dme/thermal-kb-
tour/ontolingua.html

3. [Ove04a] OWL Web Ontology Overview
at http://www.w3.org/TR/owl-features/

4. [Saf91a] Safonov, V.O. TIP technology
and its application in developing compilers
and expert systems for high-performance
computing systems. Doctoral dissertation,
Leningrad, 1991

5. [Saf05a] Safonov, V.O. Aspect.NET:
Aspect-Oriented Programming for
Microsoft.NET in Practice. NET
Developer’s Journal, July 2005

6. [Spe98a] KIF language specification at
http://logic.stanford.edu/kif/dpans.html

7. [Spe05a] C# Language Specification at
http://msdn.microsoft.com/vcsharp/progra
mming/language/#Language%20Specificat
ions

8. [Tut04a] Protégé OWL Tutorial at
http://www.co-
ode.org/resources/tutorials/ProtegeOWLT
utorial.pdf

9. [Min74a] Minsky, M. A Framework for
Representing Knowledge, MIT-AI
Laboratory Memo 306, 1974

10. [Car60a]McCarthy, J. Recursive Functions
of Symbolic Expressions and Their
Computation by Machine, Part I, April
1960

11. [Der96a]Deransart, P., Ed-Dbali, A., and
Cervoni, L. Prolog: The Standard, 1996

.NET Technologies 2006 Poster proceedings 4 ISBN 80-86943-12-7

http://www-ksl.stanford.edu/htw/dme/thermal-kb-tour/ontolingua.html
http://www-ksl.stanford.edu/htw/dme/thermal-kb-tour/ontolingua.html
http://www-ksl.stanford.edu/htw/dme/thermal-kb-tour/ontolingua.html
http://www.w3.org/TR/owl-features/
http://logic.stanford.edu/kif/dpans.html
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf

Implementing a mobile agent infrastructure on the
.NET framework

Antonio Boccalatte, Alberto Grosso, Christian Vecchiola

DIST – University of Genoa
Via Opera Pia 13

 16142, Genova, Italy
{nino, agrosso, christian}@dist.unige.it

ABSTRACT

This paper presents the solution adopted by the AgentService platform in implementing a software infrastructure
for mobile agents. The mobility service takes advantage of the agent model provided by the platform which
offers the separation between the state of the agent and its activities. The modular architecture of the platform
allows an elegant integration of the mobility service whose implementation resides within an additional platform
module. The mobility infrastructure offers its services to the agents that can be stopped, moved, and restarted in
a transparent manner. AgentService provides a sort of weak mobility service: during a transfer the state of the
agent is maintained while the activities it performs are started from the beginning. The mobility infrastructure is
a component that enriches the platform features and allows the implementation of more complex services such
as load balancing strategies among different AgentService installations.

Keywords
Agent Mobility, Load Balancing Policy, Agent Framework

1. INTRODUCTION
Software mobility is a software property which can
bring robustness, performance, scalability or
expressiveness to systems [Kar98a]. Code mobility
concerns the ability to migrate a unit of running code
from one host to another by preserving partially or
totally its execution state [Cab00a]. In particular,
systems that completely maintain the execution state
are said to support strong mobility, while systems
that discard the execution state are said to provide
weak mobility. The possibility of moving running
code among computing environments is an
interesting opportunity for dynamic intelligent agent
systems. Agents are autonomous, pro-active, and
socially able: the ability to move and to migrate
between different nodes of the community enhances
the previously cited features. Hence, as for objects,
mobility is an interesting property for agents and

mobile agents have emerged as a paradigm for
structuring distributed applications.
A definition which sufficiently characterizes the
essence of a mobile agent system has been proposed
by Chen and Nwana [Che95a, Nwa96a]: “..a mobile
agent is a software entity which exists in a software
environment. It inherits some of the characteristics of
an agent. A mobile agent must contain all of the
following models: an agent model, a life-cycle
model, a computational model, a security model, a
communication model and finally a navigation
model.”.
The idea of mobile agent that cannot be implemented
without providing multi-agent systems with a
software infrastructure that allows the transfer of
agents in a transparent manner. This paper describes
the solution adopted within the AgentService
framework to implement mobility for agents. The
proposed solution turns out to be very effective
thanks to the agent model adopted by the framework
which separates the state and the behavior of a
software agent. By using serialization and reflection
the state of the agent and some information of the
active behavior of the agent are persisted and
transferred to the target site. In the following, the
authors will illustrate the main features of the
AgentService framework and will explain in detail
the architecture and the implementation of the
mobility infrastructure. A use case will also explain

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

Journal of .NET Technologies
Copyright UNION Agency – Science Press,
Plzen, Czech Republic

.NET Technologies 2006 Poster proceedings 5 ISBN 80-86943-12-7

how to use the mobility infrastructure to implement
more complex services such as load balancing among
different AgentService installations.

2. AGENTSERVICE
AgentService Main Features
The agent oriented paradigm [Wol99a] can be a
useful abstraction to model open and dynamic
communities. An agent is an autonomous software
entity provided with some levels of “intelligence”.
Moreover, by means social ability, agents can
enhance their performances by interoperating in
communities called multi-agent systems (MASs)
[Wei99a]. A widely accepted architecture
specification for multi-agent systems with a reference
agent model is the one proposed by the Foundation
of Intelligent Physical Agents (FIPA) [Fip01a].

AgentService [Boc04a] is a framework for
developing multi-agent systems based on the
Common Language Infrastructure, whereof .NET
framework is one implementation. AgentService
provides a specific agent model and a runtime
environment for agent execution compliant with the
FIPA specifications. In literature there are many
works concerning agent platforms, the most
interesting and known are Zeus [Nwa98a], FIPA-OS
[Pos00a], and JADE [Bel99a]; AgentService is
characterized by an extremely modular architecture
and a flexible agent model which allows the
implementation of different agent architectures.

Two different kinds of modules have been designed
to model all the features of the AgentService
platform: core modules and additional modules. Core
modules implement all the services required by the
platform instance to set up its activity; they involve
management of assemblies in which agent templates
are defined (Storage Module), the messaging service,
the management of the agent’s persistence, and a
logging service. Through additional modules new
features can be added to the platform: they enrich the
platform capabilities but they are not essential for the
standard activity of agents.

Within AgentService, agents are designed as
software entities whose activity is defined by a
particular managed set of data (Knowledge objects)
and performed by a set of concurrent behaviors
(Behavior objects). A Knowledge object represents a
set of correlated data modeling a structured concept
of the problem domain. A collection of specified
Knowledge objects define the state of a software
agent: it can be persisted and portions of it can be
shared among the different Behavior objects.
Behavior objects contain all the agent computational
logic and define the agent aggregate behavior.
Behavior objects are concurrent and share the

information they need by means of the Knowledge
objects. Such distinction between activities and data
allows a clear decomposition of the agent definition,
represents a flexible and generic model. From the
implementation point of view every agent instance is
deployed in a dedicated Application Domain, which
ensures the autonomy and safety of the code
executed inside it (agent activities).

3. MOBILITY IN AGENTSERVICE
Introduction
According to the definition given by Chen and
Nwana [Che95a, Nwa96a] a mobile agent inherits all
the properties of a software agent and, in addition,
contains a navigation model which embraces all
aspects of agent mobility from the discovery and
resolution [Whi95a] of destination hosts to the
manner in which a mobile agent is transported.
Hence, the introduction of a navigation model
implies the extensions of the agent model defined
within AgentService with the previously discussed
features.

It can be observed that the ability of identifying and
discovering destination hosts is already implemented
by using the directory services of the platform:
AgentService platforms can join together and define
a federation. A federation defines the boundaries into
which the mobility service takes place. In the
following the authors will focus the attention on the
second element characterizing the navigation model
that is the machinery required to transfer agents. In
order to move an agent the model defining its life
cycle needs to be extended with an additional state
which characterize the agent while is being moved.
As suggested by the FIPA specifications the common
life cycle of an agent has been extended by adding
the transit state and two actions to enter and leave
that state (move and execute). The agent itself can
require the move action while the platform, through
the Agent Management System (AMS), is
responsible of completing the migration by
performing the execute operation.

In addition, mobile agents require a suitable runtime
environment which provides a transfer service
allowing them to move from one node to another:
this environment is built on top of a host system.
Within AgentService, this runtime provides to the
agent with a transfer service based on a variation of
weak mobility: even if the execution does not
continue exactly by executing the next instruction a
partial resume of the execution state has been
implemented. The main idea is to exploit the adopted
agent model and move just the agent state
(knowledge objects) among platforms. Within the
target platform the agent activities can be restarted

.NET Technologies 2006 Poster proceedings 6 ISBN 80-86943-12-7

taking advantage of the persisted agent state. In
addition, the framework provides developers with an
entry point, the Resume method, for checking the
state and the activities of the agent before it
continues the execution.

Architecture of the Mobility Service
The architecture of the mobility service takes full
advantage from the agent model adopted by the
platform: the separation among the agent state from
the activities it performs makes the migration process
simple. In order to run an agent the runtime
environment needs the information defining the
agent state and the assemblies containing the agent
definition. Hence, moving an agent among
AgentService installations requires moving its state
and ensuring the presence of that agent type
definition on the target platform. Once an agent is
moved it is possible to restart its activity by
instantiating a new agent of that specific type and
restoring its state. State restoration involves loading
the transferred knowledge objects and the activation
of all the behaviors objects running when the agent
was stopped. The information about knowledge
objects and the state of each behavior (ready, active,
suspended) are all what is really needed to move an
agent.

The process which transfers an agent is activated by
a request and can be described as follows:

1. negotiate: the AMS of the source target
contacts the AMS of the target platform and
asks if the agent can be moved;

2. stop and persist: if the agent can be moved,
the AMS stops its activity, persists its state,
and puts it into the transit state (move
action);

3. transfer: the AMS instruct the mobility
module to move the agent. The state of the
agent is transferred to the target platform.
This operation may require the transfer of
the assemblies describing the types of the
agent or used by it;

4. restore: the mobility module notifies the
AMS that the transfer is completed. The
AMS creates an instance of the same type of
the agent received sets its state and invokes
the Resume method allowing the
programmer to customize the re-activation
of the agent;

5. execute: the agent changes its state from
transit into its original state, the AMS of the
source platform is notified of the successful
transfer and the agent is activated (execute
action).

This process is implementation independent and
AgentService defines an interface (IMobilityModule)
that every module that wants to offer this service
must implement. In this way, developers can
implement the service as they prefer: a web service,
an ftp service, or a custom channel.

The model adopted by AgentService to define an
agent greatly simplifies the work of the mobility
module. Thanks to the clear separation among the
state and the activities the maintenance of the
execution state is obtained by saving all the
knowledge objects composing the knowledge base of
the agent and the status of the behavior objects.
When the agent is restored the information saved are
loaded into the new instance and all the activities
previously stopped are started. In particular, the
mobility infrastructure has to deal with the transfer of
assemblies if the repositories of the two platforms are
not synchronized.

The entire process that allows mobility of agents
takes place if and only if the platforms are allowed to
transfer agents; otherwise it stops the negotiation
phase. The AMS of the source platform will look in
the platform configuration to determine if it is
allowed exporting agents, while the AMS of the
target platform will check if it is allowed to import
agents. These information are contained in the
platform profile and administrators can customize the
platform behavior by modifying the profile in the
configuration file.

4. LOAD BALANCING POLICY
Load balancing in AgentService is managed by the
Load Balancing Policy (LBP) module. It provides a
service that federates platform instances and creates a
unique environment in which agents can move. By
default, LBP comes with two policies. The first
policy balances the number of agent among
platforms, while the second is based on the number
of exchanged messages moving in the same platform
the agents interacting more frequently. The platform
context, provided by AgentService to each module,
gives access to these information. LBP modules,
installed on different nodes, cooperate to constitute a
federation of platforms defining the border within the
balancing policies can be applied. The federation
system adopts a client/server model: each node
provides its platform profile to the master node
which maintains the federation and applies policies.
The LBP configuration file defines the structure of
the federation indicating which node works as server.
At runtime new platforms can dynamically join the
federation by registering their profiles to the master
node. The master node applies balancing policies
every time an interesting event occurs (i.e. the
creation of a new agent, the registration of a new

.NET Technologies 2006 Poster proceedings 7 ISBN 80-86943-12-7

platform with the federation). Developers can
implement new load balancing policies and
dynamically load them in the server LBP module as
plug-ins. Hence only the LBP module of the master
node handles the balancing policy.

5. CONCLUSIONS
The AgentService modular architecture allows the
design and the implementation of additional services
which are fully integrated with the standard ones.
The mobility module provides a weak mobility
service even if it automatically maintains the agent
state. Developers are provided with facilities for
customizing agent resumption. The presence of a
software mobility infrastructure allows the platform
to be enriched with more capabilities. The load
balancing policy (LBP) module provides an
interesting service for resources management
exploiting the mobility service. The LBP module
allows administrators to apply load balancing
algorithms to a federation of AgentService platforms.
The agent transfer process was tested applying the
default balancing policies. The tests pointed out that
the most onerous operation during the mobility
process is the transfer of assemblies required for
agent activities. This is a minor drawback since in
common balancing scenarios all the nodes are likely
to run the same agent types; hence there is no need
for huge assembly transfers.

The mobility infrastructure suffers from the lack of
interoperability with different FIPA compliant
platforms, in particular Jade. The development of an
interoperable mobility infrastructure is a very
challenging task which involves a lot of problems
due to the adoption of different technologies,
architectures, and agent models.

6. REFERENCES
[Kar98a] Karnik, N. M., and Tripathi, A. R. Design

Issues in Mobile-Agent Programming Systems.
IEEE Concurrency 6(3), pp. 52-61, July-
September 1998.

[Cab00a] Cabri, G., Leopardi, L., and Zambonelli, F.
Weak and Strong Mobility in Mobile Agent

Applications. Proceedings of the 2nd
International Conference and Exhibition on The
Practical Application of Java (PA JAVA 2000),
Manchester (UK), April 2000.

[Che95a] Chess, D., Harrison, C., and Kershenbaum.
A. Mobile Agents: Are they a good idea?.
Technical Report, IBM T.J. Watson Research
Center, NY, March 1995.

[Nwa96a] Nwana, H. Software agents: An Overview,
Knowledge and Engineering Review 11(3),
November 1996.

[Wol99a] Wooldridge, M. Intelligent Agents. In
Multi-agent Systems – A Modern Approach to
Distributed Artificial Intelligence, G. Weiss Ed.,
Cambridge, MA, pp. 27-78, 1999.

[Wei99a] Weiss, G. Multi-agent Systems – A
Modern Approach to Distributed Artificial
Intelligence, G. Weiss Ed., Cambridge, MA,
1999.

[Boc04] Boccalatte, A., Gozzi, A., Grosso, A., and
Vecchiola, C. AgentService. The Sixteenth
International Conference on Software
Engineering and Knowledge Engeneering
(SEKE’04), Banff Centre, Banff, Alberta, Canada
20-24 June 2004.

[FIP01a] FIPA Abstract Architecture Specification,
http://www.fipa.org/specs/fipa00001/

[Nwa98a] Nwana, H.S., Ndumu, D.T., and Lee, L.C.
ZEUS: An advanced Tool-Kit for Engineering
Distributed Multi-Agent Systems. Proceedings of
PAAM98, pp. 377-391, London, U.K., 1998.

[Pos00a] Poslad, S., Buckle, P., and Hadingham, R.
The FIPA-OS agent platform: Open Source for
Open Standards, PAAM2000, Machestor, UK,
April 2000.

[Bel99a] Bellifemine, F., Rimassa, G., Poggi, A.
JADE - A FIPA-compliant Agent Framework.
Proceedings of the 4th International Conference
and Exhibition on The Practical Application of
Intelligent Agents and Multi-Agents, London,
1999.

[Whi95a] White J.: The foundation of the electronic
market place. General Magic white paper 1995.

.NET Technologies 2006 Poster proceedings 8 ISBN 80-86943-12-7

RMI Object Consistency Maintenance Techniques at
Distributed Computing

Seong Eun Chu

Department of Computer Science
Chonnam National University

300 Yongbong-Dong
Bug-Gu

500-757, Gwangju, Korea

sechu@jnu.ac.kr

Jae Nam Kim
Department of Digital Animation
Kwangju Women’s University

165 Sanjeong-Dong
Gwangsan-Gu

506-713, Gwangju, Korea

jnkim@mail.kwu.ac.kr

Dae Wook Kang
Department of Computer Science

Chonnam National University
300 Yongbong-Dong

 Bug-Gu
500-757, Gwangju, Korea

dwkang@jnu.ac.kr

ABSTRACT
Various object caching techniques between a client and a server have been proposed at distributed computing.
However, these techniques have handled data consistency only. They have not handled object own consistency.
In this paper, we proposed two techniques for object consistency maintenance. The first technique makes it
possible that the client confirms the object update time in the server based on RMI (Remote Method Invocation).
The second is that the server broadcasts invalid message to the clients. Both techniques are evaluated
experimentally, and results show that they could be applied selectively at the distributed applications considering
object update frequency.

Keywords
RMI (Remote Method Invocation), Consistency Maintenance, Distributed Computing.

1. INTRODUCTION
New objects are created in server and methods of the
objects are invoked by clients of the different
memory address in distributed computing. There are
several techniques such as RMI, CORBA, DCOM,
EJB for the development of object oriented
distributed applications. RMI does not need to install
separately the middleware for supporting information
communication between objects or components
because it has been implemented already at JVM.
Therefore, RMI has been used widely at distributed
computing environments as the most simple object
communicational model [Dow98]. A data caching at
distributed computing environments has been used
efficiently when the frequency of data access is high.
Generally, caching is simple, but many elements
should be considered to maintain consistency of
caching.

Existing techniques about consistency maintenance
have been classified by detection-based and
avoidance-based categories. Detection-based
algorithms permit stale data in local, examine the
validity of a server when read or write operations are
performed. These algorithms maintain the
consistency by sending many messages to ensure the
validity of data, therefore bandwidth is wide.
Avoidance-based algorithms don't allow a reference
opportunity about the stale data to maintain

consistency. Because this consistency checks are
delayed to the last, the decrease of the number of
message transmission and rapid response are possible,
but conflict is found late, which is increasing
aborting rate. [Fra97, Fra96]. However, it is difficult
for these techniques to apply to objects that have
complex characteristics such as abstraction,
encapsulation, polymorphism, inheritance [Wol96].
Therefore, the researches to maintain object
consistency are need.

In this paper, we proposed two techniques for the
maintenance of an object caching consistency based
on RMI. The first technique is Time Stamp (TS)
technique that compares update time in a server with
cache time in a client when a client asked a server of
consistency check to use a cached object. We applied
TS to RMI. This modified RMI is called TS-RMI.
The second is Invalid Message (IM) technique that
broadcasts object updating message to all clients
using this cached object when object is changed in
server. This modified RMI which applies IM to RMI
is called IM-RMI. We measured average response
time of method invocation according to object update
frequency under equal computing environments to
compare TS-RMI with IM-RMI.

The rest of the paper is organized as follows. In
section 2, we describe related work. The proposed
consistency maintenance techniques are explained in

.NET Technologies 2006 Poster proceedings 9 ISBN 80-86943-12-7

section 3, and experimental results are presented in
section 4. Finally, we conclude our work and suggest
future work in section 5.

2. RELATED WORK
In fixed computing environment, data consistency
maintenance techniques have been classified by
detection-based and avoidance-based. At mobile
computing environments, detection-based algorithms
such as NWL-NH are used between a mobile host
and a base station, avoidance-based algorithms such
as O2PL are used between fixed hosts [Jin95],
techniques such as AT, SIG periodically broadcast a
client the fact that database is updated for
consistency maintenance in disconnection [Bar94].

Detection-based algorithms permit stale data in local,
examine the validity of a server when read or write
operations are performed. In C2PL, synchronization
has been needed. A server doesn't send updating
message to a client and takes the responsibility for all
locking and deadlock detection. 2PL techniques are
expanded from client/server environments to
centralized control database environments, whereas
implementation is simple, Each time they make a
server perform validity check process at read or write
operations, therefore, message transmission
frequency is high and bandwidth is narrow [Car91,
Wan91]. NWL is an asynchronous technique.
Message transmission frequency is low in NWL. It is
different from C2PL in write operations, and it
makes server check validity. NWL-NH is adapted at
mobile environments. After server broadcasts
updated data items to a client periodically, a client
removes invalid data items in cache [Jin95]. AOCC
is a detection-based optimistic technique that allows
a transaction to access cached data. It defers validity
check until the transaction commits phase. In AOCC,
if a transaction aborts locally, the server need not be
notified as all of the transactions are performed
locally until the commit. Because it is incurred
primarily in the client, it makes abort cost low and
performance high [Bod04].

Avoidance-based algorithms don't allow a reference
opportunity about the stale data to maintain
consistency. CBL is locally cached page copies are
always guaranteed to be valid, so transactions can
read them without contacting the server (i.e., only a
local read lock is required). On a cache miss, the
client sends a page request message to the server.
The server returns a valid copy of the requested page
when it determines that no other active clients
believe they have write permission for the page. In
callback locking, write intentions are declared
synchronously, a client must have write permission
on a page before it can grant a local write lock to a

transaction. Because write permissions are obtained
during transaction execution, transactions can
commit after completing their operations without
performing any additional consistency maintenance
actions [Fra97]. ACBL is a synchronous avoidance-
based algorithm as it uses lock-escalation messages
in a synchronous manner, it sends a request for lock-
escalation and waits for a reply before proceeding
[Bod04, Gru97, and Zah97]. AACC technique is that
all client/server manage lock with page and object
unit, read-lock divide by private-read lock and
shared-read lock. Private-read lock is cached to one
client and shared-read lock is cached to several
clients. AACC has high performance than ACBL,
and low aborting rate than AOCC [Tam98]. O2PL
acquires read and write lock locally until transaction
completion, examines accuracy to a server when
there is completion. It shows that transmission
messages are reduced as compared with C2PL [Fra96,
Car91].

3. PROPOSED TECHNIQUES
Object caching consistency means that an original
object in a server is equal to a cached object in a
client. The proposed techniques applied object
caching consistency maintenance problem to RMI.
These modified RMI that apply proposal techniques
in general RMI is called TS-RMI and IM-RMI. We
need some hypotheses as follows. First, objects of
old version may be in cache basically. Second,
Remote method invocation is happening from many
clients to optimum level frequently. Also, we put
Cache Manager and Consistency Manager commonly
in modified RMI and take charge processing about
caching and consistency maintenance respectively.

3.1 Time Stamp Technique (TS-RMI)
This technique adds to general RMI time stamp
function to compare client's cache time to server's
update time for consistency. Client's cached object is
changed into a new object that reflects server's
update time recently. Time comparison is processed
by client-initiated which try to use object.
Consistency is maintained, when cache time is the
greater equal than update time (⑧Valid of [Figure
1]). Therefore, Client's Cache Manager invokes a
local object method. This process shows ①-⑩ in
[Figure 1].

In other case, the object was stored in caching table
before a remote object is changed. That is, it is state
that consistency doesn't maintain (Ⓖ Invalid of
[Figure 1]). At this time, Server's Consistency
Manager invokes remote method, then it makes
Skeleton transmit result and an object to Stub
through network.

.NET Technologies 2006 Poster proceedings 10 ISBN 80-86943-12-7

Figure 1. System Model of TS-RMI

Stub changes contents of caching table with a
transmitted object (Update on Caching Table Ⓚ),
returns result to a client object. This process shows
Ⓐ-Ⓛ marked in [Figure 1].

When the remote method is invoked for the first time,
there is no cached object in the caching table (③
Non-cached of [Figure 1]). In this case, consistency
check is not necessary. Stub stores result and an
object that transmitted from Skeleton in caching table
(Add to Caching Table ⑫), returns result to client
object. This process shows ①-⑬ marked in [Figure
1].

An advantage of TS-RMI is the fact that the
consistency checked simply, the communication
bandwidth is decreased by handling client-initiated
consistency check. Also, server's responsibility for
consistency maintenance is decreased because it is
not necessary for server to send object update
message.

3.2 Invalid Message Technique (IM-RMI)
In IM-RMI, as soon as a caching object is changed, a
server broadcasts invalid message to clients which
have ever used the remote object caching (1-3 of
[Figure 2]). Therefore, it must have information
about all clients that possesses a cached object on
broadcasting message table in a server. Whenever
caching happens, Server's Cache Manager keeping

client's IP-Address in own broadcasting message
table.

On the other hand, a client maintains consistency by
checking transmitted state of invalid message.
Consistency is maintained when client did not
receive invalid message (⑤ Valid of [Figure 2]),
therefore, Client's Cache Manager invokes a local
object method. This process shows ①-⑦ in [Figure
2].

In the case of receiving a invalid message,
consistency is not maintained (Ⓔ Invalid of [Figure
2]), then Client's Consistency Manager makes Stub
invoke a remote method, gets result and a object by
Skeleton from Server's Cache Manager, stores
updated object in client's caching table, and sets
invalid message field as default value (zero) for next
invocation (Update on Caching Table Ⓜ). This
process shows Ⓐ-Ⓝ marked in [Figure 2].

When the remote method is invoked for the first time,
there is no cached object in the caching table (③
Non-cached of [Figure 2]). In this case, consistency
check is not necessary. Stub stores result and an
object that is transmitted from Skeleton in caching
table (Add to Caching Table ⑬), returns result to a
client object. This process shows ①-⑭ marked in
[Figure 2].

Figure 2. System Model of IM-RMI

.NET Technologies 2006 Poster proceedings 11 ISBN 80-86943-12-7

An advantage of IM-RMI is the fact that the
consistency check around time is decreased because
client access to server only when client has received
invalid message. Therefore, this RMI can get fast
response time.

4. PERFORMANCE COMPARISON
We experimented with server such as Pentium IV
3.0GHz, Main Memory 2GB, Windows XP, Desktop
Computer, Marvell Yukon 88E8001 PCI Gigabit
Ethernet Controller, LAN 100Mbps, and client such
as Pentium IV 1.6GHz, Main Memory 256MB,
Windows XP, IBM Laptop Computer, Orinoco
Wireless LAN PC Card (5volt), WaveLAN 11Mbps.
Both a server and a client are installed in JDK
1.5.0_06.

0

100

200

300

400

500

600

700

800

900

1000

1:1 2:1 2.4:1 2.8:1 3:1 6:1 10:1 14:1 24:1 60:1 100:1 140:1 180:1 200:1

object's update frequency
(Invocation:Updating times)

ResponseTime (ms)

IM-RMI

TS-RMI

Figure 3. Average Response Time Comparison

TS-RMI with IM-RMI
We measured response time respectively, while a
method is invoked 30 times, object updated intervals
are from 500 ms to 100,000 ms, and then compared
TS-RMI with IM-RMI under equal computing
environments. Elapsed time of remote method takes
about 500 ms. In case an object update cycle takes
500 ms, whenever a method invoked, an object was
changed (1:1). In case an object update cycle takes
100,000 ms, when a method is invoked 200 times, an
object was changed only one (200:1).

As experimental results, the more object update is,
TS-RMI is faster than IM-RMI in response time.
Otherwise, IM-RMI is faster than TS-RMI in
response time as shown in [Figure 3].

5. CONCLUSIONS
In this paper, we proposed two techniques for object
consistency that has complex characteristics such as
abstraction, encapsulation, polymorphism,
inheritance. We experimented based on RMI. One is
TS-RMI that compares update time of a server with
cache time of a client when client checks consistency
to server for using cached object. The other is IM-
RMI that broadcasts an object updating message to
all clients using this cached object when object is
changed in server. As results, TS-RMI was efficient

when the frequency of server object update is high,
and IM-RMI was efficient that server's object update
is infrequent. Therefore, modified RMI could apply
selectively at the distributed applications considering
object update frequency.

We have presented mechanisms for efficient caching
consistency of objects for RMI applications. Using
these mechanisms, caching can be easily and
transparently added to existing RMI applications,
while preserving RMI compatibility. The central
mechanism includes the ability to support the Cache
Manager and Consistency Manager. Stub and
Skeleton class that generated by RMIC are modified
by CRMIC. No changes are required to existing
Client and Server applications. Also existing RMI
performance can be enhanced without losing
backward-compatibility. The future work of this
study will be additional technique for mobile
computing environments.

6. REFERENCES
[Bar94] Barbara D., Imielinski T., ″Sleepers and

Workaholics: Caching Strategies in Mobile
Environments″, ACM SIGMOD, pp. 1-12, 1994.

[Bod04] Bodorik P., Jutla D., Lu Y., ″Interoperable Server-
based Cache Consistency Algorithm″, IEEE Database
Engineering and Applications Symposium, 2004.

[Car91] Carey M., Franklin M., Livny M., Shekita
E., ″Data Caching Tradeoffs in Client-Server DBMS
Architectures″, ACM SIGMOD, pp. 357-366, 1991.

[Dow98] Downing T. B., ″Java RMI: Remote Method
Invocation″, IDG Books, pp. 13-15, 1998.

[Fra96] Franklin M., Carey M., ″Client Data Caching: A
Foundation for High Performance Object Database
System″, Kluwer Academic Publishers, 1996.

[Fra97] Franklin M., Carey M., Livny M., ″Transactional
Client-Server Cache Consistency: Alternatives and
Performance″, ACM TODS, pp. 315-363, 1997.

[Gru97] Gruber R., ″Optimism VS. Locking: A Study of
Concurrency Control for Client Server Object-Oriented
Databases″, Ph.D Thesis, MIT, 1997.

[Jin95] Jin Jing et al., ″Distributed Lock Management for
Mobile Transaction″, IEEE Distributed Computing
System, 1995.

[Tam98] Tamer M., Kaladhar M., ″An Asynchronous-
Based Cache Consistency Algorithm for Client Caching
DBMSs″, VLDB, pp. 440-451, 1998.

[Wan91] Wang Y., Rowe L., ″Cache Consistency and
Concurrency Control in a Client/Server DBMS
Architecture″, ACM SIGMOD, pp. 367-376, 1991.

[Wol96] Wollrath A., Riggs R., Waldo J., ″A Distributed
Object Model for the Java System″, 2nd Conference on
Object-Oriented Technologies, 1996, Toronto, Ontario,
Canada.

[Zah97] ZahariousDakis M., Franklin M., ″Adaptive, Fine
Grained Sharing in a Client-Server OODBMS: A
Callback-Based Approach″, ACM TODS, pp. 570-627,
1997.

.NET Technologies 2006 Poster proceedings 12 ISBN 80-86943-12-7

	NET_2006_Posters_Paper_All_label.pdf
	A89-full.pdf
	INTRODUCTION
	Knowledge engineering originated in 1950s as a part of Artif
	Some of the popular methods of knowledge representation list
	PRINCIPLES OF KNOWLEDGE.NET
	Seamless Integration to Visual Studio
	Hybrid Knowledge Representation Language
	Program structure

	Query language
	Rule sets
	Knowledge Editor

	SUPPORTING FOR THE KIF FORMAT
	Overview of Ontolingua.
	The Conversion Process

	DATA MINING
	Morphological Analysis
	Semantic Analysis
	Analysis of the Knowledge Graph

	SUMMARY
	REFERENCES

