

.NET Technologies 2006

University of West Bohemia
Campus Bory

May 29 – June 1, 2006

Full papers proceedings

Edited by

Jens Knoop, Vienna University of Technology, Austria
Vaclav Skala, University of West Bohemia, Czech Republic

.NET Technologies – FULL papers conference proceedings

Editor-in-Chief: Vaclav Skala
 University of West Bohemia, Univerzitni 8, Box 314
 306 14 Plzen
 Czech Republic
 skala@kiv.zcu.cz
Managing Editor: Vaclav Skala

Author Service Department & Distribution:

 Vaclav Skala - UNION Agency
 Na Mazinach 9
 322 00 Plzen
 Czech Republic
 Reg.No. (ICO) 416 82 459

Hardcopy: ISBN 80-86943-10-0

CONFERENCE CO-CHAIR

Knoop, Jens (Vienna University of Technology, Vienna, Austria)
Skala, Vaclav (University of West Bohemia, Plzen, Czech Republic)

PROGRAMME COMMITTEE

Aksit, Mehmet (University of Twente, The Netherlands)
Giuseppe, Attardi (University of Pisa, Italy)
Gough, John (Queensland University of Technology, Australia)
Huisman, Marieke (INRIA Sophia Antipolis, France)
Knoop, Jens (Vienna University of Technology, Austria)
Lengauer, Christian (University of Passau, Germany)
Lewis, Brian,T. (Intel Corp., USA)
Meijer, Erik (Microsoft, USA)
Ortin, Francisco (University of Oviedo, Spain)
Safonov, Vladimir (St. Petersburg University, Russia)
Scholz, Bernhard (The University of Sydney, Australia)
Siegemund, Frank (European Microsoft Innovation Center, Germany)
Skala, Vaclav (University of West Bohemia, Czech Republic)
Srisa-an, Witawas (University of Nebraska-Lincoln, USA)
Sturm, Peter (University of Trier, Germany)
Sullivan, Kevin (University of Virginia, USA)
van den Brand, Mark (Technical University of Eindhoven, The Netherlands)
Veiga, Luis (INESC-ID, Portugal)
Watkins, Damien (Microsoft Research, U.K.)

REVIEWING BOARD

Alvarez, Dario (Spain)
Attardi, Giuseppe (Italy)
Baer, Philipp (Germany)
Bilicki, Vilmos (Hungary)
Bishop, Judith (South Africa)
Buckley, Alex (U.K.)
Burgstaller,Bernd (Australia)
Cisternino, Antonio (Italy)
Colombo, Diego (Italy)
Comito, Carmela (Italy)
Ertl, Anton,M. (Austria)
Faber, Peter (Germany)
Geihs, Kurt (Germany)
Gough, John (Australia)
Groesslinger, Armin (Germany)
Huisman, Marieke (France)
Knoop, Jens (Austria)
Kratz, Hans (Germany)
Kumar,C., Sujit (India)
Latour, Louis (USA)
Lewis, Brian (USA)

Meijer, Erik (USA)
Midkiff, Sam (USA)
Ortin, Francisco (Spain)
Palmisano, Ignazio (Italy)
Pearce, David (New Zealand)
Piessens, Frank (Belgium)
Safonov, Vladimir (Russia)
Schaefer, Stefans (Australia)
Scholz, Bernhard (Australia)
Schordan, Markus (Austria)
Siegmund, Frank (USA)
Srinkant, Y.N. (India)
Srisa-an, Witawas (USA)
Strein, Dennis (Germany)
Sturm, Peter (Germany)
Sullivan, Kevin (USA)
Tobies, Stephan (USA)
van den Brand, Mark (The Netherlands)
Vaswani, Kapil (India)
Veiga, Luis (Portugal)

Contents

• Fröhlich,J.H., Schwarzinger,M.: Servicing Components with Connector
Systems (Austria)

1

• Costa,C., Ali,N., Millán,C., Carsí,J.A.: Transparent Mobility of Distributed
Objects using .NET (Spain)

11

• Safonov,V., Gratchev,M., Grigoryev,D., Maslennikov,A.: Aspect.NET -
Aspect-Oriented Toolkit for Microsoft.NET Based on Phoenix and
Whidbey (Russia)

 19

• Benda,J., Matousek,T., Prosek,L.: Phalanger: Compiling and Running
PHP Applications on the Microsoft .NET Platform (Czech Republic)

31

• Frank,M., Vasa,L., Skala,V.: MVE-2 Applied in Education Process (Czech
Republic)

39

• Arnold,D., Corriveau,J-P.: Using the .NET Profiler API to Collect Object
Instances for Constraint Evaluation (Canada)

47

• Bilicki,V., Dombi,J.D.: Building a General Framework for the Consistency
Management of Distributed Applications (Hungary)

55

• Berezin,S.B., Voitsekhovskiy,D.V., Paskonov,V.M.: Implementing Unified
Access to Scientific Data from .NET Platform (Russia)

63

• Serdyuk,Yu.: MC# 2.0: A Language for Concurrent Distributed
Programming Based on .NET (Russia)

71

Servicing Components with Connector Systems

Joachim H. Fröhlich
Software Engineering Department
Johannes Kepler University of Linz

Altenbergerstr. 69, A-4040 Linz, Austria
+43 70 2468 9432

joachim.froehlich@acm.org

Manuel Schwarzinger
Racon Software GmbH Linz

Goethestr. 80, A-4021 Linz, Austria
+43 70 6929 1732

schwarzinger@racon-linz.at

Abstract
Interfaces bind components at dedicated points. Usually, despite their central role, interfaces are packed either
with functionality-implementing components (call interfaces) or with functionality-using components (callback
interfaces). Components that reference other components in order to implement or to use interfaces are directly
coupled. This kind of coupling affects component implementations: integration of component services leads to
implementations that are dependent on the component container or to a multiplication of implementation efforts.

We propose connectors as a mechanism to completely decouple components from each other and from their
underlying component container. Connectors are special-purpose components that isolate component interfaces.
Connectors optionally provide services to communicating components, e.g., checking bidirectional communica-
tion protocols (operation call sequences and data flows), exchanging components during run time, and parallel-
izing or synchronizing service requests in a non-intrusive manner. This frees components to focus on their core
business. Connectors foster the standardization of interfaces, accelerate the development of components, im-
prove the testability, portability and maintainability of component-based programs, and hence promote compo-
nent markets. .NET provides an almost ideal implementation basis.

Keywords
interfaces, connectors, components, configuration, software architecture

1. INTRODUCTION
Mainstream component systems facilitate compo-
nent-based programming but do not enforce it. This
can partly be ascribed to the sensible wish for
downward compatibility with object-oriented pro-
gramming techniques and a white-box reuse style.
This holds for .NET as well as for the Java.

In practice, object-oriented programs are usually or-
ganized in complex class graphs. More often than
not, class libraries and frameworks expose many
details at unwieldy, complex interfaces that are
intended to cover various broad application scopes.
This negatively impacts component architectures
when classes are blurred with components, as in
.NET. A component-based architecture calls for a
different programming style that employs black-box
reuse, interfaces (types) and contracts. Component

services (such as controlling access rights, monitor-
ing/profiling, object pooling, controlling concurrent
access, and controlling transactions) are attached to
components via a mix of marker classes (such as Sys-
tem.ContextBoundObject and System.EnterpriseServices.Ser-
vicedComponent) and attributes (such as ObjectPoolingAttri-
bute and SynchronizationAttribute, both defined in name-
space System.EnterpriseServices). Thus component ser-
vices are applied intrusively and serviced compo-
nents are directly coupled to the component
container. Implementation of component services
along a message sink chain with call interception,
program reflection and container-dependent base
classes in a robust and efficient way proves a major
challenge [Löw05]. Although not directly refer-
encing constructs of the component container, clients
that reference serviced components (classes) become
dependent not only on these components but also on
the underlying component container.

It is fundamentally clear that components should be
designed with high cohesion and low coupling. This
leads to advantages well-known from proper class
and method design. Functional diversity unfolded at
component interfaces as lengthy or deeply structured
public classes packed into large assemblies compli-
cate the application and implementation of compo-
nents. The resulting problems are best documented
by complicated test procedures – most evidently for

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

.NET Technologies 2006 FULL papers 1 ISBN 80-86943-10-0

components wired into intrusive application servers.
These components are loaded with operations that
are foreign to their core business. To overcome these
difficulties, lightweight component containers with
minimal impact on applications have been emerging.
Spring [Har05] serves as a prototypical example in
the Java world; although Spring achieves decoupling
through interfaces interposed between beans (compo-
nents), interfaces are not treated as independent con-
tracts.

Interfaces connect communicating components (or
classes) and thus should be independent pivotal ele-
ments. In practice, however, interfaces are attached
either to service-providing components or to service-
requiring components. This asymmetry impairs spe-
cification, development and testing of independently
installable components; this, in the long run, hampers
the wide adoption of component technology. To
overcome this obstacle, we propose an architectural
style where every pair of interacting components is
fully separated with independent, special-purpose
components that isolate component interfaces and
optionally implement nonfunctional component ser-
vices.

The paper is organized as follows: Section 2 details
the goals of the proposed architectural style. Section
3 presents basic concepts of the connector/compo-
nent architecture style. Section 4 sketches the appli-
cation of connectors. Section 5 presents basic con-
nector variants on which extended variants in Section
6 build. Related work and consequences conclude the
paper.

We back the presentation with code snippets in
.NET/C# and semantically rich system diagrams
documenting real implementations by abstracting
away unnecessary coding details rather than de-
scribing the design of prospective systems. The
whole work is based on experience gathered with ex-
perimental implementations and with several variants
of a generic program for analyzing data streams
[Edl05], [Frö05], [Frö06].

2. GOALS
We seek an architectural style that enables compo-
nents to focus on their business without being dis-
tracted by intrusive component containers. Such a
style must enable economically feasible structuring
of general-purpose programs as well as domain- or
application-specific programs. Thereby a program is
either self-contained or embedded in a component
container (application server). The architectural style
must facilitate separate specification, implementa-
tion, testing, guarding, installation, substitution and
monitoring of components and their interactions.
Component services must be transparent as far as

possible. The architectural style must enable inde-
pendent component evolution in in-house and open-
market situations. For practicability, existing con-
tainer technologies, if needed at all, should be sup-
plemented rather than be replaced. The mechanisms
enabling this architectural style must be configurable
and thereby provide only as much flexibility and cost
only as much in resources as needed in various stages
of a project, such as development, test, launch or pro-
duction stages.

3. CONNECTOR BASICS
Interfaces rather than components carry software ar-
chitectures. This contrasts with the usual view where
software architectures focus on components and their
interactions but tend to overlook the importance of
component interfaces. We view software architec-
tures as systems of component interfaces that service
components. Like components, component interfaces
are physical (i.e., binary) and identifiable concepts
that we call connectors. Technically, a connector
contains at least one interface in the sense of the pro-
gramming language construct of the same name. All
operations declared in interfaces of a connector form
a functional closure; i.e., operations of connector in-
terfaces use only parameters of basic data types, in-
terfaces contained in the same connector or, in spe-
cial cases, interfaces of neutral parts of .NET’s
framework class library, like System.Collection and Sys-
tem.Configuration. Logically, a connector specifies func-
tional and nonfunctional properties of components
using or implementing interfaces. Additionally, con-
nectors may monitor, guard or change operation
invocations and data transmissions across component
boundaries as long as they conform to the contracted
communication protocol without distracting adjacent
components. Connectors do not execute any
business- or application-specific functions.

Connectors define the points of variation at which
components can be plugged in. At least two indepen-
dent components communicate across the boundary
that a connector establishes. We call them functional
components (components for short where it is unam-
biguous) because they directly or indirectly imple-
ment functions that comprise the core business of a
program. We speak of a symmetric connector when a
functional component on the client side of connector
uses the same interface(s) as the functional compo-
nent on the provider side for communicating with
each other. We speak of an asymmetric connector
when a client component and a provider component
use different interfaces and the connector maps inter-
face concepts during communication. This article fo-
cuses on symmetric connectors.

Clutches serve as a metaphor for connectors.
Clutches couple functional components, i.e.,

.NET Technologies 2006 FULL papers 2 ISBN 80-86943-10-0

(driving) client components to (driven) provider
components where these components might change
their roles during communication. Thereby clutches
transfer physical forces (data) in both directions,
from clients to providers and vice versa. Real
clutches optionally contain springs that dampen the
transmission of exceptional forces. Connectors as de-
fined above offer similar convenience. For example,
they can log unspecified exceptions and map them
onto exceptions specified in the connector because
exceptions crossing component boundaries are part
of the communication protocol. Another example is a
connector that prohibits inadmissible input data or
erroneous operation call sequences, e.g., faulty com-
munication protocols.

Figure 1 illustrates a program that is minimal in
terms of components and connectors.

I1

I2 I3

{C}(a)

(b)

I X uses interface I implemented by Y

X loads Y through (a) CLR, (b) connector
X provides Y

X Y

X Y

X Y

X Y X references Y at compile time

{P} {P}

{C}

{C}

{P}

{C}, {P} Roles: Service-{C}lient, -{P}rovider

<<connector>>

p

p

p

p

co
nf

ig
ur

at
io

n
<<

fil
e>

>

u Connector
<<module>>

X uses YX Yu

<<provider component>>

<<client component>>

Figure 1. Connector and functional components

The connector in Figure 1 completely channels the
communication between the sole service client and
the sole service provider which includes the creation
of service-providing objects. The connector module1
processes data from the configuration file in order to
relieve service clients as well as the connector itself
from specifying concrete classes in the program co-
de. The resulting constellation is characterized as fol-
lows:

 Components do not depend on each other.
 Components depend on connectors.
 Connectors do not depend on components.

The compilation procedure reflects this constellation:

csc /out:Connector.dll /t:library ...
csc /out:Provider.dll /t:library /r:Connector.dll ...
csc /out:Client.exe /t:exe /r:Connector.dll ...

Thus the architecture of a program can be modeled as
a system of connectors that embed functional com-
ponents (see Figure 2).

1 Only classes with (static) class members are modules.

C1

C3

C2

C4

B
A1

A2

A3

A4

X loads Y (if not done already)X Y
X Y X references Y at compile time

Connect. class, interfaces: not serviced, serviced

Zi Parts not compliant to the connect./comp. style
Ai, B, Ci Parts compliant to the connect./comp. style

Z1 Z2 Z3

Figure 2. A connector / component architecture

Figure 2 depicts components that follow the architec-
tural style (Ai, B, Ci) and those that do not (Zi). Func-
tional components (Ci) are connected to a central
connector manager (B). The connector manager pro-
vides for a communication interface by which ex-
ternal clients can monitor and control connectors
(Ai). In order to control a connector, interfaces must
be wrapped in proxy objects that pre- or post-process
operation calls crossing component borders as indi-
cated in Figure 2 for connectors A3 and A4. We call
connectors heavy connectors if they wrap interfaces
in order to transparently hook component services
like logging, profiling, security checks and protocol
checks. We call connectors light connectors if they
contain only interface declarations. The run-time
overhead of light connectors is negligible. Light con-
nectors can be exchanged for type (interface) com-
patible heavy connectors just by program reconfigu-
ration before run time.

Another type of connectors not sketched so far are
multiple-part connectors (see Figure 3).

...S I1 In

S Service selection strategy
I1…In Service interfaces

C2

C3

C1

A

co
nf

ig
ur

at
io

n
<<

fil
e>

>

Connector
<<module>>

Figure 3. Multiple-part connector

.NET Technologies 2006 FULL papers 3 ISBN 80-86943-10-0

Upon exceeding a certain breadth, the functional in-
terface of a connector (I1 … In in Figure 3) can be
implemented via several components (C2 and C3 in
Figure 3) instead of just one component. These com-
ponents build a group. A component group is defined
by a common connector and one or more partitioning
attributes. Each component of a group must publish a
value for each partitioning attribute. The combination
of attribute values characterizes a component within
a component group. Thus partitioning attributes are
used to diversify components. Diversification nar-
rows the application scope of a single functional
component, which eases its implementation while
raising the domain-specific service level. A multiple-
part connector is a connector that can bind (load)
more than one interface-implementing component
and uses a strategy (S in Figure 3) to choose a com-
ponent whose attribute values best fit the client re-
quirements. The strategy is provided either by the
connector as part of the contract or by a client
component. In contrast, single-part connectors bind
(load) at most one interface-implementing compo-
nent. Table 1 provides examples of multiple-part
connectors and partitioning attributes.

Mp connector Attributes

String matchers automaton, e.g., NFA, DFA

Report generators file format, e.g., PDF, HTML

Memory systems access time, durability

Numeric systems accuracy, precision, run time
Table 1. Some attributes of multiple-part connectors

4. A CONNECTOR IN TEST USE
Before delving into various extensions of connectors,
let us examine a typical application scenario as seen
from a service using (client) side. You can find the
complete C# code of an almost identical implementa-
tion elsewhere [Frö06]. Figure 4 sketches the archi-
tecture of the program.

S
ys

te
m

.
co

nf
ig

ur
at

io
n

Sy
st

em

IAmount

C
B

an
k

<<
m

od
ul

e>
>

BankInterface.dll

Ba
nk

Ap
pl

ic
at

io
n

.e
xe

.c
on

fig
 <

<f
ile

>>

u

p

u

p

p

p

p
u

u

X provides Y
X uses Y

X Y
X Y

IAccount

ICurrency-
Calculator

p
IBank-
Branch

u

IExchange-
Office

IBank

BankApplication.exe {Client}

Bank.dll {Provider}

 Figure 4. Architecture of a simplistic bankapp

The program implements a simplistic bank with se-
veral branches, accounts and customers. These con-
cepts are directly reflected in the connector, whose
interface operations build a functional closure, i.e.,
do only involve interfaces declared in this connector
and basic data types:

namespace BankInterface { // Connector
 public interface IBank {
 void Provide(out IBankBranch branch);
 void Provide(out IAmount money, double val, string cy);
 …
 }
 public interface IBankBranch {
 IAccount SetupAccount(IAmount initialValue);
 IAccount SetupAccount(); // initialValue= 0.00 EUR
 bool Transfer(IAmount money,
 IAccount source, IAccount target);
 …
 }
 public interface IAccount {
 string Owner { get; set; }
 bool Deposit(IAmount money);
 …
 }
 …
}

The program applies a light, single-part connector
(BankInterface.dll); i.e, the connector provides no
services other then automatically loading one bank
implementation (Bank.dll) at a time during first
access by a bank client (BankApplication.exe). The
concrete bank implementation is configured before
run time, e.g., in the standard configuration file of a
.NET application:

<configuration><appsettings>
 <add key="Provider" value="Bank.dll"/>
 ...
</appsettings></configuration>

An application scenario taken from the client illustra-
tes the coding style, which resembles that prevailing
for clients of COM components. Several amounts of
money are transferred from different source accounts
to a common target account:

namespace BankApplication { // Client
 // Set up bank branch, target account
 IBank bank= CBank.Get();
 IBankBranch branch; bank.Provide(out branch);
 IAccount target= branch.SetupAccount(); // 0.00 Euro
 IAmount amount1, amount2, …;

 // Setup accounts
 bank.Provide(out amount1, 1000.00, "EUR");
 IAccount source1= branch.SetupAccount(amount1);
 bank.Provide(out amount2, 1500.00, "EUR");
 IAccount source2= branch.SetupAccount(amount2);
 …
 // Transfer money
 bank.Provide(out amount1, 500.00, "EUR");

.NET Technologies 2006 FULL papers 4 ISBN 80-86943-10-0

 bank.Provide(out amount2, 800.00, "EUR");
 …
 branch.Transfer(amount1, source1, target);
 branch.Transfer(amount2, source2, target);
 …
}

The service provider (Bank.dll) can be exchanged
without changing the client’s implementation. For
instance, a test stub that is applied during develop-
ment and component test of a bank client can be re-
placed with a production version for integration tests.
Moreover, the light connector can be replaced with a
type (interface) compatible heavy connector. For
example, from a technical point of view the heavy
connector checks whether the client component
passes to the provider component objects that the
same provider has created before. From a business
point of view this check is necessary, e.g., when a
bank branch charges an account. The account must
be set up by the same bank branch or by one of the
other branches of the bank. We assume this integrity
check to be necessary for every bank; hence it is part
of the bank contract.

5. BASIC CONNECTORS

5.1 The Lightest Connector
An application scenario as simple as the sketched
bank program is typical of tests of functional compo-
nents. Although light connectors are by no means re-
stricted to test scenarios, they obviously demand easy
connector implementations. This directly leads to the
question of how to design the lightest connector (see
Figure 5).

#CPiC()
CPiC()
+Get():CPiC
+Provide(out I1)

+CPiC

+Provide(out I1)

-CPdC

0..1
 impl

-CProvider

u

u

c

p

p

p
u

X provides Y
X uses Y

X Y
X Y

c X instantiates Y reflectivelyX Y

+
-

public
internal

protected

Provider-independent connector classCPiC
Provider-dependent connector classCPdC

+I1

du

Variable of
type I1 refers
to a CProvider

d X declares Y, e.g., namespace X { Y obj; ...}X Y

u

-CClient

co
nf

ig
ur

at
io

n
<<

fil
e>

>

Figure 5. The lightest connector

Besides combining logically coherent interfaces into
a separate component, every connector must imple-
ment just one nonfunctional task: the establishment
of the first connection between a service-using and a

service-providing component while preserving their
independence as well as its own independence. For
this purpose a connector contains what we call a pro-
vider-independent connector class (CPiC in Figure
5). On the one hand this class is a module with
(static) class methods and variables for loading and
anchoring a provider; on the other side it is a type de-
claring factory methods [Gam95] for letting pro-
viders decide which objects to deliver as roots of
business process chains (sessions). Thus each pro-
vider must subclass exactly one provider-dependent
connector class (CPdC in Figure 5) per supported
connector.

The provider-independent connector class uses re-
flection techniques to create the sole object of this
class (a singleton [Gam95]), the connector object.
This object is created automatically in the back-
ground during the first access to a provider (triggered
by, e.g., bank= CBank.Get() in the bank application and
executed by the class constructor of the provider-
independent connector class) immediately after the
provider component specified in the configuration
file is loaded. Once the connector has supplied the
connector object, a client queries it for the first
business object by means of a factory method (via,
e.g., bank.Provide(out IBankBranch) in the bank applica-
tion) declared in the provider-independent connector
class and implemented in the provider-dependent
connector subclass.

The implementation of the managing stuff of a light
connector is delightfully cheap. It costs about 10
lines of code executed only once per provider com-
ponent upon first access (compare with the CPiC
CBank in CBank.cs, directory Bank.src\BankInterface
[Frö06]). All other operation calls across a light con-
nector, i.e. across interfaces in the sense of the pro-
gramming language, do only cost as much as invoca-
tions of instance function members [Hej04]. Thus
light connectors completely separate communicating
functional components with no run-time overhead.

5.2 The Lightest Heavy Connector
Heavy connectors factor out nonfunctional services
from functional components. For this purpose, heavy
connectors wrap interfaces in proxy classes [Gam95].
They provide hooks for affixing component services
like profiling and protocol checks to both call inter-
faces and callback interfaces. Connectors wrap both
interface types with the same procedure but at diffe-
rent moments: call interfaces on the way out of an in-
terface function and callback interfaces on the way
into an interface function. Figure 6 sketches the
structure of a heavy connector.

.NET Technologies 2006 FULL papers 5 ISBN 80-86943-10-0

#CPiC()
CPiC()
+Get():CPiC
+Provide(out I1)
#_Provide(out I1)

+CPiC

c

p

p

+I1

c -CProxy

1 _provider

0..1
 impl

Variable of
type I1 refers
to a CProxy

u d

-CClient

u

#_Provide(out I1)

-CPdC
-CProvider

u
co

nf
ig

ur
at

io
n

<<
fil

e>
>

Figure 6. The lightest heavy connector

The decisive difference compared to a light connec-
tor is that all function calls of a client component
first activate a wrapping function implemented in the
heavy connector before they activate a function in a
provider component. The prerequisite for wrapping
all operation calls crossing a connector is template
methods [Gam95] in the provider-independent con-
nector class, as the following code excerpt demons-
trates by wrapping the root object of a business pro-
cess chain (implementing a call interface):

namespace Connector {
 public abstract class CPiC { // connector module
 public void Provide(out I1 p) { // the template method
 I1 provider; // the service provider
 this._Provide(out provider);
 p= new CProxy(provider); // wrap call interfaces on the
 // way out from a provider to a client
 }
 protected abstract void _Provide(out I1 provider);
 // the primitive operation of the template method
 ...
 }
 public interface I1 { ... }
 internal class CProxy : I1 {
 internal CProxy(I1 provider) { this._provider= provider; }
 ... // methods wrapping I1 functions
 private I1 _provider; // the wrapped service provider
 }
 …
}

Syntactically, proxy objects and connected compo-
nent services are completely hidden in the connector
and therefore invisible to functional components.

5.3 The Lightest Multiple-Part Connector
Multiple-part connectors allow the differentiation
and installation of several provider components that
offer alternative or variant services. Moreover, heavy
multiple-part connectors enable a different class of
component services, like multiplexing (or pa-
rallelizing) of service request among several provider
components and graceful failover from one service

provider to another. Figure 7 sketches the structure
of a light multiple-part connector.

#CPiC()
CPiC()
+Get(IStrategy*):CPiC
+Provide(out I1)
+Attribute

+CPiC

+Provide(out I1)
+Attribute

-CPdC

1..n
 impl

-CProvider

-CClient

u

u

c
p

p

+I1

duu

+IStrategy

c

u

-CStrategy

 strat1

u 1..n

class method with optional
parameter of type IStrategy

+Get(IStrategy*):CPiC

co
nf

ig
ur

at
io

n
<<

fil
e>

>

Figure 7. The lightest multiple-part connector

Provider components to hook into a multiple-part
connector are specified in the configuration file with
multiple-value entries such as

<configuration><appsettings>
 <add key="Provider" value="Bank1.dll;Bank2.dll"/>2
 ...
</appsettings></configuration>

All these provider components share one (structured)
interface, i.e., one connector, and usually vary in
their implementation with regard to at least one com-
ponent attribute. A multiple-part connector offers
clients the chance to dynamically select one of the
configured providers. To make this work, the pro-
vider-independent connector class forces provider-
dependent subclasses to return values that character-
ize their business with regard to a differentiating
business attribute. The strategy pattern [Gam95]
lends itself for a flexible implementation of the
selection algorithm. In the context of the bank ex-
ample, clients can now choose among several banks
applying different interest and portfolio strategies.

6. EXTENDED CONNECTORS
Connectors can be extended at four sides (see Figure
8):

(a) Client side: several functional components use
one connector.

(b) Provider side: several functional components
provide alternative or supplementing services.

2 Of course, the type-safe way for specifying an arbitrary

number of provider components would be an xsd:element
with a multiplicity range of minOccurs="1" maxOc-
curs="unbounded".

.NET Technologies 2006 FULL papers 6 ISBN 80-86943-10-0

(c) Connector service side: several special-purpose
components register component services for
communicating functional components.

(d) Connector managing side: the behavior of a
running program is monitored and controlled in
terms of connectors and components.

co
nf

ig
ur

at
io

n
<<

fil
e>

>

Figure 8. Connector extensions

6.1 Extending the Connector Service Side
Component services can be implemented in proxy
classes directly in a heavy connector (see 6.1.1) or
sourced out into separate classes in separate compo-
nents (see 6.1.2).

6.1.1 Implementing Services Directly
Component services can be implemented with mini-
mal effort directly in a connector. This implementa-
tion style well suits special component services like
checks of highly specialized communication proto-
cols while obviously compromising reusability of
rather general applicable component services like
logging3. To give an impression of a component ser-
vice, we sketch a part of the life cycle management.
The heavy connector checks objects that client com-
ponents pass as operation parameters to a provider
component for creation by the same provider.4
Again, we demonstrate this for the sample bank
application introduced in Section 4: A bank can only
service its own bank accounts. We assume that this
constraint is part of the contract holding for all
banks. If this is true, then the connector is the place
to implement the constraint. On violation of this
constraint the connector throws a protocol exception:

namespace BankInterface { // Connector
 internal class CBBProxy // Class Bank Branch Proxy
 : IBankBranch {

3 During development and test phases of the generic data

stream analyzer (mentioned in the Introduction) a heavy
connector tests the communication protocol between the
component providing the business logic (data stream pat-
tern matcher) and various user interface components
[Frö05]. The connector applies the state pattern [Gam05].

4 This service is indeed rather generally applicable. It
checks an integrity constraint for components that cast
types of parameter objects to component-specific type
implementations (classes).

 public IAccount SetupAccount() { // public protocol
 IAccount provider= this._provider.SetupAccount();
 CAProxy accountProxy= new CAProxy(provider, this);
 this._issuedObjs.Add(accountProxy);
 }
 … // more methods wrapping IBankBranch operations
 internal CBBProxy(IBankBranch bankBranch) {
 this._provider= bankBranch;
 }
 internal bool HasIssued(CAProxy proxy) {
 return this._ issuedObjs.Contains(proxy);
 }
 private IBankBranch _provider;
 private Utilities.ISet _issuedObjs= new Utilities.CSet();
 }
 internal class CAProxy // Class Account Proxy
 : IAccount {
 public void Withdraw(IAmount money) { // public protocol
 if (!this._creator.HasIssued(this))
 throw new CProtocolException(“unknown account”);
 this._provider.Withdraw(money);
 }
 … // more methods wrapping IAccount operations
 internal CAProxy(IAccount provider, CBBProxy creator) {
 this._provider= provider;
 this._creator= creator;
 }
 private IAccount _provider;
 private CBBProxy _creator;
 }
 …
}

6.1.2 Implementing Services Indirectly
Proxies that delegate requests for component services
lead to service implementations that are extensible
and reusable in the context of several connectors.
Such proxies signal changes of relevant program
states (method calls and returns across component
boundaries) and delegate the provision of services to
observers [Gam95] implemented in separate compo-
nents. This raises the question of the sequence in
which component service should be applied.

In general, component services can be applied in any
sequence because they have no side effects. From a
practical point of view, of course, it is useful to
check, e.g., whether a client is allowed to use a
provider before checking the communication pro-
tocol in case the two component services are im-
plemented separately. Likewise, the communication
protocol should be checked before a client is allowed
to ask for exclusive usage of a provider. Thus ideally
component services, their order of application and
the associated connectors are specified in a program
configuration file and set up with reflective program-
ming techniques.

.NET Technologies 2006 FULL papers 7 ISBN 80-86943-10-0

6.2 Extending the Connector Managing
Side
All connectors of a program may be connected at a
central point which we call the connector manager.
The connector manager is the place for querying and
changing the state of a program in terms of compo-
nents and connectors either from inside the program
through API calls or from outside the program, e.g.,
through a web service. In particular the connector
manager enables

 loading of functional components
 unloading of functional components
 switching component services on or off
 querying for current components and connectors
 querying for interaction states and histories
 coordinating several connectors

From a technical point of view, the most interesting
feature of a connector manager is the coordination of
connectors with regard to unloading stateful functio-
nal components. This requires life-cycle management
of components.5 A connector attached to a stateful
functional component must check the communication
protocols for each usage scenario (per business pro-
cess chain) and indicate the functional component as
being in a state allowing the component to be un-
loaded, as it is usually in initial states, end states, or
error states (0-states for short). This requirement
holds for all connectors directly attached to a compo-
nent as well as for all dependent connectors.6 Con-
sider the program sketched in Figure 9.

A1

A2 A3

C1 C2

C3

C4 C5
C6

B

A1, A2:
 single-part connector,
 heavy (protocol checking)
A3:
 multiple-part connector,
 heavy (protocol checking)
B:
 connector manager
C1 ... C6:
 functional components

YX
 reference at compile time

 components x and y refer to
Figure 9. Managing connector systems

Provided that it is useful to unload C3, all dependent
connectors (A1, A2 and A3) have to confirm depen-
dent functional components to be in 0-states. These
connectors contain at least 4 state machines that

5 Strictly speaking, only component instances can have

state in a running program because components are just
binary deployment units. As this should be clear from the
context, we speak of stateful components.

6 A functional component that implements (interfaces de-
clared in) several connectors might indicate low binding
or hint incomplete connector interfaces and so disobey
the requirement for functional closure.

check the communication protocols between compo-
nents

 C1/C2 and C3,
 C3 and C4,
 C3 and C5, and
 C3 and C6.

Note that thereby we assume C1 and C2 to take part
in a common usage scenario (session); i.e., they share
one business process chain and therefore one pro-
tocol-checking state machine. Inversely, one compo-
nent could take part in several usage scenarios of a
connector so that, e.g., two or more state machines
could be active in A2 checking two or more applica-
tions of C4 by C3. Technically, unloading a compo-
nent requires it to be installed in separate application
domain (System.AppDomain) [Gun02], i.e., in a separate
.NET process, which of course increases communi-
cation costs due to marshalling all calls between
application domains.

Besides, the connector manager factors out code
common to all connectors, such as that for loading
and unloading functional components and standard
component services such as logging operation call
sequences.

7. RELATED WORK
This article focuses on physically separate connec-
tors as a means to connect and at the same time to de-
couple components in the context of coherent pro-
grams or program parts.

Some of the presented concepts suggest concepts
prevailing in the context of distributed programs.
Here connectors are manifested as parts of the under-
lying infrastructure, e.g., in the form of networking
protocols, pipes, SQL links between a database
server and a database application program, event
buses, and message brokers [Clem03], [Meh00],
[Sha96]. Service–oriented architectures (SOA) pro-
vide the plumbing for the integration of components
running on different technological foundations
[Sko05]. Component interfaces are published,
queried and translated into executable code for
calling services across the Internet.

Connectors as separate compilation and deployment
units of coherent programs are scarcely discussed
elsewhere. In a coherent program, connectors usually
occur at the abstraction level of a programming lang-
uage as shared variables, buffers and procedure calls
[Meh00], [Sha96]. This strongly contrasts with con-
nectors at the architectural level of a program as dis-
cussed in this paper. At the architectural level a con-
nector must not to be confused with a façade
[Gam95] or a mediator [Gam95]. A façade provides
a unified interface to a set of interfaces in a sub-

.NET Technologies 2006 FULL papers 8 ISBN 80-86943-10-0

system. This is usually done when a class applies
business logic to orchestrate (instances of) other clas-
ses. Thus a façade is coupled to the covered subsys-
tem. A mediator coordinates interactions of a group
of objects. Thus a mediator executes application-spe-
cific functions. A connector with its distinct orien-
tation on improving nonfunctional system properties,
such as reliability, adaptability, and testability, is in-
dependent of adjacent functional components and
does not execute any application-specific functions.

However, the idea of including related interfaces in
separate components is not new. Szyperski et al.
[Szy02] emphasize the importance of viewing inter-
faces in isolation from any specific component that
might implement or use such interfaces. Further-
reaching concepts or implementation techniques are
not discussed. In the context of .NET, Löwy
[Löw05] suggests assemblies with interfaces to
parallelize the development of adjacent components.
Wienholt [Wie03] proposes a similar technique to
shorten load time of assemblies and to save memory.
He puts frequently and occasionally used types of an
assembly into different netmodules7 and separates
them by netmodules that consist only of interfaces,
which leads to multiple-module assemblies. This can
also be achieved with the connector/component ar-
chitectural style.

Interfaces play an important role in the realm of
lightweight component containers; Spring [Har05] is
a good example. Spring decouples components
(beans) in the form of classes by externalizing the
creation of instances of collaborating classes and in-
jecting them at dedicated points of the class to be
configured (dependency injection). Collaborating
classes are expected to implement well-defined inter-
faces. Although the work on connectors presented in
this article shares many of the goals of Spring, such
as isolated component tests, externalization of com-
ponent dependencies (in configuration files), and
design in terms of the application domain (rather
than in terms of the implementation domain or a mix
of both), the solutions move in different directions.
Spring abandons subclassing for Spring-conform
components due to reflective programming tech-
niques. In contrast, a functional component in the
role of a service provider has to implement a pro-
vider-dependent subclass per connector, even though
this subclass contains only domain-specific methods
(in a special syntax). Spring does not support the
transparent injection of non-functional services bet-
ween communicating components. Spring has no no-

7 A netmodule is a raw module that must be associated

with a full-fledged component (assembly) prior to de-
ployment.

tion of multiple-part components and provides no
special means for coordinating semantic operations
attached to related interfaces either in the form of
protocol checking services or in the form of a con-
nector manager for monitoring and controlling
running programs.

8. SUMMARY AND CONSEQUENCES
Connectors as discussed in this article are special
purpose components that embody boundaries of
functional components in the form of binary con-
tracts. This allows functional components to focus on
their core business. Moreover, functional compo-
nents can be

 developed in several alternate or supplementary
variants

 specified and tested separately
 relieved of intermingled nonfunctional services

like logging, caching and checking communic-
ation protocols

 dynamically monitored and controlled if a con-
nector manager supervises the connector system

Connectors may interpose nonfunctional services
between functional components in a completely non-
intrusive manner. This is achieved by means of a pat-
tern language [Cun87] that combines several design
patterns [Gam95], such as Factory Method, Template
Method, Proxy, Strategy, State and Observer, and by
encapsulating these patterns in special components
(connectors). Classes of functional components shed
any special base types (such as System.ContextBound-
Object) or attributes (System.Attribute) for profiting
from component services. Certainly these techniques
can be used for implementing component services
within connectors. Proxy classes in connectors ex-
pose suitable method call joint points to implement
component services as aspects in the sense of AOP
(aspect-oriented programming). Services that have
well-defined effects on particular operations support
the use of AOP [Mur01]. This is the case, e.g., for
synchronization and accounting services but not for
checks of complex, application-specific communica-
tion protocols. Due to the localization of services in
connectors, functional components remain un-
changed regardless of how services are intercepted,
such as with context bound objects, code generation,
modification of IL (intermediate language) code or
.NET’s profiling API.

If a program does not depend on a nonfunctional
service, a heavy connector can simply be replaced
with an interface-compatible light connector without
changing the implementation of adjacent compo-
nents. The implementation of the skeletal structure of
a light connector is almost for free with regard to
both development time and run-time efficiency while

.NET Technologies 2006 FULL papers 9 ISBN 80-86943-10-0

still providing the fundamental advantages of con-
nectors, i.e., separate specification, testing and de-
velopment of functional components. The call of an
operation across a light connector costs only as much
as a call of an instance function member. The one-
time loading of a component immediately before the
first operation call does not impair performance in
the long run. Even heavy connectors can boost the
overall performance of a program. For instance,
checks of communication protocols (pre- and post-
conditions, invariants, operation call sequences) at
clear-cut, contracted and rather stable component
boundaries concentrate on essential and coherent sys-
tem parts (components) while abstaining from checks
of rather quickly changing implementation-specific
(i.e. component-specific) objects scattered around the
program.

Even demanding services like parallelizing service
requests in a blocking or non-blocking manner
among several service-providing components can be
included in a heavy, multiple-part connector without
distracting adjacent components. However, this holds
only for unidirectional data flow where service
clients just trigger service providers concurrently
without needing any calculated value from them. Bi-
directional data flow demands connectors that buffer
data returned by providers and a special interface
enabling clients to fetch this data for each provider.
This exceeds the capabilities of symmetric connec-
tors and moves towards asymmetric connectors that
map deviating client and provider languages in terms
of deviating interfaces.

In any case, separate connectors in different exten-
sion stages supply effective, non-intrusive mechan-
isms to solve challenges and issues in developing,
testing and quality assurance of software compo-
nents. Both isolated connectors and connector sys-
tems promote architecture-centric development of
programs with variants. Connectors lend themselves
for gluing common components and varying compo-
nents with predictable capabilities even in order to
build high-quality product families (product lines)
[Wei99]. At the same time, connectors raise the pro-
ductivity of component developers, testers and ar-
chitects. Variants of a generic data stream analyzer
[Frö05] and several experiments prove the practical
feasibility of the connector/component architecture
style. Coordinated life-cycle management (protocol
checking) of several components is a key issue of
further work.

9. REFERENCES
[Clem03] Clements, P., Bachmann, F., Bass, L.,

Garlan, D., Ivers, J., Little, R., Nord, R., and
Stafford J.: Documenting Software Architectures
– Views and Beyond. Addison-Wesley, 2003

[Cun87] Cunnigham, W.: Design Methodology for
Object-Oriented Programming. OOPSLA'87,
ACM SIGPLAN Notices 23 (5), 1987

[Edl05] Edlmayr, J., Fröhlich, J.H., Schwarzinger,
M., and Stranzinger T.: Components for All
Cases. (in German) SIGS Datacom OBJEKT-
spektrum 1/2005 (part 1), 2/2005 (part 2)

[Frö05] Fröhlich, J.H., and Schwarzinger, M.:
Treating Interfaces as Components. In IVNET’05
ISBN 972-8688-31-8, 2005

[Frö06] Fröhlich, J.H., and Wolfinger, R.: .NET Pro-
filing: Write Profilers with Ease Using High-
Level Wrapper Classes. MSDN Magazine 21 (5),
2006

[Gam95] Gamma, E., Helm, R., Johnson, R., and
Vlissides, J.: Design Patterns: Elements of Re-
usable Object-Oriented Software. Addison-
Wesley. 1995

[Gun02] Gunnerson, E.: AppDomains and Dynamic
Loading. http://msdn.microsoft.com/library/en-
us/dncscol/html/csharp05162002.asp, 2002

[Har05] Harrop, R., and Machacek, J.: Pro Spring.
Apress, 2005

[Hej04] Hejlsberg, A., Wiltamuth, S., Golde, P.:
The C# Programming Language. Addison-
Wesley, 2004

[Löw05] Löwy, J.: Programming .NET Components.
O'Reilly, 2005

[Meh00] Mehta, M.R., Medvidovic, N., and Phadke
S.: Towards a Taxonomy of Connectors.
ICSE’00, conf.proc., Limerick Ireland, 2000

[Mur01] Murphy, G.C., Walker, R.J., Baniassad,
E.L.A., Robillard, M.P., Lai, A., and Kersten,
M.A.: Does Aspect-Oriented Programming
Work? CACM 44 (10), 2001

[Sha96] Shaw, M., and Garlan, D.: Software Archi-
tecture-Perspectives on an Emerging Discipline.
Prentice-Hall, 1996

[Sko05] Skonnard, A.: SOA: More Integration, Less
Renovation. MSDN Magazine 20 (2), 2005

[Szy02] Szyperski, C., Gruntz, D., and Murer, S.:
Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 2002

[Wei99] Weiss, D.M., and Lai, C.T.R.: Software
Product Line Engineering. Addison-Wesley, 1999

[Wie03] Wienholt, N.: Maximizing .NET Performan-
ce. Apress, 2003

.NET Technologies 2006 FULL papers 10 ISBN 80-86943-10-0

Transparent Mobility of Distributed Objects
using .NET

Cristóbal Costa, Nour Ali, Carlos Millán, José Ángel Carsí

Department of Information Systems and Computation
Polytechnic University of Valencia

Camino de Vera, s/n
46022, Valencia, Spain

 {ccosta, nourali, cmillan, pcarsi}@dsic.upv.es

ABSTRACT
Nowadays, information systems are becoming more distributed and dynamic in nature, where mobility is a
solution for run-time adaptability. However, implementing software with such characteristics is a complex task.
This is due to the fact that current middleware technologies do not provide a simple and direct way of
implementing distributed objects that can move in a transparent way. In this paper, we are going to present an
approach, implemented in .NET Remoting to allow transparent mobility of distributed objects. Our approach is
based on separating the distribution and mobility concerns from the source code that contains the application
logic in entities called attachments. Thus, attachments are high-level proxies that are responsible for creating
communication channels and are capable of managing dynamic location changes without affecting the objects in
the case of mobility. This approach has been implemented using a case study. The response time of distributed
communication provided by our approach has been tested and compared with the remote communication
provided by the primitives of .NET Remoting.

Keywords
Distributed communication, transparent mobility, autonomous mobility, .NET Remoting

1. INTRODUCTION
Currently, distributed systems are built by using
middleware services [Ber96a]. The main idea behind
middleware is to allow components at different hosts
to collaborate in such a way that users perceive the
system to be centralized. Information systems are
becoming more dynamic at run-time where mobility
plays an important role for adapting applications and
solving problems such as fault tolerance and load
balancing.

However, building mobile and distributed systems is
not a simple task. The middleware technologies that
are currently available do not provide the sufficient
primitives that allow the deployment of distributed
components which have a mobile nature at run-time.

For example, one of the steps for implementing
mobile objects in .NET is serializing the object states
using the serializable attribute. However, an object
that must be accessible remotely in .NET Remoting
cannot be serializable at the same time [Obe02a].
Therefore, .NET Remoting does not allow the direct
implementation remote objects mobility. Another
drawback found in .NET Remoting is that to
implement remote objects, the class must inherit
from the MarshalByRef class. This limits the
inheritance flexibility of remote objects because they
cannot inherit from other classes as .NET does not
offer multiple inheritance.

In this paper, we are going to present an approach for
supporting distributed communication and mobility
tolerance in a transparent way for .NET objects. The
implementation of this approach is based on a
concept called attachments offered by the PRISMA
approach. PRISMA is an aspect-oriented component-
based approach where attachments allow the
transparent communication among components. In
order to support the PRISMA approach, a
PRISMANET [Per05a] middleware has been
implemented. Based on the experience gained from
this approach, we noticed that the attachment
functionality could be extended to support

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

.NET Technologies 2006 FULL papers 11 ISBN 80-86943-10-0

transparent distributed communication and mobility
for objects. Thus, the implementation presented in
this paper can adapt object-oriented applications that
were not initially designed to be distributed and
mobile in order to obtain this functionality.

Our approach is based on separating the distribution
and mobile concerns from the source code (which
contains the application logic) in entities called
attachments. Thus, the attachments are high-level
proxies that are responsible for creating
communication channels and are capable of
managing dynamic location changes without
affecting the objects in the case of mobility.

The structure of the paper is as follows: Section 2
presents some works that offer transparent
distributed communication and mobility of objects.
Section 3, explains the attachments concept and the
implementation of our approach by using a case
study of distributed mobile agents. Section 4,
evaluates the communication costs introduced by our
approach compared with the .NET Remoting
framework. Finally, conclusions are presented in
Section 5.

2. RELATED WORKS
The work in this paper is focused on providing an
approach that allows objects to be accessible
remotely and to be moved from one location to
another during run-time.

Mobility is classified by Picco [Fug98a] into weak
and strong mobility. Weak mobility involves the
migration of the code and data of an object. In weak
mobility, before interrupting the object for migration,
the developer has to make sure that the object’s
threads have finalized their tasks. Strong mobility
involves the migration of the code and the execution
state (stack, program counter …). In strong mobility,
mobile object execution is only interrupted for
migration. Once the object has been migrated to its
destination, it continues to execute from the
interrupted point. However, strong mobility is
difficult to implement as it greatly depends on the
.NET CLR internals. In order to interrupt a thread in
a transparent way, and to be able to restore it in a
new destination, the following actions must be
performed. On the one hand, we must be able to
obtain the instruction pointer and the execution
context of the threads to be moved. On the other
hand, we must also be able to restore a thread from
an instruction pointer and its thread context. In other
words, to implement strong mobility, we must be
able to serialize threads, which is not currently
available in .NET. For these reasons, our approach is
designed to provide weak mobility and not strong
mobility.

Approaches that deal with communication
transparency have been dealt mostly in Java. The
work in [Hic99a] provides a run-time system and a
compiler that generates remote references. This work
requires having a process on each physical machine.
Each of these processes has: a set of caches that
maps object IDs to instances, a cache for the local
instances, and a cache for each remote process filled
with the instance references that are needed locally.
A drawback of this approach is that the programmer
must indicate where an instance is created, since the
objects are always allocated in the same process
(physical machine), and there is no way to change
the references in the caches.

MobJeX [Rya04a] is a Java-based application
framework that allows weak mobility as well as
remote accessibility of objects. This is obtained by
precompiling the mobile objects in order to generate
two interfaces: a remote interface and a local
interface. Two classes are also generated: a proxy
class which provides a client with the reference to the
server, and a serializable class which represents the
original class that implements the two interfaces. In
our approach, no precompilation is necessary;
however, all mobile objects should be serializable
classes. Another difference between MobJeX and our
approach is that the mobility requests in MobJeX
cannot be caused by the same object; they must be
caused by a system controller. This eliminates the
possibility for mobile objects to be autonomous.
Also, if a MobJeX server object is moved a chain of
calls is produced in order to find out its new location
since the proxy object is not notified of the change
directly. However, in our approach, the proxy is
updated directly to the new location of the object.
Another limitation in MobJeX is that it does not
support the declaration of static methods in mobile
objects. This is because it only supports interfaces to
be shared between the client and the server. In our
approach, it is up to the developer to choose between
shared interfaces or classes.

Another approach that deals with mobility in Java is
the Active Container approach [Cha03a]. This
approach provides a compiler that dynamically
generates the code for storing objects in containers.
The communication among objects is made
transparent by calling the active container. However,
the mechanism of changing the proxy when the
server moves is not described. To move an object, it
is also necessary to indicate both the active container
of the stored object and the new active container.
This reduces mobility transparency and does not
allow objects to self-initiate mobility.

One of the few works performed in the context of
.NET is [Tro03a]. It provides weak mobility as our

.NET Technologies 2006 FULL papers 12 ISBN 80-86943-10-0

approach. It uses Aspect-Oriented Programming
(AOP) to separate the mobility decisions from the
objects code in order to allow objects to self-initiate
the mobility decisions. Location changes that are
caused by mobility are transparent to objects because
a module is provided that forwards requests to find
out object locations. In our approach, no forwarding
requests are needed since the location references are
dynamically updated. It is also important to
comment that our approach can also use AOP. Thus,
the PRISMANET middleware [Per05a] supports
mobility and distribution of aspect-oriented
components. However, since AOP is not
standardized in the .NET framework [Per05a] the
work presented in this paper does not use AOP.

3. AN OBJECT-ORIENTED
APPROACH FOR TRANSPARENT
COMMUNICATION AND MOBILITY
In the following, we present an overview of the
background on which our approach is based. We
then explain our approach using a case study of
mobile agents.

Attachment Overview
3.1.1 The Attachments in PRISMA
PRISMA [Ali05a] is an approach that allows the
construction of complex, reusable, dynamic, and
distributed architectures by interconnecting
architectural elements. Thus, an architectural element
must only request and receive petitions through ports
of an interface. However, an architectural element
instance is unaware of with whom it is interacting,
and how the interaction is being performed. This
allows the architectural elements to communicate in a
transparent way thanks to the attachment
functionality.

Figure 1 Attachments in a distributed

 software architecture
Attachments (see Figure 1) are the artefacts that are
responsible for the connections among the ports of
the architectural elements instances. This way, the
attachments can connect architectural elements
whether they are distributed or not. In addition, if an
instance moves, it is the attachments that change the
references and not the architectural element. The
PRISMA approach has been implemented using
.NET through the PRISMANET middleware
[Per05a]. In order to offer the attachment

functionality not only to a component based
approach but also to object-oriented approaches, the
attachments implementation in [Per05a] has been
adapted to provide a middleware to connect mobile
.NET objects.

3.1.2 Design of the Attachment Approach for
.NET Objects
Our middleware permits client objects and server
objects to communicate locally or remotely in a
transparent way. In addition, the client and server
objects can be mobile. Therefore, these objects must
be serializable.

Figure 2 Attachment structure

Figure 2 shows the design of a communication
between a client object and a server object in the
attachment approach. The communication
transparency is performed because each client has a
reference to an AttachmentClient instance. An
AttachmentClient instance is always local to the
client object. The responsibility of the
AttachmentClient is to redirect the client’s requests to
an AttachmentServer object. The AttachmentServer
object is always local to a server. Therefore,
depending on whether the server object is local or
remote to the client the AttachmentClient object may
or may not make a remote call. Therefore, for the
cases where the server must be accessible remotely,
the AttachmentServer class inherits from
MarshalByRef class, as is specified by .NET
Remoting technology.

In this approach, the client object always sends
requests locally to the AttachmentClient object and
does not have to take into account the location of the
server. Thus, if the server object moves, it is the
AttachmentClient that must change its references. In
addition, as the AttachmentServer object is of
MarshalByRef type the server object does not have to
publish its services by .NET Remoting. This solves
the problem that objects cannot be both serializable
and MarshalByRef.

Distributed mobile agent case study
In order to explain the application of this approach,
we present a case study of distributed mobile agents.
The case study lies in a system composed of several
distributed databases, of which we need to collect
information. Mobile agents are sent to the databases
in order to perform local searches, and then they
return to their source host to process the search
results.

Node1
Client

Node2
Server

AttachmentServerAttachmentClient

Node2 Node1

Component1

Attachments

Component2

.NET Technologies 2006 FULL papers 13 ISBN 80-86943-10-0

In many situations the search might have to be done
in large and complex systems, such as the Internet,
where it is appropiate to use as many agents as sites
to search. For this reason, we decided to use a small
number of agents that perform the search. These
agents are distributed dynamically among databases
depending on their search results. The first agent to
finish its work moves to the next database and
notifies the other agents so that they do not process
the same database twice. This solution requires each
agent to be capable of moving in an autonomous way
and also to be connected with the other distributed
agents in order to share services and information.

SearchAgent

origin: string
currentLocation: string
nonVisitedList: ArrayList
keywords: string [1..*]
results: string [0..*]

SearchAgent(keywords, origin, locationsToVisit)
Start() : void
GetResults() : ArrayList
NotifyNewLocation(currentLocation) : void

searchMates

0..*

Figure 3 SearchAgent class

The SearchAgent class is defined in Figure 3. Each
agent requires a list of keywords for the search, its
host origin, and the initial database list where the
search is to be performed. The Start() method is
invoked to search in a current database. After an
agent finishes its search, it needs to move to the next
unvisited database. Then, it notifies the other agents
of its new location by invoking the NotifyNew
Location() method. It is important to note that each
agent could be in a different location each time.
Finally, when there are no more locations to visit,
each agent returns to its host origin and all the
collected data is processed.

Applying the Attachment Approach to
.NET Remoting
Our approach provides a lightweight middleware to
build distributed applications with the following
features:

 Objects can move autonomously among
computers without having to take into account
how distributed communications with other
objects are performed.

 Objects use the middleware to:
o Register themselves in order to offer

their services to other objects,
o Request the creation of a connection to

objects to use their services,
o Ask for mobility when they need it.

 There is no need for a centralized
infrastructure to manage these mobility and

object registration services. The infrastructure
has been designed in a decentralized way.

 Neither client nor server objects need to
precompile code as in other approaches,
because reflection and code generation is
used.

The communication infrastructure is built on .NET
Remoting in a transparent way. The additional
communication cost introduced between two objects
depends on the network traffic and the derived costs
of invocation methods through delegates.

However, this approach requires a few constraints:
 Every computer must run this middleware in

order to use mobility and object-registration
services.

 A client object needs to know where the
server object is located when it establishes the
connection. However, location-awareness is
provided since connection is established.

 Due to the fact that the middleware provides
weak mobility implementation, objects must
take care of their threads before moving.
When the object is restored in the new
location, an initialization method can be
provided to initialize new threads at a specific
point.

 In order to support the mobility of the object
state, both client and server object classes
must be marked as Serializable.

In the following sections we explain the
implementation of our approach using the case study
presented in the previous subsection.
[2] a

3.2.1 The AttachmentManager class

AttachmentClient

AttachmentManager

Register(objectReference, objectID, publicInterface) : void
ConnectTo(objRef, remoteObjectID, remoteURL) : object
MoveObject(objToMove, newURL, initMethod, args) : void

AssemblyManager

AttachmentServ er

ObjectData

AttachmentClientFactory

1

1

0..*

0..*

0..1

Figure 4 AttachmentManager class

The Attachment Manager class (see Figure 4), is the
main class of our middleware, and must be running
on each computer in order to offer the following
services:

 server-behaviour registration services,
 client-behaviour connection services,
 mobility services

.NET Technologies 2006 FULL papers 14 ISBN 80-86943-10-0

 transference of required assemblies when
mobility takes place

 dynamic generation of server proxies on
demand

For each object that uses the attachment concept, the
AttachmentManager maintains an ObjectData
structure that contains information about the
attachments that are used. On the one hand, if an
object provides services to other objects (that is, it
acts with server behaviour), it will have an
AttachmentServer associated to it. On the other hand,
if an object requires services from other objects (that
is, it acts with client behaviour), it will have an
AttachmentClient associated to it.

In our case study, a SearchAgent object has both
client behaviour and server behaviour. On the one
hand, it needs to notify its new location when it
arrives to a new site; i.e. it invokes NotifyNew
Location() method of other SearchAgents. On the
other hand, it must be notified about sites being
visited by other SearchAgents; i.e. it provides the
NotifyNewLocation() method to be invoked remotely.

3.2.2 Server behaviour
A SearchAgent object (from now on, the Server
object) invokes the Register() service of the
AttachmentManager class in order to be accessible
remotely. The following parameters are needed:

 object reference: reference of server object,
which will be used to create the
AttachmentServer part.

 objectID: custom ID to uniquely identify a
server object. This must be known by each
client object in order to establish a proper
connection.

 publicInterface: an optional parameter that
allows us to restrict services that would be
offered to clients. Otherwise, all services from
the server object are provided.

As a result of this invocation, an AttachmentServer
object is created and made accessible remotely (see
Figure 5). This object represents the SearchAgent
object and is responsible for offering the following
services:

 incoming request services are forwarded
towards the server object.

 mobility notification of the server object to
client objects that are connected to it.

The AttachmentServer is composed by the
AttachmentServerMediator class, who publishes the
services that can be invoked remotely and is
responsible for invoking Server methods.

AttachmentServ erMediator

methodsList: Delegate[]

RegisterClient(attClientURL) : MethodInfo[1..*]
UnRegisterClient(attClientURL) : void
RedirectService(methodID, args) : object

AttachmentServ er

objectName: string
«NonSerialized» objRef: object
objType: Type
attClientsURLs: string [0..*] (ArrayList)
serverIsMoving: bool

AttachmentServer(objRef, objectName, objType)
BeginServerMobil ity() : void
EndServerMobility(objectReference) : void

[Serializable]

MarshalByRefObject
1[NonSerialized]

Figure 5 AttachmentServer class

Due to the fact that the method signatures of the
Server are not known until runtime, direct call
invocation cannot be used. We had to use dynamic
method invocation. We decided not to do this
through reflection (using Type.InvokeMember())
because it has the worst performance [Gunn04a].
Instead of this, we have used dynamic code calling
through Delegates. When AttachmentServer is
created, a delegate is created for each method
provided by the server, following these steps:

1. Method information is obtained by means of
reflection at runtime. With this information, a
delegate type is created by emitting its MSIL
code.

2. This delegate type is instanced and stored in
an array.

3. The index of the array where the delegate is
stored is used to uniquely identify the
method to be executed. We have called it
MethodID. This index is stored together with
related method information in a structure
called MethodInfo.

Thus, clients forward methods by the invocation of
the RedirectService() method and by providing the
correct MethodID of the delegate to be executed. We
chose this alternative in order to avoid searches in the
delegate list, which can slow method invocation.
Clients get all the MethodIDs and their related
information (MethodInfo list) when they subscribe to
the AttachmentServer through the RegisterClient()
method. Moreover, client subscription to the
AttachmentServer provides a way to be notified
when the server is moving.

.NET Technologies 2006 FULL papers 15 ISBN 80-86943-10-0

3.2.3 Client behaviour
A SearchAgent (the client) that wants to call methods
from another object (remote or local) needs the
reference of this object to do that. This reference is
provided by the ConnectTo() service of the
AttachmentManager class. The objectID and its
current location must be provided in order to get its
reference. The reference provided is in fact an
AttachmentClient that acts as a proxy. From now on,
the client object will not have to take care of
distributed communications nor location changes of
the remote object (the server).

«generated-code»
Serv er-AttClient

IDeserializationCallback

AttachmentClient

methodInformation: MethodInfo [1..*]
parentType: string
serverURL: string
serviceIsConsuming: bool[]

Process(methodID, args) : object
BeginClientMobility() : void
EndClientMobility() : void
StopProcessingServices() : void

AttachmentClientMediator

ServerMobilityBegan() : void
ServerMobilityEnded(newURL) : void

MarshalByRefObject

[Serializable]

[Serial izable]

1
[NonSerialized]

1

Figure 6 AttachmentClient classes

The creation of the AttachmentClient is done in
several steps:

 If the client computer does not have the
assemblies of the server object, it downloads
them from the computer where the server is
located at this point in time.

 An AttachmentClient object is created. It
registers itself in the AttachmentServer
Mediator of the server object. Thus, it obtains
method information about available remote
services.

 With this information, a proxy of the server is
generated at runtime. The purpose of this
proxy is to forward called methods through
the infrastructure of attachments in a
transparent way. We call it Server-AttClient,
although its real name will depend on the
server type that it represents.

 An instance of the generated Server-AttClient
is returned to the client object.

The Server-AttClient class is generated by emitting
MSIL code. It can be created in two ways: by
implementing a specified server interface or by

inheriting the server type. When it is instanced, a
reference to an AttachmentClient object is provided,
to which methods are forwarded. For each method,
the generated code looks like this:
void NotifyNewLocation(string currentLocation) {
 object[] args =
 new object[1] {currentlocation};
 MethodID = 2;
 attClient.Process(MethodID, args); }

Each method has its related MethodID defined at
generation time in order to provide it correctly to the
AttachmentServerMediator. In .NET Remoting, by
creating a derived class from the RealProxy class,
proxies can be built in an easy way instead of
emitting MSIL code. However, we cannot use this
feature because this infrastructure only accepts
objects that inherit from the MarshalByRef class. To
support mobility, our generated proxy must be
serializable, as discussed in section 3.2.4.

In order to minimize generated MSIL code, the
Server-AttClient class is composed of an
AttachmentClient class that defines all the
functionality of method forwarding and mobility.
The Process() method is responsible for forwarding
the services to be executed to the AttachmentServer
Mediator. Finally, the AttachmentClientMediator
class contains the services that AttachmentServer is
going to invoke in order to notify its mobility, which
will be discussed below.

To illustrate, we describe how SearchAgents are
created and connected with each other following our
approach. First, SearchAgents are created in the host
origin and registered in the AttachmentManager by
providing a different objectID for each one. Next,
they are connected to each other through the
ConnectTo service and by providing the objectIDs
obtained in the previous step. Finally, the Start()
method of the SearchAgents are invoked, so they will
begin to move to remote databases to collect
information.

3.2.4 Object mobility
In order to move an entire object (code + state) to a
new host, the AttachmentManager class provides the
MoveObject() service. As mentioned above, there
must be an AttachmentManager object running at the
target host in order to be able to receive the object
and restore its state properly. The MoveObject
service moves the specified object to the new
specified computer taking into account the current
communication processes. Communication processes
are "frozen" while mobility takes place, and they are
restored properly when mobility ends. Thus, the
other objects to which the moved object was
connected to are not aware of the mobility process.
Moreover, an object can request to move itself
autonomously. In this case, the object thread that

.NET Technologies 2006 FULL papers 16 ISBN 80-86943-10-0

requested the mobility is aborted when the mobility
begins.

It is important to note that, in order to provide the
objects with a high level of mobility transparency,
we considered the objects as black boxes which we
do not know anything about (i.e., their threads or the
location where remote object references are stored)
For this reason, the object to be moved is responsible
for finishing all of its executing threads before
starting mobility. In other words, the object must
reach a secure state before requesting mobility. This
cannot be done transparently by the middleware for
two reasons. On the one hand, it is difficult to obtain
all the running threads of a particular object. On the
other hand, it is not possible in .NET (without
modifying the CLR) to get the thread execution state
(stack and instruction pointer) and to restore it in a
new computer. In order to do that, we would need
thread serialization capabilities. However, to
overcome these limitations, an initialization method
and its arguments can be provided to restore the
execution state of the object when the mobility
process ends.

Mobility is carried out in several steps. First, both the
object to be moved and its communication processes
(the attachments) are packaged by creating a
MobilityPackage object (see Figure 7). Second, this
object is serialized and transferred to the target host.
Then, before deserializing the transferred object, the
middleware checks whether the required assemblies
are available at the current host. If not, they are
downloaded from the host where the object comes
from. Finally, the Unpack() method is invoked to
restore the object and the attachments. If anything
fails, the service UndoMovement() restores the object
to its initial location.

ClientBehav iourMobilityServ erBehav iourMobility

MobilityPackage

Mobil ityPackage(objectData, initial izationMethod, args)
UnPack() : ObjectData
UndoMovement() : ObjectData

[Serializable][Serializable]

[Serializable]

0..1 0..*

Figure 7 MobilityPackage classes

The mobility process depends on the role of the
object to be moved: client or server behaviour. In the
case of client behaviour, the
ClientBehaviourMobility class obtains the
AttachmentClient data (server location, server type
and its unique ID) in order to rebuild it at the target
host. This is because MarshalByRef objects cannot
be serialized, as we stated above. Then, it invokes the
BeginClient Mobility service of AttachmentClient to

wait for pending requests to finish properly. Both the
Server-AttClient and the object are serialized
together, so on deserialization the object preserves
the Server-AttClient reference without forcing the
object to provide a setter property to update remote
object references. However, as Server-AttClient is a
dynamic assembly, it must be regenerated at the
target host if this was not done before. Finally, at the
target host, EndClientMobility service is invoked and
the connection is restored to the AttachmentServer by
notifying the new location of the client object.

In the case of server behaviour, each client object
must be notified of the server mobility process so
that services are not requested during this process.
Similar to the ClientBehaviourMobility object, the
data of the AttachmentServer (objectID, objectType
and locations of connected AttachmentClients) is
stored on a ServerBehaviourMobility object in order
to rebuild it at the target computer. Then, the
ServerBehaviourMobility object invokes the
BeginServerMobility service of the AttachmentServer
to notify the AttachmentClients of server mobility.
Thus, each AttachmentClient blocks the arrival of
new requests (by suspending incoming threads) and
waits until current processing requests finish. When
there are no more requests being processed by the
server object, the mobility process can continue.
Finally at destination, EndServerMobility service is
invoked and connection is restored to the
AttachmentClients by notifying its new location. In
such the case that an object has both server and client
behaviour, its mobility process will be the union of
the above.

Simultaneous mobility is also supported. In other
words, an object can move to another host while
other objects, that are connected to it, are moved at
the same time. Let's suppose that two SearchAgents
'Agnt1' and 'Agnt2' are connected, and 'Agnt1' is
being moved. Then, 'Agnt2' also wants to be moved,
but if it moves, 'Agnt1' will not be able to connect to
it when 'Agnt1' ends its move. In order to do this, a
message is left in the host where 'Agnt2' was. When
'Agnt1' ends its move and tries to connect to the last
location of 'Agnt2', it will be notified with the new
'Agnt2' location.

In the SearchAgents case study, mobility takes place
when an agent finishes collecting data at a certain
database. Then, it invokes the MoveObject() service
by specifying the next unvisited database where it
wants to move and the service to be called when the
mobility process ends (the Start method). When it
arrives to the new database, the Start method is
executed, and the SearchAgent continues its data
collecting process.

.NET Technologies 2006 FULL papers 17 ISBN 80-86943-10-0

4. EVALUATION AND RESULTS
Our approach has been implemented to compare the
communication costs added by the attachments. We
have measured these costs from when a client object
requests a service until the results are returned.
Without attachments, the average communication
costs on a 100Mbit LAN are 0.9030ms. With the
attachments (in the same conditions), the average
communication costs are 1.0144ms (10.98%). The
additional costs introduced, are due to 3 direct calls +
1 delegate dynamic invocation. Therefore, costs are
increased because of dynamic invocation costs. For
this reason, we also evaluated the performance by
using a dynamically generated custom class
[Gunn04a] instead of using delegates. This class was
invoked by the AttachmentServerMediator in order
to make direct method calls to the server object.
Thus, the average costs have been reduced:
1.0010ms (9.79%). In the case of mobility, the costs
are higher: there are communication and processing
costs. The object, its related attachments, and the
required assemblies are transferred. There are also
several notification messages. The most important
processing costs are due to the deserialization of
transferred data and to the dynamic generation of
Server-AttClient types.

5. CONCLUSIONS
In this paper, we have presented a lightweight
middleware that can be easily included in other
middlewares to provide mobility capabilities to its
objects. Our approach supports weak mobility by
using the attachments concept. Autonomous mobility
for distributed objects is provided transparently and
simultaneously, so the objects are not aware of the
mobility process or the connection process of other
objects to which they are linked. Moreover, the
communication costs introduced are not very high, so
an application can be mobility-adapted easily without
slowing its performance. However, there are a few
constraints. First, mobile objects must be
Serializable, and they must manage their own threads
before moving. Also, in order to establish the initial
connection to a remote object, its current location
must be known in advance. Nevertheless, our
approach provides location-awareness after
establishing a connection. The most common
solution to obtain current locations of mobile objects
is by having a centralized object that is updated with
location changes from which clients can request
these locations. However, this is not a decentralized
approach and more work has to be done.

Furthermore, attachments add an abstraction layer
over the communication infrastructure, so objects do
not have to take into account what technology is
used. Therefore, even though we implemented our

approach in .NET Remoting, in the future we can
adapt it to a Service-Oriented infrastructure such as
Indigo, so that current running objects do not have to
be aware of the underlying technology.

6. ACKNOWLEDGMENTS
This work has been funded by the Department of
Science and Technology (Spain) under the National
Program for Research, Development and Innovation,
DYNAMICA project TIC2003-07776-C02-02.

7. REFERENCES
[Ali05a] Ali, N., Ramos, I., Carsí, J.A. A Conceptual
Model for Distributed Aspect-Oriented Software
Architectures. In International conf. on Information
Technology Coding and Computing, (ITCC 2005),
IEEE Computer Society, Las Vegas, USA 2005.
[Ber96a] Bernstein, P.A. Middleware: a model for
distributed system services. Communications of the
ACM, Volume 39, Issue 2, ISSN: 0001-0782, 86-98,
1996.
[Cha03a] Chaumette, S. and Vignéras, P. A
Framework for Seamlesly Making Object Oriented
Applications Distributed. In International conf. on
Parallel Computing (PARCO 2003): 305-312, 2003.
[Fug98a] Fuggetta, A., Picco, G.P., and Vigna, G.
Understanding Code Mobility. In IEEE Transactions
on Software Engineering, 24(5): 342-361, 1998.
[Gunn04a] Gunnerson, E. Calling Code
Dynamically. MSDN Library,
http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/dncscol/html/csharp02172004.asp, 2004
[Hic99a] Hicks, M., Jagannathan, S., Kesley, R.,
Moore, J.T. and Ungureanu, C. Transparent
Communication for Distributed Objects in Java. In
ACM Java Grande Conference, 160-170, June 1999.
[Obe02a] Obermeyer, P. and Hawkins, J. Object
Serialization in the .NET Framework. MSDNLib.:
http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/dndotnet/html/objserializ.asp, 2002.
[Per05a] Pérez, J., Ali, N., Costa C., Carsí J.A.,
Ramos I. Executing Aspect-Oriented Component-
Based Software Architectures on .NET Technology.
International Conference on .NET Technologies,
Plzen, Pilsen, Czech Republic, 2005.
[Rya04a] Ryan, C. and Westhorpe, C. Application
Adaptation through Transparent and Portable
Object Mobility in Java. In proc. of 2004
International Symposium on Distributed Objects and
Applications (DOA 2004), Agia Napa, Cyprus, 2004,
Springer-Verlag LNCS3291
[Tro03a] Troger, P. and Polze, A. Object and
Process Migration in .NET. The 8th IEEE Intern.
Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2003), Mexico,
January 2003.

.NET Technologies 2006 FULL papers 18 ISBN 80-86943-10-0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncscol/html/csharp02172004.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncscol/html/csharp02172004.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/objserializ.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/objserializ.asp

Aspect.NET — aspect-oriented toolkit for Microsoft.NET
based on Phoenix and Whidbey

Vladimir Safonov
St. Petersburg State University,

Russia

v_o_safonov@mail.ru

Mikhail Gratchev
St. Petersburg State University,

Russia

9r@mail.ru

Dmitry Grigoryev
St. Petersburg State University,

Russia

gridmer@mail.ru

Alexander Maslennikov
St. Petersburg State University,

Russia

khan@tepkom.ru

28 Universitetsky prospect
Petrodvorets, St. Petersburg

198504 Russia

ABSTRACT

Aspect-oriented programming (AOP) methodology is evolving from research projects towards commercial applications. Most of the

existing AOP tools suitable for commercial projects are intended for Java platform only which limits their applicability. Known AOP

tools for Microsoft.NET such as Aspect#, Loom.NET, etc. are still at experimental stage. Most of them lack flexibility and comfortable

user interface.

Aspect.NET, our AOP framework for Microsoft.NET, offers a new approach taking the best of Microsoft .NET specifics. Aspect.NET

allows to define aspects using any language implemented for .NET that supports the concept of attribute. For aspect specification, we

developed very simple and compact language-agnostic AOP meta-language - Aspect.NET.ML. At the source code layer, aspect

definition in Aspect.NET looks like the code of a compilation unit annotated by Aspect.NET.ML constructs. The AOP annotations are

converted into specific AOP custom attributes used by the Aspect.NET tool. Thus, an aspect assembly keeps all necessary information

for aspect weaving whose result is represented as an augmented assembly.

Aspect.NET implementation is based on Microsoft Phoenix – state-of-the-art multi-targeted optimizing infrastructure for developing

compilers and other language tools, in particular, comfortable for creating and editing .NET assemblies. The weaver uses Phoenix IR

for scanning target applications and weaving aspects.

Aspect.NET Framework (GUI and aspect editor) is implemented as add-in to Microsoft Visual Studio.NET 2005 (Whidbey) and is

seamlessly integrated into it. Important features of Aspect.NET Framework are: visualization of join points at source code layer, and

user-controlled filtering potential join points before weaving.

Keywords
Aspect-oriented programming, Microsoft.NET, AOP meta-language, join point, weaving, Phoenix, Visual Studio.NET 2005, add-in.

1. INTRODUCTION

Modern AOP approach to software development is intended to

solve a lot of issues related to increasing complexity of

architecture, development and maintenance of software products.

Aspect-oriented approach is helpful to simplify the business logic

of an application, due to explicit separation of its cross-cutting

concerns.

Well known examples of cross-cutting concerns are MT safety,

security and logging.

More complicated example close to the authors’ area of expertise

is the task of extending a compiler by implementation of a new

source language feature – e.g., generics in C#. It is clear that all

the phases of the compiler should be updated for this purpose. So

it is not enough to add new modules to the compiler but is it also

necessary to insert into its code a number of tangled fragments to

glue the new modules of the compiler to the existing ones.

Theoretical foundations of AOP are well defined by a variety of

researchers [1, 17]. However, even basic AOP concepts are still

understood and interpreted different way by different researchers

and developers. Except for widely known AOP tools for Java –

AspectJ [9] integrated into Eclipse, there are no AOP tools yet

that could be easily integrated to the existing software

development environments.

The goal of the Aspect.NET project [10, 11, 51] described in this

paper is to create an AOP tool for Microsoft.NET [40] which

would be flexible, language-agnostic and integrated to the latest

Microsoft software development environment – Visual

Studio.NET 2005.

A version of Aspect.NET for academic shared source .NET

implementation - SSCLI / Rotor is also developed.

Aspect.NET allows to visualize the result of weaving at source

code level, and to manually select or unselect potential join

points.

The paper describes Aspect.NET principles, architecture,

components, functionality, perspectives and ideas of future work

on Aspect.NET.

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on

the first page. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a

fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,

Plzen, Czech Republic.

.NET Technologies 2006 FULL papers 19 ISBN 80-86943-10-0

2. RELATED WORK
The AOP methodology founded by Gregor Kiczales [1] is similar

to a number of approaches already used in software technologies

for a few years - subject-oriented programming [25], composition

filters [26], [14], adaptive programming [15], intentional

programming [27], generative programming and transformational

programming [16].

The papers [28 - 30] provide introduction to AOP and describe

pluses and minuses of different approaches to AOP.

In [31, 32] the most popular AOP tool – AspectJ is described in

detail. The Web site [22] contains a variety of information on all

AOP approaches and tools. The paper [21] describes one of

possible approaches to AOP for .NET based on interceptors.

Papers [35, 36] show the applicability of AOP approach for

implementing object communication protocols’ design patterns.

In [37], design-by-contract foundations are described, as a reliable

software development technology. In our opinion, design-by-

contract principles can be applied using AOP tools, Aspect.NET

in particular.

The paper [36] proposes an approach to handling using AOP,

provides some examples and gives some recommendations of

AOP applicability at this software lifecycle stage.

Since Java was the most advanced software development platform

in mid-1990s, the first AOP tools were developed for the Java

platform. In particular, AspectJ [9] provides the following Java

extensions

• Aspects – implementations of cross-cutting concerns;

• pointcuts – collections of patterns for join points selection

and aspect weaving;

• advices – actions to be performed on reaching the aspect’s

joinpoints;

• inter-type declarations (introduce) — definitions of aspect

members to be inserted into a target application in aspect

weaving, but visible by the aspect only, rather than by the

target application;.

• dynamic updates of control flow before, after or instead the

code of a join point.

One of the key ideas of AspectJ - to perform a given action on

reaching a given join point in the code – can be considered as an

enhancement of the concept of breakpoint used in debuggers. But

the most fundamental principle of AspectJ is to define a new kind

of modules for aspect definitions. The paper [17] provides a

systematic look at the existing AOP tools – AspectJ, HyperJ,

Demeter, DemeterJ, and AOP models – PA, TRAV, COMP-

OSITOR and OC.

Another group of problems related to AOP is aspect mining [18 –

20], or as we call it aspectizing [10] — extracting aspects from

non aspect-oriented applications. Aspectizing can be very helpful

to improve readability and maintainability of applications. There

are several research projects and tools for aspectizing

implemented for the Java platform: Aspect Mining Tool (AMT)

[18], Aspect Browser [19] and FEAT [20].

When the Microsoft.NET platform was developed, it appeared

necessary to implement multi-language aspects, in the spirit of

.NET language interoperability, rather than to limit aspects to be

only extensions of Java or any other concrete programming

language.

There are lots of examples of real cross-cutting concerns and their

implementation, both in commercial and in research software

projects, in particular for Microsoft.NET platform and its non-

commercial SSCLI implementation. When looking at the code

developed by the SSCLI team to port Rotor to MacOS, or at the

code developed by Gyro (generics for Rotor) team, it is quite clear

that both of these are actually aspects.

Currently there are a number of research projects to support AOP

for Microsoft.NET. Among them are: Aspect#, Loom.NET, R#,

Weave.NET, Wicca [53], Compose* [54]. The existing

approaches to implementation of AOP for Microsoft.NET can be

divided into four groups, according to the ways of representing

aspects [56]:

• Using XML schemes for defining AOP specifications, e.g.

SourceWeave.NET [52], Weave.NET [8], first versions of

AspectDNG [47].

• Using COM+ style interceptors for dynamic weaving and

activating AOP functionality. The configuration of the whole

AOP system is described by XML files [21], [50].

• Using Composition Filters Model (CF) as extending special

classes – Compose* [54].

• Using both custom attributes and XML - Aspect# [5]

• Using custom attributes - Aspect.NET [10], Phx.Morph [55],

AspectDNG [47].

So our Aspect.NET approach relates to the fourth group,

according to the above classification.

The most advanced of the existing AOP integrated development

environments (IDE) for the Java platform is referred to as AspectJ

Development Tools (AJDT) [45] developed by the AspectJ team

as a plug-in to the Eclipse IDE to support using AspectJ tools.

There is another tool similar to AJDT for Eclipse — AspectJ

Development Environment (AJDE) [42-44] that can be plugged

into Emacs, JDEE, Sun Studio, NetBeans and JBuilder.

Phx.Morph is another research AOP project which uses the same

weaving techniques based on MS Phoenix [12]. In this tool,

weaving is performed using attribute-based annotations. The tool

does not offer any AOP meta-language for aspect specifications.

Lack of AOP meta-language makes readability of aspects and

specification of non-trivial join points much more complicated.

Currently none of the existing AOP IDE for Microsoft .NET,

prior to our Aspect.NET tool, has comfortable GUI. We think this

is because of initial stage and research nature of the majority of

AOP implementations for Microsoft.NET.

3. ASPECT.NET BASICS
An aspect in Aspect.NET [10, 11] is defined as a source code of a

class (more generally speaking, a compilation unit) in C# or other

.NET language, annotated by our simple AOP meta-language

(referred to as Aspect.NET.ML) statements to highlight the parts

of aspect definition. They are: aspect header (with optional

.NET Technologies 2006 FULL papers 20 ISBN 80-86943-10-0

parameters), (optional) aspect data; aspect modules (methods or

functions), and aspect weaving rules which, in their turn, consist

of weaving conditions and actions (to be woven into a target

assembly, according to these rules). The structure of

Aspect.NET.ML meta-language is so simple and self-explanatory

that we decided to explain it using our examples given below,

rather than provide its precise EBNF definition.

The aspect weaving rules determine the join points within a target

application where the actions of the aspect are to be woven. The

aspect actions provide the aspect’s functionality.

Speaking in terms of knowledge management, aspect weaving

rules can be considered as special kind of knowledge (a rule set)

defining how to apply the aspect to a target application.

There can also be weaving rule sets separate from concrete

aspects, similar to pointcuts in AspectJ.

Unlike AspectJ, a Java extension for AOP, in Aspect.NET, due to

use of language-agnostic AOP annotations, it becomes possible to

avoid the issue of extending each of the .NET languages by its

own AOP extensions specific of that language.

The Aspect.NET pre-processor converts the AOP annotations to

definitions of AOP custom attributes (AspectDef), specially

designed for Aspect.NET, to mark classes and methods as parts of

the aspect definition (see fig. 1). Next, an appropriate common

use .NET compiler transforms the AOP custom attributes to the

aspect assembly’s metadata stored together with the MSIL code.

Join points in Aspect.NET are determined by weaving rules which

are parts of aspect definition, or are defined in a separate rule set

module. The weaving rules contain: conditions of calling aspect

actions (before, after, or instead); context of the action call (a call

of some method, assign to a variable (field), or use of some

variable (field); wildcard to find the context of the aspect action’s

call.

The process of aspect weaving consists of two phases – scanning

(finding join points within the target application) and inserting

(weaving) the calls of the aspect actions into the join points found.

Unlike many other AOP tools, Aspect.NET allows the user to

select or unselect any of the possible join points using

Aspect.NET Framework GUI, to avoid “blind” weaving that

could make the resulting code much less understandable and

actually non-debuggable.

4. ASPECT.NET DESIGN
The Microsoft.NET platform is based on the principles of peer-to-

peer multi-language programming. For any of the .NET

languages, a very comfortable toolkit for software development

and maintenance is provided – Microsoft.NET Framework and

Visual Studio.NET.

The need to support multi-language programming makes the task

of weaving and locating aspects more complicated, as compared

to the Java platform.

For example, AspectJ [9] is actually an implementation of Java

extension by AOP constructs and concepts. AspectJ consists of

the extended Java language compiler and a set of specific utilities

that can work with this Java extension only.

To avoid developing a separate compiler for each of the .NET

languages for the purpose of implementing multi-language AOP,

Aspect.NET uses custom attributes to represent information on

aspects. Due to that, an aspect definition in Aspect.NET is a

syntactically and semantically correct source code of a

compilation unit, with AOP custom attributes added to annotate

parts of aspect. Typically, an Aspect.NET aspect is converted to a

class with its fields and methods, marked by AOP custom

attributes, intended for compilation into a .NET assembly by the

appropriate common use .NET Framework compiler. The AOP

custom attributes are usable and understandable by Aspect.NET

only. They are stored together with the rest of the aspect assembly

and don’t prevent from normal functioning of the other .NET

tools. Due to our approach, there is no need to make a special

“AOP-aware” version of the .NET Framework or Visual

Studio.NET.

Full compatibility of Aspect.NET aspects to all the .NET tools

makes it possible to use all the code refactoring, analysis,

profiling and other features of .NET tools, while working with an

aspect definition. Moreover, all the existing OOP quality criteria

and metrics are applicable to .NET aspect-oriented applications

based on Aspect.NET.

Figure 1. Aspect.NET.ML conversion to custom attributes

Aspect weaving is performed “statically” (see fig. 2), at the layer

of .NET intermediate representation language (MSIL) and

metadata, rather than at source code layer. All weaving-related

transformations are made by the Aspect.NET toolkit. There is no

need to transform in any way either source or intermediate code

of a target application before weaving Aspect.NET aspects.

Aspect Library

(DLL)

%aspect Test

public class Test

{

%modules

 public static void TestRun()

 {

 WriteLine(”test”);

 }

%rules

 %before %call Write*

 public static void TestRunAction()

 {

 Test.TestRun();

 }
}

Aspect.ML

Converter

C#

Compiler

namespace Aspect

{

 [AspectDef("Test","mainModule","","")]

 public class Test

 {

 [AspectDef("Test","module", "", "")]

 public static void TestRun()

 {

 WriteLine(”test”);

 }

 [AspectDef("Test","action","%before %call Write*", "")]

 public static void TestRunAction()

 {

 Test.TestRun();

 }

.NET Technologies 2006 FULL papers 21 ISBN 80-86943-10-0

Figure 2. Static weaving in Aspect.NET

The advantages of static aspect weaving in Aspect.NET, as

compared to dynamic weaving (e.g., in LOOM.NET [2]) and

load-time weaving (e.g., in Weave.NET [8]), are higher

performance and better understandability of a target application

with the aspects woven. Dynamic weaving is usually

implemented with the help of some debugging API which makes

the operating system perform checking of each executable code

instruction to satisfy some specific conditions, and to enable

jumping to some other appropriate part of code when the

condition is satisfied. Such dynamic checks may dramatically

decrease performance. On the contrary, due to Aspect.NET

approach, when using MSIL code of the resulting assembly it is

quite possible to track the results of aspect weaving in vast detail

by .NET utilities (ilasm/ildasm, debuggers, etc.) Thus, a

developer who uses Aspect.NET is guaranteed to get a predictable

and understandable resulting application after weaving. So the

user does not need to use any kind of tricky checks of the results

of weaving aspects, any non-trivial kinds of debugging, etc.

Up to the present moment, the main reason why similar AOP

toolkits haven’t yet been developed for .NET was the lack of

adequate common use tools for analyzing and updating .NET

assemblies (whose structure is very complicated) at the layer of

MSIL intermediate code and metadata. To handle assemblies,

some of the developers had to use RAIL [50] or to reinvent a

wheel by developing their own, limited toolkit for this purpose.

Our Aspect.NET tool is based on Microsoft Phoenix [12] – a

multi-targeting optimizing compiler back-end development

environment. Phoenix provides a convenient high-level API to

create, handle and update .NET assemblies by transforming it into

high-level Phoenix IR (HIR) suitable for any program

transformations like weaving. The resulting assembly unit is

converted back to MSIL and metadata format. The latest version

of Phoenix is dated November 2005 and is available within the

framework of Phoenix Academic Program [12].

One of main shortcomings of the existing experimental AOP tools

for .NET (Aspect# [5], AOP.NET [3], etc.) is the lack of

functionality for analyzing and debugging the results of weaving

aspects.

As for Aspect.NET, all its components have the central part,

Aspect.NET Framework, implemented as an add-in to Microsoft

Visual Studio.NET 2005. Due to that, the user can, for example,

visualize the results of aspect weaving at the source code level.

Also, a version of Aspect.NET compatible to the Shared Source

Common Language Infrastructure (Rotor) is developed. Currently

it is based on command-line interface using Perl scripts. This

version also uses Phoenix and is based on the same weaver.

The main components of Aspect.NET (see fig. 4) are as follows:

• Weaver

• Meta-language converter

• Aspect.NET Framework

Figure 4. Components of Aspect.NET

Aspect.NET Framework allows the user to define aspects in

Aspect.NET.ML meta-language, by creating a new kind of project

(Aspect) and using a skeleton of the aspect source code generated

by our wizard (see fig. 3), to map potential join points into the

original target assembly’s source code, and to visualize the results

of weaving.

To collect information on the potential join points in the target

assembly, as well as to perform aspect weaving itself,

Aspect.NET Framework uses the functionality of the weaver. At

the scanning phase, the weaver matches the code of the target

assembly against the aspect (using its weaving rules), and creates

the list of the potential join points. At the weaving phase, the

actions of the aspect are woven into the target assembly. The user

can edit the list of the (potential) join points, based on visualizing

the join points within the target assembly’s source code.

5. ASPECT.NET.ML CONVERTER

Aspect.NET.ML converter transforms user-defined aspects from

AOP meta-language into source code fully written in the aspect’s

implementation language, annotated by AOP custom attributes.

Also, the converter calls the appropriate common use .NET

language compiler to compile the resulting source code into a

.NET assembly.

Implementation of the converter is based on CodeDom – a set of

.NET Framework classes for generating and handling object-style

representation of a .NET source code. The aspect definition is

transformed into a CodeDom graph which allows to modify the

source code and to use language-independent form of aspect

definition inside Aspect.NET.

Compiler

Application

Source Code

Aspect

Library

Aspect

Source Code

Aspect.NET.ML

Converter

Target
Application

Weaver

 User

Application

Aspect.NET Framework

Compiler
Aspect

Library

Application

Source code
Application

Weaver Application'

Aspect

Library

Aspect

method

invocations

.NET Technologies 2006 FULL papers 22 ISBN 80-86943-10-0

Specifically for Aspect.NET, we introduced a new kind of Visual

Studio.NET project – Aspect that includes a code pattern for

aspect definition and all related resources. Thus, seamless

integration into the Visual Studio IDE is enabled, and aspect reuse

becomes easier.

On creating a correct aspect definition by the user, it is converted,

then compiled into an assembly, and automatically passed to the

aspect browser for its subsequent use within the Aspect.NET

Framework.

In the aspect example in AOP meta-language (please see

Appendix A), the keyword %aspect starts the aspect header that

contains its name (in this example - Politeness), and can also

contain parameters (lacking in this example). Then goes the

%modules part where the aspect modules (methods) are defined.

In the %rules part, the aspect actions are defined, each of them

preceded by its weaving rule. In this example, the first action is to

be inserted before calling each method of the target application,

the second one - after each of its method calls.

In the next listing (see appendix B), the source code of the

Politeness aspect generated by the converter is presented. All the

members of the aspect’s implementation class are marked by

appropriate AOP custom attributes.

6. WEAVER DESIGN APPROACH
In Aspect.NET, weaver is implemented as a separate application,

which allows to distinguish between weaving itself and its

mapping into the source code. So, access to source codes of a

project is not mandatory for subsequent weaving which is

performed at the level of binary representations of the target

assembly and the aspect assembly.

To find and analyze join points, the weaver uses high-level

intermediate representation (HIR) of the binary target assembly

generated by Phoenix [12]. Each executable module of the

assembly is represented by a graph of high-level instructions

which enable access to their source and destination arguments,

debugging information, information on the parent unit, etc. The

Phoenix API enables, on loading a MSIL assembly represented by

a PE file, to get access to control and data flow, to the list of

modules and instructions, to detailed information on types and

symbols, to information on variable dependencies, etc. This

makes possible to find a variety of the kinds of join points, and

makes the weaving independent of concrete aspect

implementation language. In scanning mode, the weaver scans

this instruction stream, finds the join points (based on the weaving

rules), and passes their coordinates in the target application to the

Aspect.NET Framework add-in which presents them to the user.

Next, on getting from the framework the list of the user-selected

join points, the weaver starts its weaving mode, scans the

instruction stream of the target application, and finds the user-

selected join points. Then, the weaver generates instructions for

calling aspect’s actions with the appropriate arguments. The

arguments of the action can be the target method name and the

pointer to the target object whose method is called. The weaver

injects the generated aspect’s action call instructions into the join

point specified by the weaving rule, - before, instead or after the

target call.

7. CASE STUDY: ASPECT.NET IN ACTION
Now let’s consider in more detail the scenario of using

Aspect.NET and the principles of its functioning.

1. The user defines an aspect in AOP meta-language and passes

the source code of the aspect (as part of the Visual Studio’s

Aspect project) and the target application’s source code (also a

Visual Studio project) into the Aspect.NET Framework (see fig.

5).

Figure 5. Creating the aspect and the application projects

2. Aspect.NET Framework initiates the compilation of the source

code of the target application by the .NET compiler from the

appropriate language, to create the target assembly with its

debugging information (.pdb file). Also, Aspect.NET Framework

passes the source code of the aspect to the AOP meta-language

converter which, in its turn, converts the source code with meta-

language annotations into a source code with AOP custom

attributes, and generates a ready-to-use aspect assembly (by

calling the .NET compiler). See fig. 6.

Figure 6. Preparing the aspect and the target application for

weaving

3. To create a list of all possible join points within the target

application, Aspect.NET Framework invokes the scanning phase

of the weaver. To map the join points to the source code of the

target application, Aspect.NET Framework provides the weaver

with its debugging information (for Microsoft .NET Framework –

represented as .pdb file, for Rotor – as .ildb file) The weaver

performs the scanning and generates the join points list as an

XML document (see fig. 7).

Figure 3. Creating a new Aspect.NET aspect project

.NET compiler

The app

project

Aspect

library

App

Aspect.NET

Framework

The Aspect

project Meta-language

converter

Debug

info

The application

project

Aspect.NET

Framework

User

The aspect

project

.NET Technologies 2006 FULL papers 23 ISBN 80-86943-10-0

Figure 7. Generating the list of joinpoints

4. Based on the XML file, Aspect.NET Framework creates a GUI

representation of the join points list, so that the user could

visualize each of the join points within the editor of the code of

the target application. The user can also filter the set of the join

points by unselecting any of them. Then, Aspect.NET Framework

passes the updated list of the join points and the other relevant

working files to the weaver for the phase of weaving itself. As

the result of weaving, the user obtains the updated target

application’s assembly (see fig. 8).

Figure 8. Join points filtering and weaving

Due to such scenario, the phases of scanning and weaving are

separated. This opens great opportunities for software

maintenance and configuration. For example, instead of passing to

the client an updated version of a big monolithic application, it

will be enough to pass the list of join points (internally

represented in Aspect.NET as an XML file), the assemblies of the

aspects implementing new functionality, the weaver application

itself, and a simple script to initiate weaving on the client side.

Thus, if the user would like to create a new version of the

application with extended functionality, she just needs to

configure the weaving of the appropriate aspects.

8. ASPECT.NET FRAMEWORK:

FUNCTIONALITY OVERVIEW
Aspect.NET Framework provides user-level functionality for

examining, studying and understanding Aspect.NET aspects. It

contains:

• Aspect browser, to examine aspect DLLs, their weaving rules,

and comments to them provided at aspect design stage in

Aspect.NET.ML.

• Join points tree, displaying the hierarchy of namespaces,

classes and methods of the target assembly’s project, whose

leaves are the possible join points.

• Visualizer, to display the mapping of the join points onto the

source code of the target assembly.

8.1 Aspect browser

Figure 9. Aspect browser

Fig. 9 illustrates the Aspect.NET aspect browser functionality.

The user can take a look at any of the available aspects, their

modules and actions, and comments to them. The functionality of

the browser is similar to the Outline View in the AJDT for Eclipse

[45] (see fig. 10).

Figure 10. The aspect browser in AJDT for Eclipse.

The browser allows to change the order of the aspects, to resolve

possible conflicts related to the order of weaving aspects to an

application. So, if actions of the two aspects affect the same join

points in the application, the rules of the aspect displayed higher

will be applied before the rules of the one displayed lower.

8.2 Join points tree

On completion of scanning the target assembly by the weaver, the

Aspect.NET Framework creates a join points tree, and displays it

for the user (see fig. 11). The join points are represented by

information on their actions to be called, and on how they will be

woven according to the weaving rules – before, after or instead

the join point code. By clicking at the join point leaves of the tree,

the user can take a look at the appropriate points in the source

code of the target application.

Weaver

(phase of weaving)

App

List of join
points 2

(XML file)

User

Aspect.NET

Framework

Representation of

join points

Aspect

assembly

Updated app

Aspect

library

Aspect.NET

Framework

Weaver

(scanning)

App

Debugging

info

(.pdb file)

List of join

points

(XML file)

.NET Technologies 2006 FULL papers 24 ISBN 80-86943-10-0

Figure 11. Join points tree

Due to the join points tree, the user can get full information on

possible effect of weaving, and visually check the correctness of

possible weaving into each join point before the weaving is

actually done, so that undesirable join points could be unselected.

So, as opposed to AJDT for Eclipse, in Aspect.NET the user can

visualize and control the process of join points filtering. In AJDT,

the user can affect the selection of join points only by changing

pointcut definitions in AspectJ language, which is not so

comfortable and promptly, since it requires recompilation.

“Blind” weaving on the basis of wildcards only (i.e., based on

lexical level of the source code instead of its semantic level) can

be very dangerous. For example, if the user of an AOP tool would

like to insert some actions before and after updating some

common global resource to be synchronized on, and expresses the

pattern for seeking the operation that updates the resource just by

the Set* wildcard for the name of the method, the result of

weaving could be also inserting the aspect’s actions before and

after the calls of “harmless” methods like SetColor.

So, we do think our design decision and functionality for manual

filtering join points could be beneficial, until an appropriate

semantic level approach is invented for this purpose, which

should be the matter of a further research.

8.3 Visualization of aspect weaving effect

In order to help user understand aspect weaving effect on the

target application, a specific component of Aspect.NET

Framework was developed - aspect weaving visualizer (see fig.

12).

Figure 12. Aspect weaving visualizer

Each aspect woven into the target application is indicated by its

own color that can be reselected by the user.

Visualization of each of the aspects can be turned on or off.

In Aspect.NET visualization is implemented similar to AJDT for

Eclipse (see fig. 13) which, in its turn, inherited it from Aspect

Browser [19].

Figure 13. Aspect weaving visualizer in AJDT for Eclipse.

In accordance to the Seesoft graphic notation [38], each of the

vertical columns represents one of the source files of the

application. The height of the column is proportional to the size of

the file. Colored marks inside the columns correspond to the join

points where aspects are woven. Each mark corresponds to one

action of an aspect. One horizontal line with one or more marks

corresponds to a line in the source code. When clicking at any of

the marks, a popup window is displayed with comments to the

corresponding action of an aspect. By clicking at a horizontal line,

the user can view the corresponding source code lines in the

common use editor of the source code. Filtering join points with

the help of join points tree is synchronized with the functionality

of visualizing the effect of aspect weaving.

9. FUTURE WORK

9.1 Aspect debugger

In near future, we plan to add to the common use Visual Studio

debugger an add-in for full-fledged debugging of Aspect.NET

applications in terms of aspects. Due to that, the user will be able

not only detect bugs in the aspect code, but to also trace and

watch step by step the behavior of the resulting target application

in terms of aspects.

9.2 Display changes in the source code

As our research shows, the main difficulty of applying AOP for

commercial projects is the impossibility to estimate interaction of

the woven aspects and business logic code. Aspects are woven at

compile time or dynamically, and the result is a ready-to-use

binary assembly. It is currently not possible to predict the

behavior of the target application after aspect weaving.

Aspect.NET can help to solve this task, either by aspect coloring

in terms of the source code, or by creating unit tests by Visual

Studio development environment. We also plan to provide the

user with an opportunity to “finger” how his source code has been

.NET Technologies 2006 FULL papers 25 ISBN 80-86943-10-0

changed after aspect weaving, by visualizing appropriate

fragments of decompiled code of the modified target assembly.

9.3 Weaving rules analysis and

transformations

We think a prospective addition to Aspect.NET Framework could

be functionality for automated simplification of weaving rules or

converting them to more readable form. For example, a rule of the

kind:

(%after %call *) || (%after %call MyMethod)

 can surely me replaced by a simpler but equivalent rule:

 %after %call *.

If an aspect is being developed for some concrete target

application, a functionality to convert its weaving rules based on

the specifics of the target application could also be helpful. For

example, if the application contains the two methods only,

“MyMethod1” and “MyMethod2”, then the weaving rule:

 (%after %call MyMethod1) || (%after %call MyMethod2)

could be converted to a shorter one:

(%after %call MyMethod*)

or, vice versa, the latter rule could be converted to the former one.

9.4 Weaving rule reader

Similar functionality was discussed in [39]. The weaving rule

reader will provide functionality for generating an adequate

comment to a weaving rule in English. For example, the weaving

rule:

 %call %before (private *.set*(..,int))

could be commented by the following phrase: “before any call of

a private method whose name starts with “set”, defined on any

type, and whose last argument is an int.”

9.5 Interactive generator of weaving rules

Logical enhancement of the idea of weaving rules wizard could be

a functionality to support generation of weaving rules in

interactive mode, based on the existing code of the target

application, for example, by clicking at the points of the source

code of the target application to be affected by the aspect weaving

rule being designed. This task requires a separate research.

9.6 Refactoring

In Visual Studio.NET 2005, advanced code refactoring

functionality is supported - automated renaming members of an

application, extracting interfaces from classes, transforming

fragments of code into separate methods, etc.

For more enhanced support of Aspect.NET, this set of refactoring

transformations could be extended by actions like “transform a

method to an aspect’s action”, or “convert a data definition in an

application into an inter-type declaration”. Supporting these two

functions would be actually equivalent to a basic built-in

aspectizer [10].

9.7 Aspects repository and aspect knowledge

To enable enterprise or higher level reuse of aspects, an aspect

repository could be created and maintained. Aspect.NET

Framework could perform searching in this repository, based on

the problem domain and other parameters. When finding a

suitable aspect, Aspect.NET Framework could weave it into the

target project.

In longer perspective, we think a separate research could be

helpful to investigate more formal and semantic-level

representation, extraction and use of aspect knowledge, since in

our viewpoint aspects can be regarded as special kind of

knowledge on how to transform, enhance and maintain software

projects and applications.

11. CONCLUSIONS

The growth of popularity of Microsoft .NET among software

developers stimulates development of AOP tools for that

platform. But the “single language” approach to AOP, i.e.

implementing AOP features as extensions to some concrete

language, may dramatically limit their applicability, and their

integration to common use .NET software development tools and

technologies. Other shortcomings of the single-language approach

are lack of tools for visualizing the results of aspect weaving, and

low performance of the resulting target applications.

The goal of our group is further developing of Aspect.NET which

we hope is an adequate AOP tool for Microsoft.NET. Due to our

general and simple approach, it provides comfortable mechanism

for ubiquitous use of AOP as part of one of the most advanced

software development environments – Visual Studio.NET. The

proposed approach is based on AOP custom attributes, on static

aspect weaving at .NET assembly level, and on using the source

code of target projects to visualize the results of weaving. The

proposed simple, expressive and powerful AOP meta-language

enables language-agnostic AOP for the .NET platform.

Aspect.NET Framework, the user-oriented part of our system,

provides a rich set of features to analyze and understand aspects

and target applications subject to weaving.

We think the functionality of Aspect.NET Framework is

approaching to that of the most advanced AOP tool - AspectJ

Development Tools for Eclipse [45], and has no analogs for

Microsoft.NET platform.

The first working prototypes of Aspect.NET versions for Visual

Studio.NET 2005 and for Rotor, with the Aspect.NET articles and

examples, are available at [51]. The pre-requisites of using

Aspect.NET are to install Visual Studio.NET 2005 and Phoenix.

12. REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar, etc. Aspect-oriented

programming.- In: Proceedings of the European Conference

on Object-Oriented Programming (ECOOP). Finland,

Springer-Verlag LNCS 1241. June 1997

[2] The LOOM .NET Project: ttp://www.dcl.hpi.uni-

potsdam.de/research/loom/

[3] M. Blackstock.. Aspect Weaving with C# and .NET.

http://www.cs.ubc.ca/~michael/publications/AOPNET5.pdf

[4] Y. Xiong, F. Wan. CCC: An Aspect Oriented Intermediate

Language on .NET Platform

.NET Technologies 2006 FULL papers 26 ISBN 80-86943-10-0

http://www.fit.ac.jp/~zhao/waosd2004/pdf/Xiong.pdf

[5] Aspect# home page: http://aspectsharp.sourceforge.net/

[6] AOP.NET home page: http://sourceforge.net/projects/aopnet/

[7] D. Lafferty, V. Cahill. Language Independent Aspect

Oriented Programming. Proceedings of OOPSLA March

2003

[8] Weave.NET: www.dsg.cs.tcd.ie/sites/Weave.NET.html

[9] The AspectJ Project, www.aspectj.org

[10] V.O.Safonov. Aspect.NET: a new approach to aspect-

oriented programming. - .NET Developer’s Journal, 2003,

#4.

[11] V. O. Safonov. Aspect.NET: concepts and architecture. -

.NET Developer’s Journal, 2004, # 10.

[12] Microsoft Phoenix home page.

http://research.microsoft.com/phoenix

[13] The R# project:

http://rsdn.ru/projects/rsharp/article/rsharp_mag.xml

[14] M. Aksit, L. Bergmans, and S. Vural. An Object-Oriented

Language-Database Integration Model: The Composition-

Filters Approach. – In: Proceedings of the ECOOP'92

Conference, LNCS 615, Springer-Verlag, 1992

[15] K.Leiberherr. Component Enhancement: An Adaptive

Reusability Mechanism for Groups of Collaborating Classes.

– In: Information Processing'92, 12th World Computer

Congress, Madrid, Spain, J. van Leeuwen (Ed.), Elsevier,

1992, pp.179-185

[16] Krzysztof Czarnecki, Ulrich Eisenecker Generative

Programming: Methods, Tools, and Applications, Addison-

Wesley, Paperback, Published June 2000.

[17] Masuhara, J., Kichales, G. Modeling Crosscutting in Aspect-

Oriented Mechanisms. Proceedings of ECOOP’2003

[18] Hannemann, J., Kichales, G. Overcoming the Prevalent

Decomposition in Legacy Code. Proceedings of Workshop

on Advanced Separation of Concerns, International

Conference on Software Engineering (May 2001, Toronto,

Canada)

[19] Aspect Browser: Bill Griswold’s Web pages (University of

California, San Diego): www.cs.ucsd.edu/users/wgg

[20] FEAT: Martin Robillard’s and Gal Murphy’s Web pages

(University of British Columbia, Canada):

www.cs.ubc.ca/~mrobilla/feat/index.html

[21] Shukla, D., Fill, S. and Sells, D. Aspect-Oriented

Programming Enables Better Code Encapsulation and Reuse.

MSDN Magazine, March 2002.

[22] Aspect-oriented software development Web site:

www.aosd.net

[23] K.Czarnecki. Generative Programming: Principles and

Techniques of Software Engineering Based on Automated

Configuration and Fragment-Based Component Models. PhD

thesis, Technische Universitat Ilmenau, Germany, 1998.

[24] Rational Software Corporation: www.rational.com

[25] Homepage of the Subject-Oriented Programming Project,

IBM Thomas J. Watson Research Center, YorktownHeights,

New York, http://www.research.ibm.com/sop/

[26] Homepage of the TRESE Project, University of Twente, The

Netherlands, http://wwwtrese.cs.utwente.nl/; also see the

online tutorial on Composition Filters at

http://wwwtrese.cs.utwente.nl/sina/cfom/

[27] Ch. Simony. The Death of Computer Languages, The Birth

of Intentional Programming, Microsoft Research, 1995,

http://research.microsoft.com/pubs/view.aspx?tr_id=4.

[28] G. Kiczales, J. Lamping, A. Mendhekar, etc. Aspect-

oriented programming. Published in proceedings of the

European Conference on Object-Oriented Programming

(ECOOP). Finland, Springer-Verlag LNCS 1241. June 1997.

[29] E. Zhuravlev, V. Kiryanchikov. On the opportunity of

dynamic aspects integration in aspect-oriented programming.

– Proc. of Electro-Technical University, Informatics, control

and computing technologies, 2002, vol, 3, pp.. 81 — 86 (in

Russian)

[30] Laddad, R. (2002). I want my AOP part 1. JavaWorld.

Avaliable at http://www.javaworld.com/javaworld/jw-01-

2002/jw-0118-aspect.html.

[31] The AspectJ Programming Guide, 1998-2002, Xerox

Corporation

[32] I. Kiselev. Aspect-Oriented Programming with AspectJ.

Indianapolis, IN, USA: SAMS Publishing, 2002.

[33] E. Gamma, R. Helm, R, Johnson, J. Vlissides, Methods of

object-oriented design. Design patterns. – Piter publishers,

St. Petersburg, 2001 (Russian translation).

[34] S. Stelting, O. Maassen. Applying Java patterns. –Williams

publishers, St. Petersburg, 2002 (Russian translation)

[35] J. Hannemann, G. Kiczales. Design pattern implementations

in Java and AspectJ. In: OOPSLA 02, New York, USA,

November 2002. P. 161 — 173.

[36] M. Lippert, C Videira Lopes. A Study on Exception

Detection and Handling Using Aspect-Oriented

Programming. Xerox PARC Technical Report P9910229

CSL-99-1, Dec. 99

[37] B. Meyer, Applying Design by Contract, Prentice Hall, 1992

[38] Eick, S.G., J.L. Steffen, and E.E. Sumner, Seesoft – A Tool

For Visualizing Line Oriented Software Statistics. IEEE

Transactions on Software Engineering, 1992. 18 (11).

[39] Aspect-Oriented Programming with AJDT, Andy Clement,

Adrian Colyer, Mik Kersten

http://www.comp.lancs.ac.uk/computing/users/chitchya/AAO

S2003/Assets/clemas_colyer_kersten.pdf

[40] Richter, J. Programming for Microsoft.NET Framework.

Microsoft Press, 2002

[41] HyperJ:

www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm

[42] AJDE for Emacs and JDEE:

http://aspectj4emacs.sourceforge.net/

.NET Technologies 2006 FULL papers 27 ISBN 80-86943-10-0

[43] AJDE for SunONE/NetBeans:

http://aspectj4netbean.sourceforge.net/

[44] AJDE for JBuilder: http://aspectj4jbuildr.sourceforge.net/

[45] Eclipse AspectJ Development Tools project:

http://www.eclipse.org/ajdt

[46] Eclipse.org - Main Page: http://www.eclipse.org

[47] AspectDNG: http://sourceforge.net/projects/aspectdng/

[48] PostSharp: http://gael.fraiteur.net/postsharp.aspx

[49] EOS: http://www.cs.virginia.edu/~eos

[50] RAIL: http://rail.dei.uc.pt

[51] Aspect.NET: http://www.msdnaa.net/curriculum/?id=6219

[52] SourceWeave.NET :

http://www.dsg.cs.tcd.ie/index.php?category_id=438

[53] Wicca: http://www1.cs.columbia.edu/~eaddy/wicca/

[54] Compose*: http://composestar.sf.net/

[55] Phx.Morph: http://www.columbia.edu/~me133

[56] AOP goes .NET Community Site

http://janus.cs.utwente.nl:8000/twiki/bin/view/AOSDNET/C

haracterizationOfExistingApproaches

.NET Technologies 2006 FULL papers 28 ISBN 80-86943-10-0

APPENDIX

A. ASPECT DEFINITION SAMPLE

//aspect header, contains aspect name

%aspect Politeness

using System;

using AspectDotNet;

public class Politeness

{

//aspect modules

%modules

 public static void SayHello ()

 {

 Console.WriteLine("Hello");

 }

 public static void SayBye ()

 {

 Console.WriteLine("Bye");

 }

//aspect rules and actions

%rules

 %before %call *

 %action public static void SayHelloAction() { Politeness.SayHello();}

 %after %call *

 %action public static void SayByeAction() { Politeness.SayBye();}

}

B. CONVERTED ASPECT SAMPLE

namespace Aspect {

 using System;

 using AspectDotNet;

 [AspectDef("Politeness", "MainModule", "")]

 public class Politeness {

 [AspectDef("Politeness", "module", "")]

 public static void SayHello() {

 Console.WriteLine("Hello");

 }

 [AspectDef("Politeness", "module", "")]

 public static void SayBye() {

 Console.WriteLine("Bye");

 }

 [AspectDef("Politeness", "action", "%before %call * ")]

 public static void SayHelloAction() {

 Politeness.SayHello();

 }

 [AspectDef("Politeness", "action", "%after %call * ")]

 public static void SayByeAction() {

 Politeness.SayBye();

 }

 }

}

.NET Technologies 2006 FULL papers 29 ISBN 80-86943-10-0

.NET Technologies 2006 FULL papers 30 ISBN 80-86943-10-0

Phalanger: Compiling and Running PHP

Applications on the Microsoft .NET Platform

Jan Benda

Charles University in Prague
Malostranske namesti 25

11800 Prague
Czech Republic

jbe@php-compiler.net

Tomas Matousek
Charles University in Prague

Malostranske namesti 25
11800 Prague

Czech Republic

tomas@php-compiler.net

Ladislav Prosek
Charles University in Prague

Malostranske namesti 25
11800 Prague

Czech Republic

lada@php-compiler.net

ABSTRACT

This paper addresses major issues related to compilation of applications written in the PHP language and their

solutions proposed and implemented in the Phalanger system targeting the Microsoft .NET platform. Main focus

is given to those PHP features that are specific to the interpreted and dynamic nature of this language and that are

making the compilation process more challenging. Since a language compiler and runtime are usually tightly

coupled, this paper also presents parts of the Phalanger runtime related to the discussed language features.

Additionally, the support for various web application execution scenarios within the ASP.NET server is outlined

as PHP applications usually target web servers. The effectiveness reached by the compilation to the intermediate

language of the .NET platform is demonstrated in a comparison with existing products addressing an

optimization of PHP code execution.

Keywords
PHP language, .NET Framework, compiler, web applications

1. INTRODUCTION
The PHP became the most popular interpreted

language for web application development due to its

ease of use and availability. On the other hand, the

interpretation yields sub-optimal performance and

also requires presence of the source code on the web

server.

This work is not the first one to address these issues.

One of today’s most common optimizations relies on

converting PHP source code units into a binary

representation stored in the interpreter cache. The

cached binary representation eliminates the need to

read the source files and build the structures

necessary for their interpretation repeatedly. The

Zend Optimizer [23] is an example of this approach.

Another approach consists of a translation of the PHP

source code into the language whose compiler

already exists. Products using this technology are the

Roadsend Compiler [19], which translates the PHP

language to the C language, and recently released

Resin Quercus [4] whose target language is Java.

Despite these efforts, the Phalanger [9] discussed in

this paper still stands as the only existing PHP

language compiler [2] with the support for the latest

PHP features (version 5.1.2 at the time of writing this

paper) and virtually all PHP runtime libraries. It

brings the PHP language to the family of the .NET

languages [1] and makes it possible for other .NET

applications to cooperate with PHP applications

regardless of the programming language they are

written in. Therefore, the Phalanger enables seamless

integration of the existing PHP applications with the

new technologies of ASP.NET [10], and thus saving

resources that would otherwise be needed for

reprogramming them. On the other hand, the .NET

programmers can also utilize the advantages of using

a dynamic language in their new applications.

This paper is laid out as follows. Section 2 describes

how specific PHP language constructs are handled by

the Phalanger compiler to achieve high performance

of the compiled code. Section 3 outlines the run-time

environment provided to the PHP programs compiled

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006

Copyright UNION Agency – Science Press,

Plzen, Czech Republic.

.NET Technologies 2006 FULL papers 31 ISBN 80-86943-10-0

by the Phalanger. Section 4 discusses the related

works and Section 5 compares them with the

Phalanger in a performance benchmark. Finally,

Section 6 concludes and outlines the future work.

2. PHP LANGUAGE COMPILATION
The PHP language [3] is a procedural language

originally developed to be processed by an

interpreter. This is why some features cannot be

compiled in a straightforward manner. The challenges

of compiling the PHP language and our proposed

solutions are presented in this section.

Scripts
A PHP script is a compilation unit in the Phalanger. It

consists of snippets of HTML and PHP code one

penetrating the other, with the code enclosed in a

special type of tags. The pieces of HTML code

outside the PHP brackets are treated as if they were

printed out by the PHP code via the echo statement.

Therefore, from the compiler’s point of view the

script consists of a sequence of statements. Apart

from the statements available in the commonly used

procedural languages, function, class and interface

declarations are also statements in PHP. Phalanger

compiles classes and interfaces into separate CLR

types [5]. Functions and other non-declarative

statements are compiled into a single static script

type. This CLR type contains public static methods

corresponding to the functions declared in the script

and a single public static method containing all the

non-declarative statements of the script (the global

code of the script – the code that is supposed to run

when the script is executed).

All code defined explicitly in the script as well as the

code created at run-time is executed in a common

script context. Script context is an object associated

with the running script, keeping track of the script

state – the defined constants, global variables,

functions, classes, script dependent configuration etc.

The current script context object is accessible to each

user function and method via a reference passed as an

argument along the execution path. If the script is

running on a web server, the script context object is

created for each request and is held by the request

context object, which contains additional data

specific to the request processing.

The following PHP source code sample shows three

pieces of global code: ‘<html>’, ‘$x = 1;’ and ‘if

($y)’, and two declarations, one of them conditional.

<html> ... HTML snippet

<? ... opening script tag

 $x = 1; ... global variable assign.

 function f() { } ... unconditional decl.

 if ($y) { class C { } } ... conditional decl.

?> ... closing script tag

Raw structure of the compilation result follows.

class C#1 : PhpObject { }
static class ScriptType
{
 public static f(ScriptContext sc) { }
 public static Main(ScriptContext sc)
 {
 sc.Echo("<html>");
 sc.SetVariable("x", 1);
 sc.DeclareFunction("f", f);
 if (Ops.IsTrue(sc.GetVariable("y")))
 sc.DeclareClass("C", typeof(C#1));
 }
}

Declarations
Declarations of functions, classes and interfaces

stated directly in the global code (i.e. not enclosed in

another statement) are unconditional declarations

(the function declaration in the above example). In

addition to this common usage, PHP allows

declarations inside a function body, if statement

block, etc. Such a declaration is a conditional

declaration (see the class declaration in the example).

It depends on run-time conditions whether and when

this declaration takes effect.

Once a declaration statement is executed (the

declaration becomes active) it cannot be undone and

a redeclaration is not allowed. However, multiple

declarations of the same entity (function, class or

interface) using the same name can appear in the code

or be defined at run-time provided that at most one

becomes active at run-time. Such declarations of an

entity are referred to as its versions in the Phalanger.

Hence, all versions except for at most one must be

conditional. Note that if an unconditional version is

present the conditional ones shall never be activated.

On the other hand, it is not an error to declare them.

There are no explicit means for conditional

compilation in the PHP language so the regular

conditional statements are used for that purpose.

Versions are maintained by the Phalanger runtime

ensuring that at most one gets activated.

Active versions of functions are stored in the script

context in a hash table mapping a function name to an

instance of a delegate. The delegate instance

represents the CLR method implementing the active

version. Another hash table is designated to store the

type objects representing the active class and

interface versions. Each declaration statement adds

an entry to the respective hash table at the point of its

execution or at the beginning of the global code for

unconditional declarations.

A multi-version function call operator then looks up

the active version in the table and calls it via the

delegate. Analogously, the new operator looks up the

active version of the type in the hash table and

instantiates it. These operators are emitted by the

compiler only if the actual target of a function

invocation or a class instantiation is not known at

.NET Technologies 2006 FULL papers 32 ISBN 80-86943-10-0

compile time. This includes not only the multi-

version targets but also targets unknown at compile-

time and targets referenced by the name stored in a

variable. Otherwise, for the targets known at compile-

time, the direct method invocation and class

instantiation IL instructions [7] are emitted into the

resulting byte code.

Inclusions and Run-time Evaluated Code
The PHP language contains several inclusion

statements. Their behavior is almost equivalent to an

insertion of the code contained in the included script

to the place of the inclusion statement. Implementing

the inclusions in this way is undesirable for the

compiled language. The compiler processes the

individual scripts separately, thus enabling reuse of

the compiled modules without the need of repeated

processing.

An inclusion whose argument can be determined at

compile-time is resolved immediately (static

inclusion) otherwise the inclusion is deferred to run-

time (dynamic inclusion). The script included

dynamically is bound with the including one at run-

time which is, of course, slower than compile-time

linking. Unfortunately, many PHP scripts use

inclusion expressions that cannot be evaluated at

compile-time. The algorithm used by the PHP

interpreter for resolving the inclusions makes it even

more difficult for the compiler to make the decision

at compile-time even if the target is specified by a

string literal. By inspecting many existing PHP

applications and libraries, we observed that the vast

majority of them use only a handful of patterns for

specifying the inclusion target. For example, a

common pattern is

include($AppRoot . "path/to/file.php");

where $AppRoot is a PHP variable containing the

application root path computed by the previous code

and the dot operator performs a string concatenation.

Although the expression cannot be evaluated at

compile time, the inclusion can be made static. The

trick inheres in configuring the compilation of the

application so that one or more regular expression

patterns are matched against the source code of each

inclusion argument to replace the recognized patterns

with associated literal constants – the paths relative to

the application source root, which is already known

to the compiler.

Declarations contained in dynamically included

scripts are unknown to the compiler at the time when

the including script is being compiled, thus their uses

must be compiled as uses of unknown functions,

classes or interfaces. Obviously, this presents a

problem when declaring a class that inherits from

class (or implements an interface) not known at

compile-time. In such case, the derived class is

treated as unknown despite the fact that its

declaration is known to the compiler. This is because

the changes in the superclass or implemented

interface (which can take place at run-time) can

totally change the behavior of any method of the

class. In the current version of the Phalanger, such

declaration is converted into an eval construct that

evaluates the source code at run-time. This way, the

compilation of the declaration is deferred to run-time

at which point all super-classes and implemented

interfaces are known. This approach is easy to

implement yet is not optimal as the run-time

compilation is expensive. The future versions of the

Phalanger will emit the declaration in the form

independent of the unknown base classes and

interfaces where possible.

The behavior of the eval construct is similar to the

dynamic inclusion. The difference is mostly in the

persistence as the eval’ed code is compiled into an in-

memory dynamic assembly and is not persisted.

Apart from the eval construct, there are other

constructs and functions that utilize run-time code

compilation. Those include the assert construct,

which evaluates a string containing a PHP

expression, the create_function library function,

which enables the user to define an anonymous

(lambda) function with a specified body, and some

others. Even though the source code passed to these

routines can be created at run-time, it is often not the

case and the parameters are usually literal strings. In

that case, the compiler processes the literals as if they

were regular source codes and immediately generates

the IL code during the initial compilation; the

compilation at run-time is no longer necessary.

Variables
Global variables are stored in a hash table held by the

script context object. Both direct and indirect

accesses are thus performed similarly to the original

PHP interpreter – using a hash table lookup. There is

not much opportunity for optimization here since the

global variables can be changed anytime from any

function or any script that may be even unknown at

compile-time.

On the contrary, the local variables are accessible

only within the scope of the function that declares

them. Therefore, it is often possible to represent them

by the CLR local variables allocated on the stack.

This is an important optimization as it is applicable to

the vast majority of functions and the creation of the

hash table in the function’s prologue and the

following look-ups are expensive. Nonetheless, in

some rare cases the list of local variables and their

values needs to be available at run-time. This only

happens when a function contains an eval construct, a

.NET Technologies 2006 FULL papers 33 ISBN 80-86943-10-0

run-time evaluated assert construct, an inclusion, a

call to a function working with the variable list (e.g.

extract function), or an indirect function call, which

can target the latter. In such cases, a hash table of

local variables, which is similar to that of the global

ones, has to be created in the function prologue and

all uses of the local variables become look-ups in the

hash table.

Note that an indirect variable access (access by name)

is usually not an obstacle to the optimization of local

variables unless there are too many variables used in

the function. An indirect access is compiled into a

switch over the variable names known at compile-

time. Only when the indirectly accessed variable is

unknown at compile-time (the default case in the

switch is reached) the hash table for the local

variables unknown at compile-time is created if it

didn’t already exist and the local variable is looked

up. Therefore, a dynamic access to the variable

doesn’t necessarily degrade the performance by

creating and accessing the hash table.

So far, the compiler doesn’t perform any type

analysis. Gains of such analysis are very limited due

to the nature of the PHP language and are usually not

worth the increased complexity of the compiler.

Reasoning about the types of the global variables is

completely useless as their estimated types can be

changed by the code unknown at compile-time. On

the other hand, the type inference for local variables

might be considered. For example, a local variable

controlling the for-loop holds usually an integer in

the scope of the loop. Nonetheless, effects of such

optimizations might be negligible when compared to

the expensiveness of run-time code evaluation and

other features.

Therefore, each variable is currently either of type

Object (common super-type of all CLR types) or a

special type called PhpReference. The latter type is

used for variables with aliases, i.e. for those variables

that may potentially be used with &-modified

assignment operator (by-reference assignment) or that

can be passed to a function using by-reference

semantics. All global variables are of type

PhpReference as it is unknown whether they are

aliased or not.

In order to cope with PHP references in the way they

are used in the language, the PhpReference type

introduces an additional level of indirection. The type

comprises of a single field of type Object containing

the actual value of the variable.

For example, if two variables are assigned by

reference, say $x =& $y, subsequent assignments by

value to any of them modifies the other as well.

Hence, the assignment $x = 1 changes values of both

$x and $y to 1. In compiled code, these variables will

be of the type PhpReference. The assignment by

reference makes them refer to the same instance of

the PhpReference (the one of $y). The assignment by

value assigns to the field of the PhpReference

instance, so all variables sharing this instance get the

same value.

Functions and Methods
User functions are compiled as public static methods

of the script type representing the source file that

declares the functions. User methods are compiled as

methods of the CLR type representing the

corresponding user class. Two overloads are

generated for each user routine: an argument-full

implementation and an argument-less stub.

The argument-full overload is used by calls whose

target is known at compile-time. Its signature

includes all user-defined formal arguments. The body

contains the compiled code of the routine preceded

by a prologue processing arguments and initializing

local variables (populating local variables table,

checking type hints, etc.).

Contrary to argument-full overloads, all argument-

less stubs have the same signature. In many cases a

call to a compile-time unknown function needs to be

made. Signature uniformity allows delegates of a

single type to be used for such calls. The caller

pushes the arguments onto an internal stack and calls

the argument-less stub via the delegate. The task of

the stub is to move the actual arguments from the

internal stack to the evaluation stack, and call the

argument-full implementation. The internal stack is a

pre-allocated resizable array residing in the script

context.

Object Oriented Features
The PHP language is a class-based object-oriented

language supporting run-time modification of the

instance fields and some other unusual features. The

Phalanger compiler supports the entire object model

proposed by PHP5.

PHP classes and interfaces are represented directly by

CLR classes and interfaces, respectively, preserving

the inheritance hierarchy. The common base class for

PHP classes implements much of the PHP specific

behavior such as by-name field access and method

invocation, instance serialization, dumping,

comparison, etc. Compiled PHP classes can be easily

reused by other .NET languages. The role of the

Phalanger as a consumer and extender of classes

produced by other .NET languages is currently

limited to cases where such class has been designed

for the Phalanger by following several rules related to

method signatures, field types and helper methods.

These requirements stem from the dynamic and

loosely typed nature of the PHP language making

.NET Technologies 2006 FULL papers 34 ISBN 80-86943-10-0

late-binding a very frequent phenomenon that should

be highly optimized. Being able to directly consume

and extend classes produced by other .NET

languages would be a great improvement as the

whole .NET Class Library and many other libraries

would become immediately available to PHP

programmers. The solution that features .NET

Framework 2.0 Lightweight Code Generation [10] is

currently being designed and will be implemented in

the next versions of Phalanger.

In the PHP language, instance field declarations are

optional. The declared fields are compiled as instance

fields of the resulting CLR class and a method giving

fast indirect access to these fields is emitted to each

class with at least one instance field declared.

Instance fields created at run-time are stored in a hash

table associated with the instance. Although the

compiler is able to discover what fields might

possibly be created at run-time, it is incorrect to treat

them as if they were declared so, because the

semantics of accessing these fields is generally

unknown at compile time (for example, a subclass

can overload field access by declaring the __get and

__set methods, which consequently turns some

undeclared field access operations in its base class to

__get and __set invocations).

When a field is accessed within a method using the

$this pseudo-variable and the corresponding field is

found at compile-time, an IL instruction is emitted to

accesses it directly. Otherwise, the lookup has to be

deferred to run-time and a call to the run-time

operator method is emitted instead. A field access via

an ordinary variable is always deferred to run-time

because the current version of the compiler doesn’t

perform any type analysis. Either way, there will

always be cases when such field access has to be

dynamic.

Method declarations are compiled in a similar way to

the functions. There are two ways of invoking

methods in the PHP language – virtual and non-

virtual. Virtual invocation is denoted by the

$instance→method(arguments) operator, whereas

class::method(arguments) operator performs a non-

virtual invocation. Both operators can be used to

invoke instance as well as static methods. When

invoking a static method in the virtual manner,

$instance is used merely to lookup the method

implementation. On the other hand, when an instance

method is invoked statically, it is given the call site’s

$this as the instance (if the caller’s $this is not

assignable to the callee’s one or the caller has no

$this at all, a dummy instance is created). Due to the

lack of the type analysis, virtual invocation is

currently always resolved at run-time via an operator.

Non-virtual invocations can be compiled as direct

invocations, provided that the class is known at the

compile-time.

Some more unusual object features found in the PHP

language include the possibility to declare abstract

static and final static methods and the possibility to

change a member visibility from protected to public

by the subclass. In most cases, the Phalanger uses

custom attributes to map such features to the CLR.

3. LANGUAGE RUN-TIME
The PHP interpreter provides hundreds of functions

to the programmers. These functions can be divided

into two main categories:

• built-in functions – the most commonly used

functions implemented directly by the interpreter

• external functions – additional functions

implemented in dynamic libraries (.dlls) provided

often by third parties.

The Class Library – Built-in Function Set
The Phalanger Class Library provides the

implementations of the built-in functions and classes.

This library is designed to be simply extensible and

language independent. The current library functions

are implemented in the C# language as public static

methods logically grouped to the encapsulating CLR

static classes. The semantics of by the PHP functions

and classes, required for the use from a PHP code, is

added via metadata associated with the respective

methods and types. These metadata drive the

compiler when it emits calls to the library functions

and operations on the library classes.

The Extensions – External Function Set
The external PHP functions are implemented in

dynamically linked libraries. These libraries are

loaded to the PHP interpreter’s address space and

communicate with PHP via Zend API – a predefined

set of functions.

Virtually all PHP extension libraries working against

Zend API of PHP 4.3.* are now available to .NET

applications via Phalanger’s Extension Manager. The

Extension Manager emulates the original PHP

interpreter environment, provides the necessary API

to the extensions and bridges the gap between the

unmanaged world of the PHP extensions and the

managed world of Phalanger in both directions. This

solution enables access to the functionality of any

PHP extension not only to the PHP scripts, but also

to any other .NET language.

The original dynamic libraries are encapsulated by

the managed wrappers. A managed wrapper is a tool-

generated assembly comprising of stubs representing

functions and methods provided by the corresponding

extension. Each stub marshals its arguments to native

PHP structures, performs the call to the PHP

.NET Technologies 2006 FULL papers 35 ISBN 80-86943-10-0

extension and unmarshals the results back to the

managed form.

Because the PHP extension dynamic libraries do not

contain type information, additional hand-written

XML files describing function and method signatures

are used by the wrapper generator. The generator

analyses the dynamic library, adds the type

information and emits managed stubs into the

resulting assembly. Both versions of the stubs

(argument-full and argument-less) are generated to

allow indirect calls from the compiled PHP code.

Using the managed wrappers, the native

implementations of external functions are completely

hidden to the outside managed world so the caller

doesn’t need to care about the fact that the

functionality is actually implemented in the native

dynamic library. Hence, the library implementation

can be transparently replaced by a managed one

anytime without modification of the calling code.

There are two modes of loading PHP extensions

using the Extension Manager: collocated and

isolated. The web server administrator may configure

individual extensions depending on their reliability

preferring either performance or safety.

Trusted extensions may be collocated in the address

space of the PHP application process, in the same

application domain as the compiled PHP code,

leading to much better performance. In this scenario

the stubs only convert the managed data to the native

PHP structures and back.

Untrustworthy extensions may be loaded into an

isolated process. The main process, which executes

the compiled PHP code, is then protected from being

damaged or even crashed by the code of the

unmanaged extension. The two processes

communicate via .NET Remoting using the shared

memory channel or any other channel type.

ASP.NET Cooperation
Since the PHP scripts usually constitute web

applications, the run-time support for the web

environment is essential. A PHP web application

comprises of the set of scripts and data files stored in

a virtual directory on the web server. This directory

needs to be configured as an ASP.NET application in

order to be managed by the Phalanger. The Phalanger

provides a module serving web requests and

configures the ASP.NET to use it. The integration

with ASP.NET server allows the Phalanger to take

advantage of such features as monitoring source code

and configuration changes, hierarchical per directory

configuration, and sophisticated session handling.

When the request is issued to the Phalanger web

application, an object called request handler is

created to process it. The handler first checks the

compilation cache – a directory in which the

compiled script assemblies are stored. If the compiled

assembly that corresponds to the requested script is

found in the cache, it is loaded (unless already in the

memory) and executed. Otherwise, the compiler is

executed to compile the script and store it in the

cache. The response is always generated by the

compiled script. If the script is requested frequently,

it resides in the memory in a form of just-in-time-

compiled native code and the execution is thus really

fast as the benchmark results below demonstrate.

The Phalanger also provides an option to pre-compile

the entire web application to a single assembly. The

request handler then searches the pre-compiled

assembly for the requested script’s type. By utilizing

this scenario, the application source code is not

needed any more unless the user requires the

Phalanger to watch for its changes. Hence, the web

application can be deployed in the compiled form in

order to protect the intellectual property in the source

code.

The pre-compilation is also essential for large

applications comprising of thousands of scripts. That

many scripts consume enormous amount of memory

if compiled into separate assemblies and then all

loaded. Compiling the application to a single

assembly makes it more compact and saves the

memory.

In cases when an application is pre-compiled, yet the

source code still undergoes changes, the Phalanger

enables to mark the script types with timestamps so

that it can detect changes to the source file during the

application execution. The Phalanger maintains the

table of invalidated scripts at run-time and recompiles

the script into a separate assembly stored in the cache

if the script is invalidated.

4. RELATED PRODUCTS
The Phalanger system is one of the few alternatives to

the PHP interpreter. The majority of existing PHP

web applications is powered by the PHP interpreter

alone. If the performance is not sufficient due to high

server load, an accelerator is usually added to cache

the preprocessed script files. There are many

accelerators available today, including the Zend

Optimizer [23], the Turck MMCache [22] and the

eAccelerator [3].

Apart from the Phalanger, only two other systems

take the approach of compilation. The first is the

Roadsend Compiler [19] which compiles the PHP

code into the native binaries using the C language as

an intermediary. The second is the Resin Quercus [4]

targeting Java Virtual Machine by translating PHP

source codes into the Java language. The major

disadvantage of both is a lack of support for all PHP

.NET Technologies 2006 FULL papers 36 ISBN 80-86943-10-0

extensions, which makes these systems currently

almost unusable in practice. Additionally, the

Roadsend Compiler doesn’t currently support the

latest versions of the PHP language. The very first

beta version of the Quercus has been released several

months ago. The system is still under development,

and it hasn’t been tested on a real-world application

yet.

5. BENCHMARKS
The benchmark presented below compares the

Phalanger with the versions 5.0.4 and 4.3.11 of the

PHP interpreter optionally accelerated by the Zend

Optimizer. The benchmark measures the overall

performance of the phpBB message board system

[17] version 2.0.14 by issuing a series of requests that

exercise the common operations performed by the

message board system users. Since all tested PHP

engines use the same database server and the requests

are sent sequentially, the benchmark measures the

relative differences in the speed of request

processing. To measure the results, the benchmark

uses the Microsoft Web Application Stress Tool [14].

The configuration used for the benchmark was Intel

Pentium M 1.4 GHz with 1 GB RAM running

Windows XP Professional SP2, IIS 5.1 web server

[11] and MSDE 2000 SP3 database engine [12].

Figure 1 visualizes the results of the benchmark. The

first three columns show the performance of various

Phalanger configurations. The first measurement, the

managed MSSQL extension, shows the best results.

This extension is a C# reimplementation of the PHP

MSSQL extension using Microsoft SQL driver

available with the .NET Framework. The second and

the third Phalanger configurations exercise the native

MSSQL extension shipped with the PHP 4.3.11

interpreter encapsulated in the managed wrapper. The

poor result of the third test is caused by isolating the

extension into a separate process. Performance

degradation is expected in this case since all data

transferred between the application and the SQL

server has to be passed through .NET Remoting

channel connecting the two processes. Therefore, the

extension isolation is not appropriate for extensions

transferring large amount of data.

The remaining four tests are performed on the PHP

interpreter with and without use of the Zend

Optimizer. The conclusion of the benchmark is that

the most powerful Phalanger configuration improves

the performance of the phpBB application by the

factor of 2.3 when compared with the best

configuration of the PHP interpreter.

Of course, the absolute numbers of the benchmark are

not relevant. Series of other benchmarks which varied

in the used database server (Microsoft SQL Server

[12], MySQL Server [15]), web server (Apache [20],

IIS 6 [11]), particular operations performed on the

application as well as benchmarks performed on

different applications showed that the version 1.0 of

the Phalanger in the configuration with managed

extensions makes the request processing about two

times faster than the PHP interpreter accelerated by

the Zend Optimizer.

10,76

7,73

1,83

4,75

3,92
3,51 3,33

0

2

4

6

8

10

12

Phalanger

managed

MSSQL

Phalanger

native MSSQL

(collocated)

Phalanger

native MSSQL

(isolated)

PHP 4.3.11

MSSQL

Zend Optimizer

PHP 5.0.4

MSSQL

Zend Optimizer

PHP 4.3.11

MSSQL

PHP 5.0.4

MSSQL

re
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Figure 1. Performance comparison of the phpBB web application running on the Phalanger and the PHP

interpreter (not) being accelerated by the Zend Optimizer.

.NET Technologies 2006 FULL papers 37 ISBN 80-86943-10-0

6. CONCLUSION & FUTURE WORK
The Phalanger is a functional tool which allows to

deploy existing PHP applications without

significant modifications on an ASP.NET web

server, increasing the throughput significantly

compared to the original PHP interpreter. Phalanger

proves that the PHP language compilation targeting

the .NET Framework is not only feasible, but even

advantageous.

Apart from the demonstrated performance

improvements, the Phalanger provides the means

for migration of existing PHP applications to the

modern web environment of ASP.NET, allows the

.NET programmers to utilize useful functionality

implemented in the numerous PHP libraries and

gives the PHP application developers the ability to

access .NET Framework libraries as well as develop

their PHP applications inside Microsoft Visual

Studio .NET [13].

Another advantage of targeting the .NET

Framework over compiling to the native code or to

some kind of specific byte-code stems from the

amount of work that Microsoft invested to improve

the .NET execution engine itself. In general, the

performance of applications targeting .NET

Framework gets better with the new versions of the

.NET run-time. For example, the .NET

implementation of the Python scripting language,

IronPython, gained a significant increase in

performance when migrated from .NET Framework

version 1.1 to version 2.0 without any changes to

the IronPython scripting engine itself [7]. Further

improvements were achieved by utilizing new

features of the platform. Phalanger is likely to get

the same benefits when ported to the new version of

.NET.

The first final version of the Phalanger system has

been released recently and dozens of widely used

PHP applications and frameworks, including a huge

application comprising of about 2000 script files,

have been successfully tested on it. The first goal of

the Phalanger system, to be able to run the existing

PHP4 and PHP5 applications, has been, to a large

degree, achieved. However, as the development of

new PHP libraries and features (such as Reflection

API, Standard PHP Library and features proposed

by PHP6) continues, it is necessary to include them

in the Phalanger so that the newest versions of the

PHP applications continue to run on Phalanger.

The great challenge and the major goal for the next

version of the Phalanger is to make the PHP

language the first class language of the .NET

Framework, i.e. to make all .NET classes accessible

directly from the PHP language. The next version of

the Phalanger will run on .NET Framework 2.0

which will allow it to use the new features of the

.NET engine and make the compiled PHP

applications even faster. The Mono platform [16]

will also be supported.

REFERENCES
[1] .NET Languages: www.dotnetlanguages.net

/DNL/Resources.aspx

[2] Aho, A. V., Sethi, R., Ullman, J. D.:

Compilers, Addison-Wesley, 1986

[3] Alcantara F., Vanbrabrant B., Tabary, F.:

eAccelerator, eaccelerator.net

[4] Caucho Technology, Inc.: Resin Quercus,

www.caucho.com/resin-3.0

[5] ECMA: Common Language Infrastructure,

msdn.microsoft.com/net/ecma

[6] Gough, J.: Compiling for the .NET Common

Language Runtime, Prentice Hall, 2001

[7] Hugunin, J.: IronPython: A fast Python

implementation for .NET and Mono, PyCON

2004, python.org/pycon/dc2004/papers/9

[8] Lidin, S.: Inside Microsoft .NET IL Assembler,

Microsoft Press, 2002

[9] Matousek, T., Prosek, L., Novak, V., Novak,

P., Benda, J., Maly, M.: Phalanger,

www.php-compiler.net

[10] Microsoft: .NET Framework Platform

www.microsoft.com/net

[11] Microsoft: Internet Information Services,

www.microsoft.com/iis

[12] Microsoft: SQL Server,

www.microsoft.com/sql

[13] Microsoft: Visual Studio .NET,

www.microsoft.com/vstudio

[14] Microsoft: Web Application Stress Tool,

www.microsoft.com/technet/archive

/itsolutions/intranet/downloads/webstres.mspx

[15] MySQL AB: MySQL Server, www.mysql.com

[16] Novell and contributors: Mono Project,

www.mono-project.com

[17] phpBB Group: phpBB, www.phpbb.com

[18] Richter, J.: Applied Microsoft .NET

Framework Programming, Microsoft Press,

2002

[19] Roadsend, Inc.: Roadsend Compiler,

www.roadsend.com

[20] The Apache Software Foundation:

Apache HTTP Server Project,

httpd.apache.org

[21] The PHP Documentation Group:

PHP Manual, www.php.net/manual

[22] Turck Software: Turck MMCache,

turck-mmcache.sourceforge.net

[23] Zend, Inc.: Zend Platform:

www.zend.com/products/zend_platform

.NET Technologies 2006 FULL papers 38 ISBN 80-86943-10-0

MVE-2 Applied in Education Process

Milan FRANK
University of West Bohemia

Univerzitní 8, BOX 314
Pilsen, Czech Republic

mfrank@kiv.zcu.cz

Libor VÁŠA
University of West Bohemia

Univerzitní 8, BOX 314
Pilsen, Czech Republic

lvasa@kiv.zcu.cz

Václav SKALA
University of West Bohemia

Univerzitní 8, BOX 314
Pilsen, Czech Republic

skala@kiv.zcu.cz

ABSTRACT
For years we have been developing a our project on MVE. MVE stands for Modular Visualization Environment.
It is a user friendly modular environment using data flow paradigm for communication between user-created
modules. The core of the system is based on pure .NET technology.
We find this environment useful in several application areas. This paper focuses on successful employment within
the education process. We believe that MVE-2 can be a good entry point for programmers to learn how to develop
plugin style software components and to cooperation between them.
This paper also discusses advantages of modern programming techniques available in .NET. We have found
several .NET features very useful during design and development of the environment.

Keywords
.NET, MVE, Visualization, Plugin, Data Flow, Pipeline

1. INTRODUCTION
MVE-2 is our grass root effort to create a general and
easy to use modular environment. It uses pipeline
approach for problem decomposition. This paradigm
is useful for both theoretical and practical purposes.
Engaging our system in education leads our students
naturally to perform clear and well defined problem
decomposition as well as to follow good programming
habits.
We have used the MVE-2 in the frame of subjects
taught at University of West Bohemia (UWB), in
separate student projects and as a tool for real
research projects. The environment proved itself
useful in all the previously mentioned application
areas.
The fact that we started the project from scratch
allowed us to choose whatever technology available.

Our choice of .NET as a core technology provided us
with numerous features, which allowed a solid and
elegant design of the system.
The rest of the paper is organized as follows: Brief
overview of the history of our visualization
environment development is given in the following
subsection. Section 2 gives basic description of the
MVE-2 architecture and its differences from similar
systems. Section 3 focuses on the ways students have
contributed to the development and expansion of the
system. Section 4 describes how MVE-2 is useful for
our scientific effort.

1.1 MVE History
The idea of developing a new modular environment at
UWB started in 1996 as a diploma thesis of Martin
Roušal. This original MVE system was based on the
Win32 API. The primary focus on visualization tasks
and the choice of development environment lead to
several drawbacks of the original design, such as
fixed set of datatypes, simple pipeline execution,
explicit memory management and problems with
components created with different programming tools.
This environment was used for several years in both
education and research applications.
In year 2004 the Center of Computer Graphics and
Data Visualization (CCGDV) has decided to

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006

Copyright UNION Agency – Science Press,
Plzen, Czech Republic Project supported by Microsoft Research 2003-178

6FP EU 3DTV No 511568

.NET Technologies 2006 FULL papers 39 ISBN 80-86943-10-0

implement a new redesigned version of MVE. Based
on extensive experience with the previous version, a
new set of requirements has been set. The core of the
system was designed and implemented by Milan
Frank and his small team of MSc. students with
supervision of prof. Václav Skala. The common set of
data structures and basic modules for data
visualization and computer graphics has been
subsequently implemented by the team.
Furthermore, the MVE-2 development spreads beyond
the boundaries of the core team as the system was
used in subjects provided by the CCGDV for research
purposes and in other areas.
2. SPECIFICATION
MVE-2 offers easy-to-use, data-flow based modular
environment. Its primary users are researchers and
students together with their projects. Our environment
makes these projects compatible with each other with
minimum additional effort. API (Application Program
Interface) of a module is enforcing good programming
habits, such as clear problem decomposition, precise
comment writing and cooperation with other
programmers. Using MVE-2 leads to less routine
programming due to compatibility and reusability of
existing modules. Therefore, users can concentrate on
their particular problem and employ existing modules
for marginal tasks.
When we were designing the MVE-2 system, we have
attempted to achieve several goals. We wanted to
create a well defined and understandable module API
with following important features of the whole
system:

● general core, ready for modules and data
types from different application areas,

● module-maps with support for cycles and
sub-branches,

● intuitive and friendly API for modules and
data structures,

● automatic generation of basic GUI of a
module,

● automatic generation of documentation for
module libraries,

● built in XML export/import of all data types
and module-maps. (very efficient way to
check and modify data manually).

2.1 Core
Main part of the environment is MveCore. It provides
runtime and module management functionality.
Capabilities of the core are accessed by two front-
ends, a graphical interface that allows module map
composition and execution, Map Editor, and a
command line tool for executing existing maps stored
in XML files.
One of the main advantages of the system is very
simple implementation of a plain module. As well as
this, power and high flexibility is available if
required. This advantage is especially important for
programmers at the beginning of their career. Another
specialty of MVE-2 is execution mechanism of
module network. Possibilities of module map
topology are far beyond simple pipeline and reach
closely towards complete visual programming. Many
other advantages arise from use of pure managed
environment (.NET).

2.2 MVE Front-end
MapEditor is a GUI front end of MVE-2. It allows
intuitive module map editing, module configuration
and execution. Figure 2 shows a screenshot of the
GUI with a simple convolution application.
Located in the upper left corner is a module-map edit
window with a simple pipeline using two sources
(PictureLoader, ConvolutionMask) and two sinks
(RegGrid2DRenderer). In the upper right corner there

Figure 1: This figure illustrates a general structure of MVE-project. Each sub-block represent one .NET
assembly.

MveCore

RunMap MapEditor MMDoc

Numerics Visualization ...

Frond end (command line, GUI, doc-generator)

System core – runtime and module management

Module and data structure libraries

.NET Technologies 2006 FULL papers 40 ISBN 80-86943-10-0

is a ModuleView dialog that contains list of available
modules that are ordered according to namespaces.
The standard output is redirected to the output
console, which usually displays important messages
from modules and core. In the example it displays the
running times of modules. The two green cars in the
center are the original and the filtered image rendered
by renderers. In the bottom left corner a setup dialog
of convolution source module is shown. User can
define the convolution mask via this dialog.

2.3 Module libraries
The core and the front-end only create an empty space
for modules. Without modules there is no useful
functionality. Modules can be added into the MVE-2
system very easily. It is sufficient to copy an assembly
(a .NET DLL) into a particular directory. All public
subclasses of the MveCore.Module class are
interpreted as modules.
Each assembly can also provide subclasses of
MveCore.DataObject. It allows everyone to define
their own custom data types that can be passed
between modules via connections.
The assembly can contain (or call) any other code
allowed by the .NET standard. If one has a project

already written in the .NET environment, then it is
usually very easy to provide a set of MVE-2 modules
as wrappers for functionality of the code. These
modules can serve as a “standard” interface and thus
can be easily reused by many other researchers and
developers.

2.4 Advanced pipeline examples
Execution mechanism implemented in the core can do
more than simple pipeline execution. We support
repeated execution, module driven execution and
cycles. Any map can be run N-times. Module can run
a subbranch to obtain its input data multiple times. It
is also possible to create cycles in module map graph.
See following examples:
Sinus (See Figure 3) is an example of sub-branch
construction. Execution of Sinus module is
controlled by GenerateGraph module. In this
particular case the whole module map runs only once,
while the Sinus module runs 100 times.
Counter (See Figure 4) is an example of
DelayModule usage. The DelayModule acts as a
single place memory with initialization. It returns data
form previous (N-1) step. In the first step it returns
data from initialization port. Thus it allows cycles in

Figure 2: Screenshot of MapEditor. The GUI front end of MVE2. It shows a simple convolution scheme.

.NET Technologies 2006 FULL papers 41 ISBN 80-86943-10-0

module-map graph. This example counts from zero to
number of runs minus one. The DelayModules can be
chained.

2.5 Module creation
As mentioned in the begging of the text, creation of a
module is very simple. It is based on inheritance
mechanism. Every subclass of MveCore.Module is
interpreted by the MVE-2 core as a module.
There are only two methods that have to be subject to
override. The first one is the constructor, which
creates input and output ports and defines their names
and accepted data types. The second one is the
Execute method that represents the activity of the
module.

The standard .NET property mechanism allows the
module authors to easily provide configurable
parameters of their modules. Every public read/write
property of a standard datatype is automatically saved
into and restored from the module map XML file, and
it is also shown in a module GUI that is automatically
generated for each module. These features are
provided by the Module superclass, and don’t require
the user to write a single line of code.
There is also a set of advanced methods that can be
called and set of events that can be handled by a
module. These additional methods provide a
possibility to create a module with advanced features,
such as immediate reaction to incoming data,
advanced module GUI creation, execution of a
subbranch etc. This means good flexibility for a

Figure 3: Simple example of module driven subbranch execution.

Figure 4: Simple example of loop with delay module.

.NET Technologies 2006 FULL papers 42 ISBN 80-86943-10-0

module. Fortunately, in the beginning there is no need
to even know about these methods.
Example of implementation of a simple module that
calculates sinus of input value follows. Please note
this is a complete C# source code one needs to create
a MVE2 module. See Figure 5.
Creation of data type is similarly easy, only
Core.DataObject is used instead Core.Module.
Documentation of a module library can be generated
automatically by the MMDoc utility that is distributed
with MVE-2 system. It uses the .NET attribute
mechanism to obtain additional information from each
module and data type, which describes the module
behavior. This information includes description of
module ports and configuration properties as well as
general description of the task that is performed by
the module. This information is also used by the GUI
front-end to provide the user basic information about
the modules in help dialogs and pop-ups.

3. MVE-2 IN EDUCATION PROCESS
There are two main ways how students get in touch
with the system. Many students were asked to create
modules to be integrated with the system and with one
another. Small group of students was also involved at
the development of the system itself and its peripheral
tools, such as GUI frond end, automated
documentation system, data structures and so on.

3.1 Student Contribution to the Core
Development
Several volunteer MSc. and Bc. students were
involved in the development of the core of the system.
They were cooperating closely with a current project

leader. Such involvement gave them feedback about
their work and made them familiar with a developing
model typical for small software companies. We
believe it is a useful experience in a career of a
programmer and will help them in seek for future
employment.
Miroslav Fuksa was the first volunteer to be involved
in the development. His contribution to the execution
mechanism was very inspiring. For one developer it is
not easy to keep in mind all the possibilities of such a
complex algorithm as the module execution
mechanism.
A huge contribution has been made by Zdeněk Češka.
He is fully responsible for development of the GUI
front end. Design of such complex subsystem gave
him good practical experience about how to apply
theoretical knowledge obtained in subjects of
software engineering and knowledge of programming
in .NET environment.
The whole of MMDoc subsystem was designed and
implemented by Petr Dvořák. He also created a useful
GUI front end of this subsystem. Such task made him
familiar with several modern technologies such as
.NET, XML, XSLT, CHM, etc. He proved himself to
be able to apply such technologies in a real world
application.
Very important task was to design and implement
common data structures for data visualization.
Miroslav Vavruška did significant contribution to this
essential part of MVE.
Přemek Zítka was responsible for adding a useful
feature. Thanks to his effort it is now possible to use
automatically generated module GUI (setup dialog).

Figure 5: Example of a simple module implementation. Note this is just a class derived from Core.Module
class. It is than interpreted by core as a module.

public class Sinus : Zcu.Mve.Core.Module
{
 ScalarNumber y = new ScalarNumber();
 public Sinus()
 {
 AddInPort("in", typeof(ScalarNumber));
 AddOutPort("out", typeof(ScalarNumber));
 }
 public override void Execute()
 {
 ScalarNumber x = (ScalarNumber) GetInput("in");
 y.Val = Math.Sin(x.Val);
 SetOutput("out", y);
 }
}

.NET Technologies 2006 FULL papers 43 ISBN 80-86943-10-0

Using the standard .NET Framework PropertyGrid
component it was possible to expose public properties
of a module in a simple and elegant way.

3.2 Student Contribution to the Module
Library Development
In the frame of Computer Graphics and Data
Visualization subject taught at the UWB students
were supposed to implement several modules that
solve a particular task. These tasks included mesh
displacement, elevation coloring, triangle mesh
reduction, readers of several triangular formats, etc.
The results of their effort were interesting sets of
modules. They were also supposed to provide a
detailed documentation for their module libraries.
We believe such task give the student a basic idea
about how to write useful pieces of code that can be
integrated in some larger systems.
For example: Task chosen by student Jan Bárta was to
create a reader and writer module for several standard
geometry data files such as PLY, STL, TRI, CMX.
Result of his work is clearly very useful and reusable
by many other people.
Another nice task was to create a set of modules for
generating a displacement mesh from a 2D picture. Jiří
Skála took this work very seriously and the result of
his effort is an example of what a module library
should look like.
Mesh smooth and displace modules were designed
and implemented by a team of Ondřej Kvasnička and
Martin Pokorný. Their task was to create a set of
modules to produce a mesh distorted by the intensity
of applied texture. It was necessary to divide this task
into several modules. It was interesting to see their
feedback about how MVE helped them with the
problem decomposition (and following composition)
and programming cooperation.
Most of these modules are freely available at the
MVE-2 website.

4. MVE-2 IN RESEARCH
As MVE-2 became stable it was employed in a
number of real research projects that are carried by
CCGDV PhD. students. This lead to benefits for all
involved parties, MVE-2 has gained some useful
modules, core developers received feedback about the
performance of the core and researchers benefited
from a easy to use and powerful tool for their projects,
which allowed easier collaboration and code sharing.
So far three research topics were addressed using
MVE-2: stripification of triangular models by Petr
Vaněček, artificial hologram rendering and
reconstruction by Martin Janda and Ivo Hanák, and

space-time metric for dynamic mesh comparison by
Libor Váša.
The first project carried by Petr Vaneček showed
some performance drawbacks of the original data
structures that were fixed in subsequent versions of
MVE-2 by optimization of the visualization
structures. Thanks to the efforts of Dr. Vaneček there
is a fully functional and thoroughly tested support for
triangle stripes and fans in the visualisation library
provided with MVE-2.
The second project was the spatio-temporal metric
implementation for dynamic mesh comparison by
Libor Váša. This effort has benefited greatly from the
available range of modules, while some more common
functions were added to the visualization library. This
allowed wide testing of the proposed algorithms on
several kinds of source data, using loaders for various
data types, and also the result was visualized using
the modules provided by MVE-2. This project will
continue using MVE-2 in the future in order to allow
international cooperation with foreign universities
that participate in providing source data.
The most recent application of MVE-2 in the research
field is in the artificial holography research that is
carried by Martin Janda and Ivo Hanak. They are
developing modules for rendering scenes into
artificial holograms and computer reconstruction of
holograms. The environment allows this elementary
team to cooperate easily, as each researcher works on
his own module, while having a clearly defined
interface to each other. They have also contributed to
the core of the MVE-2 with some minor changes that
improved the usability of the system for their specific
purposes.

5. FUTURE DEVELOPMENT PLANS
Although the core of the system is not being actively
developed anymore, the project is still growing by
additions of modules and features into the MapEditor
GUI. One of CCGDV MSc. students is currently
working on a general rendering module that will
utilise the D3DUT [4] for rendering. This rendering
library developed also by CCGDV will allow
platform independent rendering, which will enable
full visualization pipelines on all platforms that allow
compilation of the system and D3DUT.
In the near future, we would like to investigate the
rewriting an area of the visualisation library so that it
will utilize the new features of .NET 2.0. The generic
data types of .NET 2.0 can be very useful and can
simplify some algorithms quite significantly.
The system will be most likely be used in the data
visualisation subject taught at the UWB, where
students will contribute, develop and test modules as

.NET Technologies 2006 FULL papers 44 ISBN 80-86943-10-0

a part of their coursework. The system will also be
used as a target platform for computer graphics related
diploma theses.
The environment will be used by the holography and
dynamic mesh researchers, who will contribute
feedback and new modules to the system. This can
give the users of the system the advantage of
availability of state of the art algorithms within the
environment.
The further in the future, our development plans
include allowing parallel and distributed execution of
module maps. Module libraries for volume data
rendering and computational geometry tasks would
also greatly improve the practical usability of the
system, and we are currently looking for contributors
or student leaders to develop such functionality for
MVE-2.

6. CONCLUSION
We have described a modular system that is developed
at UWB. Students at all levels of education have
contributed to the system, which allowed them to
learn a valuable lesson about modular programming.
The system is currently used in number of student and
research projects, where the structure of the
environment helps to clearly formulate and thus easier
solve various kinds of problems.

The system uses .NET environment at its best. It
enabled the system designers to implement desirable
features, such as editable module properties, in a way
that is not matched by any similar system in its
elegance and simplicity.

7. ACKNOWLEDGMENTS
The authors of the paper would like to thank all
previously mentioned contributors for their effort to
improve MVE-2. We also thank to Angharad Savage
for her careful spell checking of this paper.

8. REFERENCES
1. Schreder, W., Avila, L., Martin, K., Hoffman,

W., Law, C.: The VTK User’s Guide.
Prentice Hall, New Jersey, 2001.

2. Váša, L., Skala, V.: A spatio-temporal
metrics for dynamic mesh comparison.
Subbmitted to AMDO 2006

3. Frank, M., Váša, L., Skala, V.: Pipeline
approach used for recognition of dynamic
meshes. Submitted to 3IA Limoges 2006

4. Home pages of D3DUT
http://herakles.zcu.cz/research/d3dut/

5. Home pages of VTK.
http://public.kitware.com/vtk/

6. Home pages of MVE-2.
http://herakles.zcu.cz/research/mve2/

.NET Technologies 2006 FULL papers 45 ISBN 80-86943-10-0

http://herakles.zcu.cz/research/d3dut/
http://herakles.zcu.cz/research/mve2/
http://public.kitware.com/vtk/

.NET Technologies 2006 FULL papers 46 ISBN 80-86943-10-0

Using the .NET Profiler API to Collect Object
Instances for Constraint Evaluation

Dave Arnold
School of Computer Science

Carleton University
1125 Colonel By Drive

Canada K1S 5B6, Ottawa, ON

darnold@scs.carleton.ca

Jean-Pierre Corriveau
School of Computer Science

Carleton University
1125 Colonel By Drive

Canada K1S 5B6, Ottawa, ON

jeanpier@scs.carleton.ca

ABSTRACT
Evaluating software based constraints at runtime is an important task for both the validation and verification of
software. It is not uncommon to encounter constraints that require obtaining the set of all active object instances
for a given classifier. When the application under test is being executed on a virtual machine or a managed
runtime, it is often difficult, if not impossible, to obtain such a set. We will examine Microsoft's .NET common
language runtime, and through the use of the profiler API, provide a concrete mechanism for obtaining the set of
live object instances for a given classifier. We will then leverage this set to provide an extension to an existing
C# and Object Constraint Language compiler to support the OclAny::allInstances operation.

Keywords
C#, Constraints, Profiler, OCL

1. INTRODUCTION
Software based constraints provide a mechanism for
testing software. Such constraints can be expressed
using a formal language such as the Object
Management Group's Object Constraint Language
(OCL) [Omg03a]. Constraints are expressed at the
model level in the form of preconditions,
postconditions and class invariants [Fra03a, War03a].
In our work, when a model is used to generate source
code, the constraints are translated from the model
level to the code level. The source code is then
compiled through the use of a specialized compiler
[Arn04a] to generate executable code. In the case of
the C# programming language [Hew02a], this code is
executed by Microsoft's Common Language Runtime
(CLR) [Hew02b]. The CLR is not a virtual machine,
but rather an execution engine. The CLR provides
memory management for both allocation and garbage
collection. As the CLR abstracts memory
management away from the programmer, it is

difficult to determine which object instances are
allocated and active. The CLR does not provide any
feedback to the application being executed about the
state of the application's memory. That is, there is no
way to determine the object instance information for
a given classifier within the containing application.

Context
Our paper will present an approach for accessing
memory management information from the CLR via
the .NET Profiler API [Mic02a]. Our approach will
track each object instance of a given classifier from
allocation through to garbage collection. We will
demonstrate that our profiler, on request from the
application being executed, can return the set of all
object instances for a given classifier. The object
instance set can then be used for various activities
including the evaluation of software based
constraints.

Organization
The remainder of this paper is organized as follows:
Section 2 provides a brief background on the CLR’s
memory management and garbage collection
algorithms. Section 3 presents an unmanaged
Component Object Model (COM) component that
implements the .NET Profiler API to interface with
the CLR and respond to memory allocation events.
Section 4 examines how the unmanaged COM
component can exchange information with the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

.NET Technologies 2006 FULL papers 47 ISBN 80-86943-10-0

managed application being profiled. Section 5
provides a concrete use of our method by
implementing the previously missing
OclAny::allInstances operation in an existing
C#/OCL compiler [Arn04a]. Finally, Section 6
presents concluding remarks and areas for future
work.

2. CLR MEMORY MANAGEMENT
Instances of classifiers in .NET are allocated from a
section of memory known as the managed heap
[Stu03a]. The heap is managed because after an
application requests memory, the garbage collector
takes care of the cleanup. Object instances can be
small, containing a few integers, or larger, for
example holding a database connection with an
extensive amount of state information. Object
instances can be self-contained or reference other
object instances. The role of the garbage collector is
to determine when objects should be collected to free
memory for other allocations. The garbage collector
fills its role by selecting the object instances that can
be deleted. Garbage collection is performed when an
application attempts to allocate memory from the
managed heap, and the managed heap is too full to
complete the request. Managed heaps in the CLR are
periodically renewed by identifying dead objects and
then fusing contiguous runs of dead objects into
blocks of memory to be reallocated. The method used
for discovering dead objects is called tracing. Tracing
is accomplished by following live references to
objects in the managed heap. Once a live reference is
encountered it is marked. The garbage collector can
then easily determine that any object instance that is
not marked can be reclaimed. Live objects are located
by looking for heap pointers on all the stacks, in all
statically allocated memory, within all object
instances, and in a few other CLR data structures
[Stu03a]. When a live object is located, the memory
that the object points to is examined for additional
references (pointers). If more are found they are
likewise followed until the entire set of live objects is
known. The action of determining the live object set
is called "tracing the roots", and results in the
transitive closure of the set of live objects.

The approach to garbage collection described in the
previous paragraph is known as "mark and sweep"
collection [Stu03a]. The problem with pure mark and
sweep collection is that over time the managed heap
becomes fragmented. To avoid heap fragmentation,
"compacting collection" is used. Compacting
collection removes dead objects and pockets of
unallocated memory by sliding live objects down
towards the low-address end of each heap segment,
and then repairing any dangling pointers with updated
values. Such compaction also has the positive side

effect of maintaining object creation order, which
improves locality of reference.

The expenses of all the object movement can be
reduced drastically via an enhancement used by the
CLR's garbage collector known as "generational
collection" [Stu03a]. When a generational approach
is used, object instances are initially allocated in the
youngest generation. If they survive past a garbage
collection cycle, they are promoted to an elder
generation by copying. The refinement of this method
over compacting collection is that object instances
that are located in the younger generation generally
have a shorter survival rate, while objects in the elder
generation have a higher survival rate. As object
instances are split into different managed heaps,
different techniques are used to reclaim memory. The
CLR uses a non-copying, non-compacting collector
for the elder generations. In the youngest generation,
a copying approach is used. The CLR garbage
collector is triggered by allocation volume or memory
scarcity; when heap resources run low, the roots are
traced, and either one or both generations are
scavenged for memory. For details on how the CLR
garbage collector is implemented see [Stu03a].

Garbage collection is well worth the complexity and
the effort [Hil03a]. Garbage collection provides
additional application reliability and programmer
productivity. However, since garbage collection can
be triggered without notice and because the managed
application is not notified when garbage collection
takes place, it is hard to determine which object
instances are active at a given point during execution.
We will now examine a method for accessing the
managed heaps directly to extract the necessary
object instance information.

3. THE PROFILER API
In order to obtain the set of all live object instances, it
is obvious that we require a way to get inside the
CLR and examine the managed heaps. Unfortunately,
the only way to implement such functionality would
require modifying the CLR itself. But, modifying the
CLR is not a practical solution. Fortunately, for our
purposes Microsoft has provided a back door into the
inner workings of the CLR. This back door is the
profiler API [Hil03a]. The profiler API allows for an
external COM component to monitor the execution
and memory usage of an application running under
the CLR. Normally, the profiler monitors the running
application and does not interfere with it. In our
approach, we will leverage the profiler API to
monitor object instance allocation and garbage
collection, and we will return this information to the
managed application.

.NET Technologies 2006 FULL papers 48 ISBN 80-86943-10-0

The profiling APIs are implemented via two COM
interfaces. One of the interfaces is implemented by
the CLR (ICorProfilerInfo), and the other is
implemented by the profiler itself
(ICorProfilerCallback). The ICoreProfilerCallback
interface receives notification from the CLR
regarding various events that occur during a managed
application's execution. The ICorProfilerInfo
interface extracts additional information from the
CLR itself.

Initialization
The CLR connects with one profiler at most during
its initialization phase [Hil03a]. The profiler must use
the Initialize method defined in the
ICorProfilerCallback interface to save the
ICorProfilerInfo interface pointer so that it can be
used to retrieve additional information from the CLR
during actual profiling activities. The Initialize
method must also register for CLR events that the
profiler is interested in. The ICorProfilerCallback
interface supports approximately sixty CLR events.
To reduce the amount of overhead introduced by the
profiler, the profiler specifies which events it is
interested in. For our task, we wish to be notified
when a new object instance is allocated, when the
garbage collector is invoked, and finally we need to
be notified when an object reference (pointer) is
moved. The last event is required because we will be
maintaining a set of pointers to the actual object
instance memory locations. Table 1 illustrates the
profiler event bit masks we are using. For our
purposes of object instance collection and tracking,
we only need to implement four of the sixty
ICorProfilerCallback events. The following sections
will describe each of the methods, and their
corresponding implementation details.

Event Mask Meaning
COR_PRF_MONITOR_

SUSPENDS
GC

Notification
COR_PRF_MONITOR_GC GC Calls

COR_PRF_ENABLE_OBJECT_
ALLOCATED

Object
Allocation

COR_PRF_MONITOR_OBJECT_
ALLOCATED

Object
Allocation

Table 1. Select Profiling Events

ObjectAllocated
The ObjectAllocated method is invoked by the CLR
each and every time memory in the managed heap has
been allocated for an object [Hil03a]. The method
provides two parameters; the first parameter is a
pointer to the managed heap location where the newly
allocated object instance is being stored: objectId.
The second parameter is a pointer to the class
descriptor for the objectId: classId.

Our implementation is fairly straightforward: the
class descriptor is used along with the previously
saved ICorProfilerInfo interface pointer to determine
the classifier name. The classifier name is then
compared against the set of given classifier names
that we are "interested" in. A classifier becomes
interesting when the application being profiled
notifies us that we will be asked for the classifier's
object instance set. Details of how this notification
works will be provided in Section 4; for now it
suffices that we are only interested in a subset of the
list of classifiers. In an effort to reduce the resources
needed by the profiler, rather than store all of the
object instance information, only instance
information for classifiers that are deemed to be
interesting is stored.

MovedReferences
The MovedReferences method is invoked by the CLR
to notify the profiler that the garbage collector has
moved one or more object instance locations
[Hil03a]. When this occurs, the objectIds provided by
the ObjectAllocated method are no longer valid, as
they may no longer point to the correct location
within the managed heap. It should be noted, that the
object's internal state does not change, just its
location within the managed heap. In the context of
our profiler, all we are doing is updating our internal
arrays to reflect the movements.

ObjectReferences
The ObjectReferences method is called by the CLR
once for each object instance that remains in the
managed heap after a garbage collection operation
has completed [Hil03a]. We use the
ObjectReferences method to mark the object
instances as un-collected, and the object instances are
still kept inside our array of objectIds.

RuntimeSuspendFinished
The CLR calls RuntimeSuspendFinished to notify the
profiler that the CLR has suspended all of the threads
needed for execution suspension [Hil03a]. One of the
reasons for runtime suspension is garbage collection.
As the ObjectReferences method will be called for
each object instance that survives when the runtime is
suspended, we will mark each of the tracked object
instances as collected. When the ObjectReferences
method calls are complete, the object instances that
have survived the garbage collection will be un-
collected. Our array will then only contain the
objectIds of object instances that are still live.

Intuitively, this may seem like a bad idea because
there will be a delay between when we mark all the
object instances as collected, and when we realize
that a given object instance is live, and needs to be
un-collected. The delay is not a problem because the

.NET Technologies 2006 FULL papers 49 ISBN 80-86943-10-0

CLR guarantees all of the ObjectReferences calls will
be performed before the CLR's execution threads are
restarted.

Summary
By providing a specialized implementation for the
preceding four ICorProfilerCallback methods our
profiler is able to maintain an internal array of
pointers for each instance of the interesting
classifiers. Each pointer is a reference to a live object
instance on the managed heap. During garbage
collection, the runtime is suspended and each object
instance we are tracking is marked as collected.
Before the runtime is restarted, the CLR provides
notification for each object instance that has survived
garbage collection. We are then able to un-collect the
object instance pointers stored in the array. Finally,
should the garbage collector compact the managed
heap, our profiler will receive notification so that the
heap pointers can be updated accordingly.

We have now explained a COM component that
interfaces with the CLR. The component registers for
object allocation and garbage collection events. The
events are used to maintain an array of currently live
object instances for interesting classifiers. The next
task, presented in Section 4, is to provide a managed
interface into the COM component so that the
managed application, which is being profiled, can
register its classifiers as being interesting and access
the object instance pointer array.

4. GETTING OBJECT INSTANCES
As our COM component is loaded and initialized by
the CLR running in an unmanaged memory space, the
COM component is unable to call methods that are
located inside the managed application. However,
managed applications can invoke methods that are
exported by a COM component. To allow a managed
application to query the array of live object instances
for a given classifier, this COM component will have
to be able to register a given classifier, request the
number of live object instances allocated, and finally
be able to move the allocated object instances from
the unmanaged COM component into the managed
application for inspection. These tasks are
implemented via the provision of five methods
exported by our COM component. The following
sections will discuss each of the five exported
methods in detail.

IsOCLProfilerAttached
The first exported method determines if the CLR
running the managed application has loaded our
profiler. The method name contains the abbreviation
OCL, for the Object Constraint Language as our
implementation of the described profiler is for use

with the OCL. More details of our implementation
will be provided in Section 5.

Implementation of this method consists of
determining if a global reference to the
ICorProfilerCallback interface contains a valid
pointer. If a valid pointer is located then the profiler
has been loaded correctly, otherwise the profiler is
not running. The IsOCLProfilerAttached method is
not required, but is used as a safety mechanism to
determine if the required profiler functionality exists
before the managed application calls the remaining
four exported methods.

RegisterObject
RegisterObject is used to inform the attached profiler
that the managed application would like to keep track
of object instances for the given classifier. Classifiers
are provided via the single string parameter to the
RegisterObject method. The string should contain a
fully qualified classifier name. For example, suppose
the class Customer existed in the DaveArnold.Data
namespace. The call to RegisterObject would take the
following form: RegisterObject ("DaveArnold.
Data.Customer").
Each call to the RegisterObject method adds the
given classifier name to the list of interesting
classifiers. Profiling only begins following the
RegisterObject call. In order to achieve accurate
object instance information, the RegisterObject calls
should be made immediately after the managed
application starts.

GetInstanceCount
The GetInstanceCount method takes a single string
parameter, and returns an integer value. The
parameter is the fully qualified name of the classifier
for which the number of live object instances is
requested. GetInstanceCount will invoke the garbage
collector to determine which object instances are live
at the current time. GetInstanceCount will also wait
until the thread processing the queue of finalizers has
finished. A finalization method can be viewed as a
destructor. The finalization queue is the set of
instances that have been marked for deletion, but the
runtime has yet to execute the finalization method.
Depending on the number and complexity of the
finalizers to be executed, GetInstanceCount may be
computationally intensive. However, the strategy of
forcing garbage collection and waiting for finalizer
execution, ensures that the return value is always
accurate.

StartInstanceCopy & StopInstanceCopy
StartInstanceCopy is used to inform the profiler that
the managed application has requested the list of all
object instances for a given classifier.
StopInstanceCopy informs the profiler that the

.NET Technologies 2006 FULL papers 50 ISBN 80-86943-10-0

managed application has received the requested
object instance list. The process of transferring the
list of object instances from our COM component to
a managed application is a non-trivial operation. The
following sections will provide rationale for the
operation's complexity, and present the technical
details of how the transfer process is accomplished.

4.1.1 Direct Access via the Array Pointer
Intuitively, the easiest implementation would have
been to pass the fully qualified classifier name to an
exported method, and have the method return a
pointer to the corresponding array. The managed
application could access the array of pointers and de-
reference each one for evaluation. The experienced
.NET programmer will quickly realize that a managed
application cannot take the address or size of a
managed type. The reason for this is if the garbage
collector is executed and moves the managed object
instance, the object instance array and all pointers to
the array will become invalid. As we cannot prevent
the garbage collector from executing, nor keep a
reference to a managed object, another method is
required to get the object instance pointers out of the
profiler and into the managed application.

4.1.2 Memory Copy
As each array element in the profiler stores a pointer
to the managed heap location where the object
instance is being stored, the actual bits can be copied
to a new location, which is accessible from the
managed application. To allow the managed
application access to the memory, we will use the
managed application to create a new object instance
for the given classifier. We will then use the profiler
to copy the memory from the existing live object
instance to the newly created object instance. The
result is that the managed application will create a
new object instance for each element in the array
stored in the profiler, and then upon creation, the
profiler copies the original element's state
information to the new object instance. The new
object instances can then be used as needed in the
managed application. If the new object instances are
modified in the managed application, the original
instances are not modified. The following code listing
presents a C# method that returns an ArrayList of live
object instances for the given classifier type, using
the previously described operation.

1) public static ArrayList GetInstancesFor(string value,
 Type t) {
2) VerifyProfiler();
3) lock(typeof(OCLProfilerControl)) {
4) int count = GetInstanceCount(value);
5) ArrayList result = new ArrayList();
6) StartInstanceCopy();
7) for(int i=0;i<count;i++) {

8) Object obj = t.InvokeMember(null,
 BindingFlags.DeclaredOnly | BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.Instance |
 BindingFlags.CreateInstance, null, null, null);
9) result.Add(obj); }
10) StopInstanceCopy();
11) return result; } }

Line 2 begins by ensuring that the profiler has been
loaded and attached. If the profiler is not available an
exception will be thrown. Line 3 creates a mutual-
exclusion lock on the remainder of the method. Such
a lock is required along with various critical sections
in the profiler to prevent new object instances from
being allocated during the copy process. In addition,
a critical section in the profiler prevents the garbage
collector from executing until the copy process has
completed. For implementation details regarding
threading see [Arn04a]. Line 4 uses the previously
defined GetInstanceCount method to determine how
many object instances will need to be copied.
GetInstanceCount also triggers the garbage collector
and finalization process so that the object instance
array contains accurate information. Line 6 informs
the profiler that the next object instances that we
create will be copies of existing ones, and not regular
object instances. Lines 7 through 9 create a new
object instance for each existing instance. The
creation process invokes the ObjectAllocated method
in the profiler. Instead of executing the normal
behaviour of adding another object instance to the
given classifier’s array as previously described, the
following behaviour is executed. Based on the
number of instances copied since the call to
StartInstanceCopy, the profiler is able to determine
which element of the array to copy. The profiler then
uses the saved ICorProfilerInfo interface pointer to
determine the size of the object instance via the
GetObjectSize method. Finally, the profiler copies
the bits used to store the object instance located at the
previously determined array index to the location
where the newly created objectId has been located in
the managed heap. Once the copy process is
completed, the profiler increments an internal counter
so that the next array index is used on subsequent
calls to ObjectAllocated. Line 9 adds the newly
created object instance, which is now a copy of the
original one, to the result list. Finally, line 10 informs
the profiler that any newly created objects are no
longer copies of existing ones.

Summary
Calling the GetInstancesFor method shown above
will return an ArrayList that contains a copy of every
live object instance matching the fully qualified
classifier name provided to the method call. The

.NET Technologies 2006 FULL papers 51 ISBN 80-86943-10-0

object instance copies can be used for any activity
without affecting the original live object instances.
We have now defined a CLR profiler to track object
instance allocation and garbage collection, and have
created a connection to the managed application
being profiled so that the live object instance set can
be accessed. The following section will examine a
concrete example of how the profiler and
corresponding connection can be used to aid in the
execution of software based contracts.

5. EVALUATING THE OCL IN C#
The Object Constraint Language (OCL) [Omg03a] is
a constraint specification language with precise
semantics [War03a]. More specifically, OCL
expressions evaluate without side effects. This means,
the state of a system can never change due to the
evaluation of an OCL expression. The OCL is not a
programming language. It is not possible to write
logic or flow control statements in the OCL. A
process or thread cannot be created, and only query
operations may be called. A query operation is an
operation that does not produce side effects. As the
OCL is a modeling language by definition, its
expressions are not directly executable. The OCL is a
strongly typed language. Each OCL expression has a
type. To be well formed: every OCL expression must
conform to the OCL type rules [Omg03a].
We have integrated OCL version 2.0 assertions into
the C# programming language. To support this
addition, a specialized compiler has been developed
that compiles C# source code along with OCL
assertions to provide software based constraint
evaluation [Arn04a].

OCL Integration
Keeping with C#'s design goal of simplicity [Tru02a],
we used a straightforward notation that allows for
maximum flexibility. Our experience has indicated
that some developers prefer to inline the OCL in
close proximity to the corresponding C# element.
Other developers prefer to keep the OCL in a
separate repository that is linked to the corresponding
C# elements at compile-time. We support both
approaches.
OCL blocks are denoted by the "OCL" keyword. The
keyword is immediately followed by an opening
square bracket. Following the opening bracket, a
series of C# style literal strings specify the OCL
constraint. A closing square bracket is required to
denote the end of the OCL block.
Class invariants can be assigned to any C# structure
or class. Preconditions and postconditions can be
applied to any C# method, constructor, destructor,
delegate, property, or indexer. Our specialized

compiler can be configured to enforce, use, or ignore
the OCL contracts.

Compilation
Our specialized OCL/C# compiler is based on the
Mono C# compiler [Xim04a]. The Mono C#
compiler is an open source C# compiler, which
allowed us to directly integrate OCL constraints into
the core of the compiler. In order to allow for the
OCL blocks as defined in the previous section to be
processed by the C# compiler, we need to augment
the C# grammar accordingly. The grammar
modification is straightforward. C# defines the notion
of attributes [Hew02a]. Attributes can be placed on
any programming element in any order and represent
additional metadata for the given programming
element. Grammatically, our OCL blocks behave like
C# attributes. Our C# grammar modification consists
of adding a rule that states that wherever attributes
can be specified, zero or more OCL blocks can be
specified immediately before the attributes. OCL
blocks are defined separately from attributes to allow
enforcement of their usage by our compiler.
We run the C# compiler until mid-way through the
semantic pass. The C# compiler is then stopped so
that each of the OCL constraints can be processed.
We now need to convert each OCL constraint into a
C# assertion. To accomplish this, we go through each
operation attached to each structure or class. When a
method, delegate, property, or indexer is encountered
the following steps are executed1.
1. Create a C# parse tree for each of the invariants
assigned to the class that contains the operation.
2. Create a C# parse tree for each of the
preconditions and postconditions assigned to the
operation.
3. If a postcondition uses an element that contains the
@pre modifier, a local variable is added to the
beginning of the operation and is assigned the value
of the requested element. The local variable is then
used in the postcondition to represent the requested
element's value before the operation is executed. The
mini C# parse tree for the postcondition is modified
to use the local variable, instead of the actual
element.
4. If the operation contains either invariants or
postconditions, a local variable (result) is added to
the beginning of the operation to represent the return
value of the operation. If the return type is void, no
variable is added. The C# parse tree for the operation
is modified so that all return statements are replaced

1 The following steps do not take into consideration

inheritance in order to preserve understandability in the
context of this paper.

.NET Technologies 2006 FULL papers 52 ISBN 80-86943-10-0

by an assignment to the local variable and then a
jump to the end of the operation. As we need to check
invariants and postconditions at the end of the
operation, we change the structure of the method to
include an area for making the checks, and enforce
that all code paths travel through our new area.
5. The OCL specification dictates that the end result
of each of the mini C# parse trees is a Boolean
constraint. The Boolean constraints are added to the
method's parse tree as follows:
(a) Each invariant constraint is placed into the
condition section of an if statement and negated. If
the if statement evaluates to true, then the invariant
has failed. The body of the if statement will generate
an assertion. The invariant statements are placed at
both the beginning and the end of the operation.
(b) Step (a) is repeated for the preconditions and the
if statements are placed immediately after the
beginning invariant if statement.
(c) A Boolean constraint is generated to yield the
result of the postconditions.
(d) An if statement is created to determine if the
postconditions have failed. The body of the if
statement will generate an assertion.
6. After the final if statement in the operation, a new
return statement is added to return the result variable.
If the result variable does not exist, no return
statement is added.
Once each operation's C# parse tree has been updated
to include the OCL constraints, the C# compiler is
restarted. The rest of the semantic analysis is
completed on the main C# parse tree, which includes
the additions made by the OCL integration. Upon
successful completion of the semantic pass, the C#
code generator completes the compilation.

allInstances
The OCL defines an allInstances operation on each
classifier. The allInstances operation is defined to
return a collection of all the object instances defined
using the classifier [Omg03a]. The original version of
our C#/OCL compiler did not support allInstances
because, as already discussed, C# maintains an
automatic garbage collector, so it was difficult to
determine when an object instance had actually gone
out of scope. In addition, there was no mechanism in
C# to get the live object instance list.
With our previously discussed method, we can
modify the compiler to support the allInstances
operation and allow the user more flexibility when
defining software contracts. We will discuss the
modifications made to the compiler in order to
provide this functionality. As the implementation of
the allInstances method will require invoking the

profiler and incur additional overhead during
application execution, we have created a compiler
option to enable allInstances support. If an
application that uses the allInstances operation is
compiled, and the corresponding option is turned off
the compiler will issue an error. If the allInstances
compiler operation is enabled, but the application
being compiled does not make use of the allInstances
operation, the compiler will not add profiling code to
the application.
The original compiler already has the allInstances
operation defined in the lexical analysis and parsing
phases. The semantic analyzer has a skeleton method
that emits a compiler error, stating that the
allInstances operation is not supported. We have
replaced the existing method in the semantic analyzer
with one that performs the following tasks. The first
step is to ensure that the required compiler option has
been enabled, if not the compiler issues an error
message. Once it has been determined that the
allInstances operation is supported, the compiler uses
the OCL expression resolution method [Arn05a] to
resolve the front part of the expression. Consider the
following allInstances expression.
Customer.allInstances()->forAll(c : Customer | c.age >= 18)
The compiler resolves the front part of the
expression, which should result in a classifier. Once
the classifier is resolved, the compiler ensures that the
classifier is not a primitive type. According to the
OCL specification [Omg03a], the allInstances
operation is not defined on primitive types. This
makes sense because some primitive types are stored
as literals or on the stack, and not in the managed
heap. In addition, the set of all integers is not really
useful from the software constraint point of view. If
the classifier is in fact a primitive type, the compiler
will issue an error.
Once the previously defined classifier resolution and
primitive type check are complete, the compiler
begins to generate C# code to implement the
allInstances operation. The first step is to register the
classifier with the profiler upon application startup.
This is accomplished by inserting a call to the
RegisterObject method at the beginning of the
application’s entry point. With classifier registration
complete, the compiler then generates code to
implement actual retrieval of object instances. The
OCL expression is translated into the following C#
code.
bool result = true;
foreach(Customer c in
 (Set)OCLProfilerControl.GetInstancesFor(“Customer”,
 System.Type.GetType(“Customer”))) {
 result = result & (c.age >= 18);
}

.NET Technologies 2006 FULL papers 53 ISBN 80-86943-10-0

The expression above, results in a Boolean value
specifying if the OCL constraint is valid or not. The
GetInstancesFor method is used to return an
ArrayList containing the active object instances of
type Customer. The first parameter to the method call
is a string literal representing the classifier name, the
second parameter is a System.Type object
representing our Customer. The type object will be
used to dynamically create the Customer copies as
previously discussed. The GetInstancesFor method
returns an ArrayList, the OCL specification indicates
that the allInstances operation returns a Set. The Set
type does not exist in the .NET Framework Class
Library (FCL). The compiler includes an OCL type
library [Arn04a], which defines the OCL Set type
[Omg03a]. The Set type contains a conversion
operator to convert an ArrayList to a Set. Finally, the
foreach C# primitive is used to iterate through each
Customer in the Set and determine if the age
constraint holds. With the OCL allInstances
expression converted to a C# Boolean expression, the
C# code can be inserted into the application being
compiled as discussed in the previous section.

6. CONCLUDING REMARKS
The following section will look at some areas for
future work and recapitulate our approach by
discussing how the addition to our existing C#/OCL
compiler provides the constraint developer with
additional resources for writing accurate and detailed
constraints.

Future Work
We have only illustrated how this method can be used
to implement software based constraints via the
OclAny::allInstances method. It would be interesting
to explore other uses for the complete set of live
object instances. We are currently exploring how our
method can be used in the verification and validation
of non-functional requirements.

Conclusion
We have seen how a specialized COM component
can be written using the Microsoft .NET Profiler
API. The profiler API provides our component with
notifications when object instances are being
allocated on the managed heap, when the object
instances are being moved, and finally when they are
collected. Using these notifications we are able to
maintain a list of live object instances sorted by the
creating classifier. As the COM component runs
outside of the managed runtime provided by the CLR,
a series of exported methods are required to provide
an interface for accessing the live object instance list
under the CLR. Using the COM component together

with the connecting bridge we are able to extend our
existing C#/OCL compiler to provide support for the
OclAny::allInstances operation. Such support
empowers the software constraint designer with
additional resources form which more detailed and
accurate software constraints can be devised.
Ultimately, allowing the constraint designer to create
constraints that are not limited by technical aspects,
leads to a more complete and accurate software
verification and validation process.

7. ACKNOWLEDGEMENTS
Funding for this work has been generously provided
by the Natural Sciences and Engineering Research
Council of Canada.

8. REFERENCES
[Arn05a] Arnold, D. Constraints in C# using the OCL

2.0. In proceedings of the 23rd IASTED
International Conference on Software
Engineering, Innsbruck, February, 2005.

[Arn04a] Arnold, D. C#/OCL Compiler at
http://www.ewebsimplex.ca/csocl.

[Fra03a] Frankel, D. Model Driven Architecture:
Applying MDA to Enterprise Computing. Wiley,
New York, 2003.

[Hew02a] Hewlett-Packard, Intel, Microsoft, C#
Language Specification. Technical report, ECMA,
2002.

[Hew02b] Hewlett-Packard, Intel, Microsoft,
Common Language Infrastructure (CLI).
Technical report, ECMA, 2002.

[Hil03a] Hilyard, J. Inspect and Optimize Your
Program’s Memory Usage with the .NET Profiler
API. MSDN Magazine, January, 2003.

[Mic02a] Microsoft, .NET Framework Tool
Developer’s Guide: Profiling Specification.
Technical report, Microsoft, 2002.

[Omg03a] OMG: Response to the UML 2.0 RfP.
Technical report, OMG document ad2003-01-16,
2003.

[Stu03a] Stutz, D., Neward, T., and Shilling, G.
Shared Source CLI Essentials. O’Reilly &
Associates, Sebastopol, 2003.

[Tru02a] Trupin, J. Sharp New Language: C# Offers
the Power of C++ and Simplicity of Visual Basic.
MSDN Magazine, September, 2002.

[War03a] Warmer, J., Kleppe, A. The Object
Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley, Boston, MA,
2003.

[Xim04a] Ximian Mono Project at
http://developer.ximian.com/projects/mono

.NET Technologies 2006 FULL papers 54 ISBN 80-86943-10-0

Building a framework for the consistency
management of distributed applications

Vilmos Bilicki
University of Szeged

Department of Software Engineering
Hungary, 6720, Szeged

bilickiv@inf.u-szeged.hu

József Dániel Dombi
University of Szeged

Department of Software Engineering
Hungary, 6720, Szeged

dombijd@inf.u-szeged.hu

ABSTRACT
Distributed computing is leaving the laboratory and research lab environment and is now playing a significant

role in the infrastructure of different companies and institutions. The requirements of running 7x24 without any

noticeable failure can be effectively achieved only with a distributed architecture. The computing power and

storage capacity of desktop machines have also become attractive as the basic building blocks of a distributed

resource-sharing network.

Along with the useful properties of a distributed environment we get some challenges as well. A crucial question

is that of consistent global knowledge among the distributed components. During the building and testing phases

of our distributed software package called LanStore it turned out that currently there is no framework for .NET

that offers group communication and consistency maintenance. There is the Peer-to-Peer API for unmanaged

code that can be used in managed code, but this API was intended to be used in a WAN environment and it does

not provide strong guarantees for consistency.

Hence we decided to design and build a framework that supports consistency management. One design criterion

we applied was to support a highly changeable environment like that in a student computer laboratory. Our

framework does not depend on any underlying communication infrastructure. It can provide the same set of

services regardless of whether it is a peer-to-peer network or an IP level multicast network is used as the

platform.

Keywords
Keywords: distributed system, consistency, group communication, peer-to-peer

1. INTRODUCTION
The number of the users with broadband Internet

access is skyrocketing. According to estimates the

number of users with broadband access in the U.S.

increased by 36% in 2004. Now almost 70% of all

U.S. home users have broadband connections. On a

global scale, the number of the users in the world

with Internet access grew by 182% during the

period 2000-2005. 15.7% of the total world

population now has Internet access. This

penetration means that more than one billion users

(one-sixth of the planet’s human population) are

connected to the Internet, which is probably the

largest community on earth. The value of this

community from the business perspective is

constantly growing as well. The total Internet

spending hit $143.2 billion in 2005[Eni05]. Yet the

demands of this market differ from the

conventional ones in several respects. The most

important difference arises from the fact that, on the

Internet, bank holidays and the different parts of the

day lose their meaning. Business life should be run

in a 7x24 way. But when this point is combined

with the fact that the number of users who use a

service is rather unpredictable, it is becomes clear

that it is no easy task to develop such a system, one

that is efficient, reliable and cost effective.

With the current high speed LAN and WAN

network infrastructures the distributed paradigm is

a reasonable solution for these problems. Such a

service is provided by a group of processes that are

operating and distributed throughout the network.

The user should, however, see this system as a

monolithic service and not notice its distributed

nature. But using the network as a communication

medium among processes introduces new problems.

Current data networks - like IP networks - do not

give guarantees for the correct delivery of the sent

data. A developer has to take into account the

variable aspects of the communication channel.

Permission to make digital or hard copies of all or

part of this work for personal or classroom use is

granted without fee provided that copies are not made

or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the

first page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior

specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,

Plzen, Czech Republic.

.NET Technologies 2006 FULL papers 55 ISBN 80-86943-10-0

One solution that has become more attractive is to

use desktop machines as the basic building blocks

of a distributed system. These PCs are less reliable

than dedicated servers or they may run in

environments where continuous operation is not

guaranteed (as in a student laboratory for instance).

Therefore a reliable distributed system should be

able to tolerate the failing of one or more of its

serving nodes. Depending on the type of tolerated

failure, the system can become quite complex and

costly to implement.

To overcome this complexity a common method is

to use a framework that hides the failures of the

system from the higher layers. Probably the biggest

question for a distributed system is that of

consistency. To be able to act as one virtual service

the distributed system should have a consistent

knowledge base. The message-oriented Group

Communication Service (GCS) [Vit99] may

provide the consistency for a distributed system.

There are well-known frameworks for providing the

above-mentioned services, but we found just the

Peer-to-Peer API [Win03] was available for the

.NET environment. Our experience showed during

the building and testing of the LanStore [Bil05]

system that a well-tested, general, easily extendable

consistency framework removes most of the

burdens associated with testing and developing.

Hence we decided to build the DCon framework to

provide this functionality.

First we will introduce our new contribution, then

we will outline the most common services available

for group communication. One interesting approach

is the Paxos algorithm, which will be evaluated in

the next section, followed by a discussion of several

well-know frameworks. As one of our goals was to

build a framework for a student lab environment, in

the next section we present the results of

measurements that were conducted in our

laboratories. Based on our measurements we

designed a framework that is described in the

implementation section. In the final section we

draw some conclusions and suggest several possible

directions for future study.

2. Our contribution
We carried out a set of a measurement to test the

reliability of a typical campus computer laboratory.

In the literature we found only the [Bol00] study

about the reliability of the desktop machines, but

this measurement was conducted on desktop

machines used mainly by dedicated persons. In

contrast, our measurements were conducted in a

public student laboratory.

We decided to implement a distributed consistency

management framework, we know this is the only

distributed consistency management framework for

the .NET environment. Our system can use the

services of a peer-to-peer network and native IP

level multicast too. We implemented the Paxos

algorithm [Lam00, Lam01] in a way that is optimal

for frequently changing networks (see

measurements). Our Paxos implementation is able

to handle the membership changes. We ported the

Paxos algorithm to a Peer-to-Peer environment

where the group members are not on a central list.

3. Distributed systems
A general distributed system may have an arbitrary

number of components and each of these

components may have a different task and a

different state space but to the service user it

behaves like a centralized monolithic system. These

components may communicate in an arbitrary way.

The fault tolerance of these components is usually

solved by replication. The replicated components

execute the same algorithm and each of them

should have the same state. One popular approach

is to model this system with state machines

[Sch90]. A metric of a distributed system is the

safety it provides. Here safety means the number

and types of failures it survives without losing

consistency. Another important metric is called

liveness. This means that with different types and

numbers of failures the distributed system can still

progress. A widely used solution for the above

mentioned issues is the view-oriented group

communication service (GCS). Here service

reliability is provided at the message level. The

following basic services are defined:

1. Membership service

2. Reliable multicast

A view is a state of the system consisting of a set of

active nodes. If this set changes, the view changes

as well. The most important property provided by a

GCS is called “Virtual Synchrony”. If two

processes participate in the same two consecutive

views the same set of message will be delivered.

For further details the interested reader may peruse

the article [Vit99].

4. Paxos
The “Virtual Synchrony” property provides the

global ordering of the messages and a reliable

message delivery in a distributed system. The price

we pay for this solution is that it is not scalable. As

was shown in the Spinglass article [Ken01], the

systems providing “Virtual Synchrony” can scale

effectively only up to several tens of nodes.

The classic Paxos [Lam00, Lam01] protocol solves

the consensus problem for an asynchronous

replicated system. It guarantees consistency in the

case of benign failures. Hence this algorithm has

better scalability properties than systems with the

“Virtual Synchrony” property. The drawback is that

the progress of the system is not guaranteed, and

.NET Technologies 2006 FULL papers 56 ISBN 80-86943-10-0

the total order of messages is not fully controlled by

the clients.

The algorithm solves the following problem. Let P

be a set of processes and let V be the set of values.

Every process in P can choose one value from the

set V, the goal of the Paxos algorithm being to

guarantee that only one from these selected values

is accepted. The network can delay and multiply the

messages arbitrarily; the participating nodes can

crash and restart randomly but the Byzantine

failures [Lam82] are not tolerated. In other cases

system consistency is guaranteed. The progress of

the system is guaranteed only in stable periods.

The functionality of Paxos is provided by two basic

primitives: the quorum and a global order provider.

The task of the quorum is to select at most one

value from the available values. There are

distributed solutions for preserving the global order

of the messages (e.g. GCS), but sometimes a single

decider can handle it more effectively. Paxos may

be regarded as a special case of the view

membership protocols [Lamps01]

5. Recent solutions
For handling the issues of a distributed system in

the .NET environment one can use the P2P API

[Win03] and the System.Transactions [Win06]

namespace. P2P API provides a basic IP overlay

infrastructure. As the consistency of the given

reliable storage is based on timestamps and serials,

and it does not give appropriate feedback about the

success or failure of a transaction, it cannot be used

in several critical services. The

System.Transactions namespace in .Net 2.0 offers

only classical transaction services. It is unsuitable

for a consensus-based data consistency.

Group Communication Systems-based frameworks

have a long history, and they are now in their fourth

generation. Here we mention only the most well

known frameworks.

Isis [Bir94] was the first and best-known primary

component membership service. Among other

services it defined and provided the “Virtual

Synchrony” property for the first time.

Transis [Dal96] was the first GCS that utilised the

native IP level multicast services. It was the first

partitionable membership service. The system

contains multicast clusters that are interconnected.

It has a multicast flow control mechanism that

controls the traffic at the network level. It also

supports group communication. The messages can

be unordered, causally ordered, and totally ordered

and safely delivered.

Totem [Mos96] utilises the native IP multicast

capabilities of the underlying network too. It

provides a system-wide total ordering of the

messages even in the case of network partition and

remerge (“Extended Virtual Synchrony”). This goal

is achieved with a logical ring where only the token

holder may speak. In larger networks there are

hierarchical ring topologies.

The goal of the Ensemble [Ken00] project was to

improve the quality of the software used in the Isis

project. Instead of the monolithic approach the

system was implemented using modules and well-

defined interfaces. The micro-protocol stack further

improves the flexibility of the system. The code

was implemented in the ML language, which is an

O’Calm variant language. With this approach they

were able to define and perform transformations on

the code in a mathematically proven way.

Spinglass [Ken01] uses a revolutionary new

approach. The currently used GCS’s cannot be

scaled up to a really large number of nodes. The

Spinglass project addresses this problem and it uses

“gossip-based” protocols to provide a highly

scalable, secure and reliable Group Communication

System. The gossip protocols emulate the spread of

an infection in a crowded population. It employs a

NNTP like protocol [Kan86] (Bimodal multicast) as

the basic infrastructure provider. This protocol

gives a steady data delivery rate with predictable,

low variability in throughput. It provides only

probabilistic guarantees of virtual synchrony.

6. Feasibility study
Our university has a computer science laboratory

with 204 PCs. Students can either use the Windows

or Linux operating systems from 8 am. to 8 pm.,

and they can switch between the operating systems

whenever they want. We measured machine

availability by pinging these machines every minute

for 3 weeks between February 6 and February 25 in

2006. Based on the TTL value of the response we

were able to detect not only the failures but the type

of the operating system too.

We measured that a week the mean number of the

online Windows workstations was always above the

critical 50%.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

7 9 11 13 15 17 19

Windows Linux Timeout

Figure 1: Operating system percentage / hours

(2006.02.20)
The first figure shows the same statistics but now

for a particular day. We notice that during the day

except for a short period the number of online

windows machines was above the critical level. The

difference was about 10%. In the next figure the

number of restarts is shown for another day. We

.NET Technologies 2006 FULL papers 57 ISBN 80-86943-10-0

notice that there are situations where more than

10% of the machines are restarted. In such cases it

may happen that during a transaction more than

50% of the windows machines are online but the

ones that are running may vary.

0

20

40

60

80

100

120

7 12 17

Restart

Figure 2: Number of restarts every 10 minutes

(2006.02.14)
From these measurements we may conclude that for

a reliable and liveness system we have to take into

consideration these special time periods.

7. The DCon framework
The goal of the framework is to provide a

distributed replicated data storage service with

strong safety guarantees and weaker liveness

properties. It can tolerate any arbitrary number of

non-Byzantine failures. The liveness property is

guaranteed only when more than the half of the

nodes are active, but these nodes can change from

time to time.

Figure 3.

We could have followed the approach of the above-

mentioned frameworks and implemented a

message-level GCS. But as our framework will

provide only consistency services and not group

communication services, we constructed it so that it

would handle the issue of consistency more

effectively. We selected the famous Paxos

algorithm, which is ideally suited for these

purposes. The reliability of this algorithm is

mathematically proven. It can tolerate an arbitrary

number of non-Byzantine failures without losing

consistency. To be able to use it in a WAN

environment and to be effective in a LAN

environment we implemented it on the top of the

Windows Peer-to-Peer API and the native IP level

multicast services.

The DCon framework has three layers. These layers

are shown in Figure 3. The first layer hides the

distributed nature of the system from the user. It

provides basic data manipulation and configuration

services for the user. A data item can be added to

the system, and existing data items can retrieved by

a slow or fast query (see the next section). There

are several methods available for reconfiguring the

system.

The second layer implements the Paxos algorithm

in a network independent way. At the bottom are

the network dependent modules. Currently there are

two modules: the native IP level multicast module

and the module based on the services provided by

the Windows Peer-to-Peer API.

In the following section we will describe our

implementation of the Paxos algorithm in native

multicast and P2P environments.

8. Our Paxos implementation
Functionality is provided by three abstractions:

Leader, Consensus algorithm, Learner.

From a higher point of view the system works as

follows. The clients send instructions to a leader.

This leader carries out a three-phase transaction on

the participating nodes and sends the results to the

client.

Now we will describe the algorithm and a detailed

description of our implementation (please consult

Figure 4 for details).

Firstly, during the implementation phase of the

classic Paxos algorithm we had to solve the

following problems:

Message ordering: The purpose of the leader

abstraction is to serialise the incoming requests. As

we have seen this task can be done in a distributed

manner (with logical timestamps and so on), but

these solutions are more costly and are less reliable

than the single leader solution. One could argue that

the single leader incorporates a single point of

failure into system. This is true, but as the leader

does not have persistent data it can be easily

replaced by a live substitute.

Leader election: As a communication medium

between the Leader and the participating nodes, the

Instructions multicast channel is used. During idle

periods, the Leader periodically multicasts a beacon

packet that contains the number label of the latest

instruction. Based on our experience in other fields

we chose to set this period to 10 seconds. During

active periods these packets contain Paxos

instructions (Propose, Accept, Decide). Failure

detection is achieved by timeouts. If there is no

traffic on this channel for three times the beacon

period (30 seconds), the clients will submit a

LeaderSelect frame that contains their stability

properties (the greatest message serial known by

this node, the number of restarts, the duration of the

longest stable period). Each node compares the

received values with its values and if it discovers

.NET Technologies 2006 FULL papers 58 ISBN 80-86943-10-0

that its values were better (in the case of equal

values the greater IP number is chosen) it will wait

for a random period between 0 and 15 seconds and

start sending beacon packets. If a node thinks that it

has the best values but receives beacon packets it

will accept the new leader. With these settings a

Leader change will last at most 45 seconds.

Learning the actual leader: There is a Leader

channel where the leader submits the beacon every

30 seconds. This channel is intended for clients for

them to determine the actual leader. The clients

send the data items to be stored to the leader using a

TCP connection.

Monotony maintenance: The leader node

retransmits the messages from the clients to the

Instructions multicast channel and these values

assigns a global number G and local number N to

the messages. Local numbers are interesting only

when there are two or more leaders. These numbers

should be unique among the leaders so it is

constructed as follows: IP address+ N*2
32

. For

every submitted message G is increased and N is

reset to 0. G and N are included in the beacon

packets as well.

Every node in the distributed system is subscribed

to the Instructions multicast channel. For every

different global number there will be a separate

“Synod” protocol that guarantees consistency

among the nodes. It works as follows:

Phase 1. The leader selects a global G and a local

number N for the instruction and sends it as a

proposal for the nodes subscribed to the

Instructions channel. This is the so-called Prepare

request. If a receiving node receives a Prepare

request it checks whether it is able to accept it. If

the last accepted request has a global number which

equals the received global number and the local

number is less than that of the current request then

it responds with a reject answer, otherwise it will

send a prepare accept response. Both of the

responses contain the last accepted request and the

also the number of this request.

Phase 2. If the leader receives a response for its

propose request from the majority of the nodes,

then it selects the latest accepted request, or if there

was no request previously then it uses its own

request and sends an accept request to the

Instructions channel. In the case of insufficient

responses or a reject answer it will increase the

local number and submit the prepare request again.

If there are insufficient responses after the fifth

unsuccessful round it will stop the process and send

an unsuccessful message to the clients. If it gets one

or more reject answers it will increase the N value

and send the message again. After five unsuccessful

turns it will increase the value of G to the maximal

value reported by the clients plus one received in

the reject messages. If it is unsuccessful then it will

report this to the client. This situation can happen

only when there are several leaders and all are

functioning for a longer period of time. But this

may happen only in very special circumstances. It

is quite rare.

The node receiving an accept request checks the

local number of the request, and if it is greater than

the last accepted one or there was no such G then it

accepts the request and sends an accepted message

to the leader. Otherwise a reject response is sent

with the N value and maximal known G value.

Phase 3. After receiving sufficient accepted

messages the Leader sends a Decided message to

the Instructions multicast channel. The node that

receives the Decided message will insert the

Decided values into its Decided values storage. The

timeout for each phase is 20 seconds. If the number

of received accept messages was less than the

previously defined majority value it will try sending

the accept request again. If it fails five times it will

send this result to the client and stop the process. In

the case of a reject message it will follow the

process described in Phase 2 and restart Phase 1. If

the chosen value was not the value originally sent

by client, then the Leader will repeat the whole

process until the decided value and the accepted

value coincide. This situation may occur if the G

known by the leader is less than the greatest G in

the whole system.

A detailed description of this algorithm can be

found in [Lam00, Lam01]. We implemented the

Paxos algorithm using several optimisations to

achieve better response times:

For the system to progress we need the majority of

nodes to be live. It may happen that in a fluctuating

system, the majority of nodes are always present

but are constantly changing. For example the

prepare request is received by node A, then node A

restarts and node B finishes its restarting process.

So node B will only receive an accept request. The

classic Paxos algorithm recommends rejecting this

message. But with this solution it can happen that

we have to replay the whole propose/accept

procedure. Instead of this we suggest the following.

If a node receives an accept request without

previously receiving a propose request it shall

answer this request. If it disagrees with the value

suggested by the accept request it shall handle the

accept request as a propose request; if it agrees with

the received value then it shall handle the accept

request as a propose and accept request. With this

modification we did not change the durability of the

algorithm, but in some cases we reduced the

required number of message exchange from six to

two. This algorithm is described in [Lam01].
Phase1:

Server:

 Var ReceivedRequest([G[N,V]], Iteration=0

 SendPropose(Nx232,G)

.NET Technologies 2006 FULL papers 59 ISBN 80-86943-10-0

Node:

 Var ReceivedProposes [G[S,V]]

 ReceivePropose(S,G){

 IF(G not known)

 SendAcceptPropose()

 ELSE IF (Smax <S)

 SendAcceptPropose(Sloc,Svalue)

 ELSE

 SendRejectPropose(G,Smax,Gmax)

 }

Phase2:

Server:

 IF (ReceivedAcceptPropose > Memb/2)

 IF(MAX(S) != 0)

 SendAcceptReq(G,Sloc,Svalue)

 ELSE

 SendAcceptReq(G,Sloc,V)

 ELSE

 IF(N<5)

 N=N+1

 GOTO Phase1.

 ELSE

 REPORT ERROR

Node:

 IF(G not known)

 SendAcceptReq()

 ELSE IF (Smax <S)

 SendAcceptReq ()

 ELSE

 SendRejectReq(G,Smax,Gmax)

Phase3:

Server:

 IF NUM(ReceivedAcceptReq > Memb/2)

 SendDecide(G,V)

 ELSE

 IF(N<5)

 N = N+1

 GOTO Phase 1

 IF(Sv != V)

 G = G+1

 GOTO Phase 1

 ELSE

 SendSuccess()

Figure 4. Algorithm

Change of membership: The participating nodes

maintain two lists of instructions. In the “Client

list” are stored the data items submitted by the

clients, while the “System list” contains the

instructions for system maintenance. The handling

change of membership is solved by these special

instructions, which are treated the same way as

instructions from clients.

Message optimization: A Leader may incorporate

an arbitrary number of Paxos messages with

different G values into one submitted packet. The

Decide packets may be piggybacked to Accept

packets. The prepare packets are only needed

during the start of a longer stable period. With these

optimisations we then need only one message per

transaction during stable periods. The details of

these optimisations were mentioned in part in two

papers [Lam00, Lam01].

Slow/Fast query: A client may learn the chosen

values in a fast or slow way. The fast way is to

query the adjacent node about its list of decided

values. The slow way is to perform a distributed

query of the missing values. This query is

submitted to the Instructions multicast channel. The

distributed query contains the number label of the

last known decision. The nodes receiving the query

will respond to and return the accepted values. The

client will summarise the answers and in the case of

unknown new decisions it will send a decide

message to the Instructions multicast channel to

help the progress of the whole system.

9. Measurement
We tested our implementation in different

circumstances to prove that the single leader role

does not affect its stability.

To be able to simulate different network conditions

we developed a simulation framework where every

machine was simulated with separate thread. With

the help of this solution we were able to fine tune

the machine restart probabilities.

In the following we will present our results about

the stability of the leader election process. During

the experiment we simulated 200 PCs with the

restarting probability of 10% to 50% . On the

Figure 5 we can notice, that the system converged

in a very fast manner in the case of low restarting

probability. If we raise the restarting probability the

system also converged, but in this case the

convergence is slower, and it contains more peaks.

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Time(10s)

10% 20% 30% 40% 50%

Figure 5. Number of threads, which are know

the good leader at the same time

10. Paxos in a peer-to-peer environment
The services of the Windows Peer-to-Peer API

were described in the recent solutions section. We

can if we wish use it as a basic infrastructure to

build an IP overlay multicast service. The

communication service will be less efficient than in

the native case, but in some situations we cannot

use native multicast services anyway. The reliable

storage service does not guarantee safety properties

comparable to those of Paxos.

In our system we solved the following problems:

Group membership: To be able to implement a

Paxos-like algorithm with guaranteed safety

properties we have to know something about the

success of the spread of the information. For this

we need some membership details. As this

framework assumes that there will be a high

number of nodes there is no central information

about the membership. To overcome this, we chose

.NET Technologies 2006 FULL papers 60 ISBN 80-86943-10-0

to measure the total weight of the network and this

value will be refined from time to time, but we will

save only the maximal value while the system is

running. Based on the maximal and the current

value, the algorithm will be able to decide whether

a partitioning has occurred and if this partition is

capable of acting as a reliable storage medium. In

the case of partitioning only the partition with

weight more than the half of the whole weight will

be suitable to act as a reliable storage. This solution

works when, after the partitioning, there is a will on

the user’s part to merge the graph. If the partitioned

sections start their lives separately, one can initiate

a separate instance of the consistency algorithm on

each. After doing so, it will be impossible to unify

the network, however as the algorithm is intended

to preserve global consistency there is no easy way

of merging systems with a different history. With

this membership view the nodes in the Peer-to-Peer

network act as Paxos nodes.

Global order: This can be handled in a distributed

or centralised way. The decentralised solution may

be a more suitable solution for a peer-to-peer

network, but as the Windows Peer-to-Peer API uses

a central point of the network for graph

maintenance we opted for this solution. A step

toward the fully decentralised solution could be the

use of per client root nodes. In this case an

additional iteration is needed to evaluate the global

order of the values. This could be done with the

help of the weight of the groups which accepted a

value with the same serial number.

After this high-level overview we will describe how

our solution works:

The Peer-to-Peer network or segment has a central

point- the node with the smallest ID (the same node

being used for graph maintenance). This node sends

a beacon signal every T seconds to each of its

neighbours. The main task of this beacon is to

measure the weight of the network.

Loop free message transfer: The graph

constructed by the P2P system is a redundant one,

hence we need an algorithm to avoid the situation

of message loops. The P2PDatabase article

[Awe02] advocates using spanning trees, but in a

dynamic network it would be a costly solution. So

we decided to use the well-known “Path Vector”

algorithm [BGP06][Win03] (the same idea being

used for name queries in MS P2P API). Every

beacon packet has a path vector attribute that

contains the sequence of nodes it traversed during

its trip. If a node receives a beacon packet it first

checks whether it is present in this attribute. If it

finds its ID then the packet will be discarded. It

then inserts its ID at the end of the path vector

attribute and submits the packet to each of its

neighbours except the neighbours which are present

in the path vector. With this solution we have a

multicast communication infrastructure.

Aggregated feedback: To measure the current

weight of the network, each node will send a

feedback to each beacon packet with the aggregate

number of feedback packets received. Every non-

leaf node (i.e. one which transmitted a beacon

packet) has to wait for an answer for each

submitted beacon packet. As we use the services of

the Windows Peer-to-Peer API, theoretically the

neighbours are always online (if not, the graph

maintenance algorithm will correct this), but to

avoid a potentially long delay of 5 minutes, every

node has to maintain a timer for each submitted

beacon frame. The timeout value will be inversely

proportional to the number of nodes in the path

vector attribute. In the case of a timeout it will send

back a packet with a weight value of one. If there

are redundant paths it may send the same feedback

back several times. To avoid this, the synchronising

packets contain a timestamp. A node will answer

with an aggregate weight only for the first packet,

and for the remaining packets with the same

timestamp it will respond with a feedback

containing a zero weight. Finally the root node will

aggregate the feedbacks and this number will be the

weight of the current network. The maximal value

during this time will be the membership weight of

the network. To ensure that this value is common

knowledge, it will be attached to each beacon frame

and stored at every node.

The root node acts as the leader in our Paxos

algorithm. The algorithm is the same as in the case

of native multicast, the only difference being that

the nodes aggregate the answers they receive and

send this answer as feedback values. The Propose,

Accept, and Decide packets can act as beacon

packets too. The root node will send beacon packets

only after a defined idle time. To minimise the

network traffic a submitted packet may contain

several Paxos packets for several instructions and

types. The root node will receive an aggregated

feedback from participating nodes. The weight of

the response should have a value greater than

maxweight/2.

Slow/Fast query: The fast query option is the same

as in the native multicast case. The slow query

contains the last known decision number. The

algorithm is the same as in the case of beacon

packets. The feedback packets will contain the

decisions known by the traversing nodes. Every

transmitting node will check the feedback values

for unknown decisions and then store them. If a

node discovers that one or more of its accepted

values are not present among the decided values, it

will attach these values to the voted values. If it

finds its accepted values among voted values, then

it will increase the counter for these values. Thus

.NET Technologies 2006 FULL papers 61 ISBN 80-86943-10-0

the client will be able to learn the decided values

and also the values accepted by the majority of

nodes. The detection of root node failure is handled

by the underlying framework. Each node also

checks whether it is the root node of the new graph.

If it finds that it is, then it will initiate a query to

learn the last synchronising number of the decided

and proposed values. The result of this query will

be the weight value of the current network. If it

finds that it is larger than the half of the previous

one, then it will start acting as the leader.

11. Conclusions and future work
In this article we described a solution which

provides consistency services in a distributed

environment. We implemented the well-known

Paxos algorithm and solved several associated

problems. As our framework handles only the

consistency problem and it provides no group

communication services ours should not really be

compared to recent systems like Isis and Transis.

Our goal was to provide a simple and reliable API

for consistency handling. Currently we also provide

the same set of services on the P2P framework and

on native IP level multicast.

Our software package is now in the development

stage. Timing can be critical in a distributed system.

The current values are based on our experience in

the field of IP routing where the neighbour

maintenance solves the same failure detection issue

[OSPF96]. The tuning of the timeout values should

be done in a real environment and software package

should be tested under a variety of conditions.

In the future we would like to add a gossip-based

module that can be deployed in the Windows P2P

API. With this module the framework will not just

be effective in LAN, but will be scalable in WAN

as well.

12. Acknowledgement
We would like to thank David P. Curley for

checking this article from a linguistic point of view.

REFERENCES
[Awe02] B. Awerbuch and C. Tutu. Maintaining

Database Consistency in Peer to Peer Networks.

Technical Report, CNDS-2002-2. 2002

[Bil05] V. Bilicki. LanStore: a highly distributed reliable

file storage system, .NET Technologies’2005

conference proceedings, ISBN 80-86943-01-1, pp.

47-57, 2005

[Bir94] Birman K., van Renesse R. (editors) - Reliable

Distributed Computing with the Isis Toolkit, IEEE

Computer Society Press

[Bol00] W. J. Bolosky, J. R. Douceur, D. Ely, and M.

Theimer. Feasibility of a serverless distributed file

system deployed on an existing set of desktop PCs. In

Proceedings of SIGMETRICS, Santa Clara, CA, June

2000.

[BGP06] Y Rekhter, T. Li, S. Hares. A Border Gateway

Protocol 4 (BGP-4).

http://www.ietf.org/rfc/rfc4271.txt

[Dal96] D. Malki and Y. Amir and D. Dolev and S.

Kramer. he Transis Approach to High Availability

Cluster Communication. Communications of the

ACM, 39(4):63--70, April 1996.

[Eni05] Enid Burns. Broadband: Online Retail Sales

Grew in 2005.

http://www.clickz.com/stats/sectors/retailing/article.p

hp/3575456 , January 2006

[Kan86] B. Kantor, P. Lampsley. RFC 977 - Network

News Transfer Protocol. 1986

http://www.faqs.org/rfcs/rfc977.html

[Ken00] Ken Birman, Robert Constable, Mark Hayden,

Christopher Kreitz, Ohad Rodeh, Robbert van

Renesse, Werner Vogels. Proc. of the DARPA

Information Survivability Conference & Exposition

(DISCEX '00), January 25-27 2000 in Hilton Head,

South Carolina.

[Ken01] R. Shostack, and M. Pease. Kenneth P. Birman,

Robbert van Renesse and Werner Vogels. Spinglass:

Secure and Scalable Communication Tools for

Mission-Critical Computing. International

Survivability Conference and Exposition. DARPA

DISCEX-2001, Anaheim, California, June 2001.

[Lam00] L. Lamport. Part time parliament. ACM Trans.

on Computer Systems, 16(2), May 1998.

[Lam01]L. Lamport. Paxos made simple. ACM SIGACT

News Distributed Computing Column, 32(4),

December 2001.

[Lam82]L. Lamport, R. Shostack, and M. Pease. The

Byzantine Generals Problem. ACM Transactions on

Programming Languages and Systems, 4(3):382-401,

1982.

[Lamps01] B. W. Lampson. The ABCDs of Paxos.

Principles of Distributed Computing, 2001.

[Mos96] L. E. Moser, P. M. Melliar-Smith, D. A.

Agarwal, R. K. Budhia, and C. A.

LingleyPapadopoulos. Totem: A fault-tolerant

multicast group communication system.

Communications of the ACM, 39(4):54--63, April

1996.

[OSPF96] Y. Moy. OSPF Version 2.

http://www.ietf.org/rfc/rfc2328.txt

[Sch90] Fred B. Schneider. Implementing Fault-Tolerant

Services Using the State Machine Approach: {A}

Tutorial. ACM Computing Surveys, 22(4):299-314,

1990.

[Vit99] R. Vitenberg and I. Keidar and G. Chockler and

D. Dolev. Group Communication Specifications: A

Comprehensive Study. Tech. report CS99-31, Comp.

Sci. Inst., The Hebrew University of Jerusalem and

MIT Technical Report MIT-LCS-TR-790, Sep. 1999.

[Win03] Microsoft. Introduction to Windows Peer-to-

Peer Networking. November 2005.

http://www.microsoft.com/technet/prodtechnol/winxp

pro/deploy/p2pintro.mspx

[Win06] Microsoft. System.Transactions Namespace.

2006. http://msdn2.microsoft.com/en-

us/library/system.transactions.aspx

.NET Technologies 2006 FULL papers 62 ISBN 80-86943-10-0

Implementing Unified Access to Scientific Data

from .NET Platform

Sergey B. Berezin
Assistant Professor,

Moscow State University,
Computational Mathematics and
Cybernetics, Leninskie gory,

1 MSU, 119992, Moscow, Russia.

s_berezin@cs.msu.su

Dmitriy V. Voitsekhovskiy
Postgraduate,

Moscow State University,
Computational Mathematics and
Cybernetics, Leninskie gory,

1 MSU, 119992, Moscow, Russia.

idmitry@inbox.ru

Vilen M. Paskonov
Professor,

Moscow State University,
Computational Mathematics and
Cybernetics, Leninskie gory,

1 MSU, 119992, Moscow, Russia.

paskonov@cs.msu.su

ABSTRACT
Scientific data differ from common relational data in many aspects: scientific data may have a very complex

structure, they are usually stored in files of various formats and individual data items can be very large. In this

paper we present an extensible and efficient client-server system for accessing scientific data and its metadata.

The architecture and major capabilities of our system will be described in the paper. The core of our approach is

an extensible XML-based structure that annotates scientific data with rich metadata and maps every file or part of

a file to a named strongly typed entity.

We do not introduce any new file formats and file transfer techniques, thus our approach doesn’t require major

changes to existing computational software. SOAP protocol and Web Services are used for accessing data sets

and performing data requests. Filtering and caching enables an efficient access to large portions of data over

network. Example of implemented filters are cropping and thinning of 2D and 3D arrays.

Our system is fully extensible and allows adding new data types, new file formats and new filtering algorithms

without changing its core algorithms. Now it is used for accessing results of computational fluid dynamics

simulations, but we hope that it can be adapted to many branches of science. The client is implemented on the

.NET platform; the server-side is currently running on the IBM Regatta SMP mainframe on AIX

Keywords
Scientific data access, data management, visualization, web services, SOAP.

1. INTRODUCTION
Scientists are overwhelmed today by amounts of data

generated by experiments and simulations. According

to the Scientific Data Management Center at the

Lawrence Berkeley National Laboratory [Sdm05w]

up to 80 percents of a scientist’s time is spent on data

manipulation and only 20 percents – on actual

analysis. That’s why there is an emerging need of

more convenient tools for scientific data access and

analysis. Tendencies of scientific data management in

near future are listed in [Jim05a] along with vision of

the next generation data analysis tool called “smart

notebook”. In this paper we make a small step to such

a tool by introducing our approach which consists of

two parts: a scientific data access system and a data

visualization tool.

A lot of systems for scientific data management and

analysis were developed for many branches of

science, from astronomy [Jim01a] to computational

fluid dynamics problems on irregular meshes

[No01a]. Our system origins from the field of

computational fluid dynamics but we believe that it

appears to be useful in other branches of science.

Most important features of scientific data

management systems can be found in the survey

[Rea00a]. In our approach we focus on following

aspects:

Logical data management – a data management

system abstracts from the physical data layout. The

resulting view of the data is a uniform collection of

data items.

Physical data management – a request for logical

data items results in a transparent physical files

access, filtering and caching.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006

FULL papers conference proceedings

 ISBN 80-86943-06-2
Copyright UNION Agency – Science Press,

Plzen, Czech Republic.
.NET Technologies 2006 FULL papers 63 ISBN 80-86943-10-0

Metadata management – metadata describes data

themselves [Jef02a]. Metadata is an important part of

scientific data set, because it helps a scientist to

understand data better and it helps various tools to

perform a data analysis and visualization more

efficiently.

2. RELATED WORKS
The evolution of Web technologies along with

cheaper and more powerful hardware and increased

networks bandwidth has brought to life new

approaches to scientific data management. The huge

number of online repositories and data centers allows

scientists to publish, to search, to display and to

download data.

The NCSA’s Scientific Data Service (SDS) [Sds97w]

provides Web access to a wide range of scientific

data, facilitating data sharing between science teams

and the general public. The SDS is a CGI program

that provides scientific data in the several well known

file formats. SDS is extensible and modular, but it is

a fairly time consuming task to make SDS understand

a new file format.

The metadata in SDS contains the fixed number of

attributes to search by: spatial, temporal, dataset

name, archive center, parameter name, platform

name, sensor name, etc. Users can interactively

examine the contents of a file with their Web

browser, view a thumbnail image of the data, and

retrieve the file, or a desired subset of the file, in its

original file format or in ASCII. SDS has no object-

oriented features and lacks support for client-side

data management and caching.

The OpenGIS scientific data server [Ogs97w] is

created by joint efforts of NCSA and the USDAC

Consortium. It provides geospatial data according to

object model described by the OpenGIS Abstract

Specification. This model hides format details for

three different types of geospatial data. Access to the

scientific data objects is performed through the

OpenGIS API. The objects returned to client can be

visualized or saved as files. But object became a

isolated entity after it has been obtained and it holds

no reference to source data set.

The Distributed Oceanographic Data System

(OPeNDAP) [Dap04w] is intended to give

researchers a transparent access to oceanographic

data across the Internet. Communication model in

OPeNDAP works with URL addresses of web servers

that deliver data to the researcher. In fact,

researcher’s data analysis software acts as a

sophisticated web browser. Each data set is accessed

via URL. Calls of API functions are forwarded to

referenced web servers. Depending on the request

type, the server returns a textual description of the

data set contents or the actual values of data variables

in a binary form. Textual descriptions provide a client

library with metadata information concerning the

operations that can be applied to data and the way

binary data is to be decoded. The OPeNDAP

incorporates a data translation facility, so that data

may be stored in formats defined by the data

provider, yet may be accessed by the user in a manner

identical to the access of local files. Thus, the system

provides transparent access to scientific data, but still

there is no support for client-side data management.

Originality of our approach is based on following

features: (1) integrity of data sets during their entire

lifecycle, (2) efficient client-side data management

and (3) common object-oriented API based on SOAP

and XML. Another feature of proposed system is its

high extensibility resulted from .NET Framework

dynamic nature.

3. ABOUT DATASET

3.1. Common Features of Scientific Data
Long time passed since the single standard and SQL

have been developed for the relational data model.

However, scientific data strongly differ from common

relational data in several aspects. This makes existing

data management paradigms unsuitable for scientific

data [Jim05a]. There is still no unified model for

accessing scientific data. In this paper we introduce a

new approach to the scientific data access that seems

to be pretty general.

Our logical data model was designed to reflect

following common features of all scientific data:

• Scientific data may have a very complex structure

and are usually stored in files of various specific

formats; individual data items can be very large.

• Scientific data often depend on parameters (for

example, on time) or can be viewed as a collection of

parameter slices.

• Practically all results of scientific researches

contain both data and metadata.

Metadata can be of two types. The first type of

metadata is designated for human reading and

contains information about simulation parameters,

about authors and the origin of data and so on. This

type of metadata allows associative search,

categorization and better understanding of scientific

data by external researchers.

The second type of metadata describes the type and

the format of scientific data. It is most useful for

different automated tools for data retrieval, filtering

and analysis. For example, the information about the

type helps the visualization system to suggest the

most suitable visualization method and its

parameters.

.NET Technologies 2006 FULL papers 64 ISBN 80-86943-10-0

3.2. DataSet Object Model
DataSet is a key notion of our approach to the

scientific data management. It can be thought as a

self-describing entity containing references to actual

data annotated with rich metadata. DataSet Object

Model is shown on Fig.1.

Figure. 1. DataSet Object Model.

The Metadata section holds descriptive information

about DataSet and its data in a human readable form.

The Properties collection contains information about

simulations parameters, units of measurements,

affiliations and authors of data. The Descriptions

collection contains descriptions and annotations of

any object in a DataSet. These collections can be

used for searching and arranging DataSets.

The Metadata section also contains an address of a

data source server (to which a data request should be

sent) and the origin of a DataSet. The former allows

copying and distributing the DataSet, keeping its

functionality, and the latter allows checking for

possible updates to the DataSet.

Every logical part of data set is represented by

DataItem, which maps a portion of real data to a

named strongly typed object. А DataItem can depend

on one or more named parameters. Thus, a DataItem

is a collection of so-called slices, which correspond

to data for specific parameters values. The value of a

DataItem for specified parameters is represented by

an individual DataItemSlice object.

Each parameter has a name and a strongly defined

type such as double, string etc. The example of

parameters in computation fluid dynamics is time or

the Reynolds number, in geophysics – coordinates of

a data capture.

A DataItem can be either simple or composite.

Simple DataItems hold references to a data piece that

can be retrieved from a single location. We do not

introduce new file formats, but instead we rely on

existing well known formats such as netCDF or HDF

[Fmt06w]. The usage of existing file formats has

following advantages:

• We can easily assembly existing data in DataSets;

• We can use existing libraries to write or read

DataItems of DataSets;

• We can extract parts of DataSet for processing

with existing tools and utilities.

Composite DataItems are built by on the basis of one

or more components (see Fig.2). Each component is

the pair of a DataItem (possibly also composite) and

an optional class name of the component. Class

names help to distinguish components.

The following example introduces a constructor for

computation fluid dynamics problems. Let’s assume

that the DataSet contains two DataItems: uvw-

values, as a three-dimensional array of vectors, and

channel, as a spatial grid. Combination of 3D vector

array and data grid is a vector field. The constructor

named DataField is used to create a composite

DataItem velocity, representing the vector field. In

such a way, the composite DataItem should be

declared in the DataSet as an output of the DataField

constructor depending on two components: the uvw-

values with the class “values” and the channel with

the class “grid” (see listing 1).

Figure 2. Composite DataItem construction.

Another example of important constructors is the

constructor named CompositeVectorArray that

allows creating new arrays by combining several

arrays with smaller dimensions of items (see example

listing 1), and vice versa.

A DataSet aggregates different data sources

transparently for applications and makes it possible to

view scientific data as a single collection of typed

objects. This allows both logical and physical data

independence.

The common standard for XML metadata descriptors

and the DataSet XML schema definition were

developed and now they are used in data repository

for simulations in the field of CFD. We believe that

this structure will be suitable for many fields of

science, from computational fluid dynamics to

biological systems modeling.

3.3. DataSet Example
The following DataSet XML document describes

results of the numerical modeling of an unsteady flow

.NET Technologies 2006 FULL papers 65 ISBN 80-86943-10-0

of viscous incompressible fluid in a flat channel. The

results of the modeling consist of four files with a

scalar array (three for the fluid velocity components

and one for the pressure) for each moment of time.

<dataset id="…" dataSource="http://..."

 origin="http://..." type="CFD" …>

 <metadata>

 <property name="Re"
 description="Reynolds number"
 type="double" value="140.0" />
 …
 <description>Incompressible viscous flow
in a 3D channel</description>

 <description id="velocity">Velocity
vector field</description>

 </metadata>

 <structure>

 <dataItem id="uvw-values"
 type="Vector3dArray3d" >
 <composite

 constructor="CompositeVectorArray">
 <component id="u-values" />
 <component id="v-values" />
 <component id="w-values" />
 </composite>
 </dataItem>

 <dataItem id="velocity"
 type="VectorField3d" >
 <composite

 constructor="DataField">
 <component id="uvw-values"
 class="values"/>
 <component id="channel" class="grid"/>
 </composite>
 </dataItem>

 <dataItemTemplate id="u-values"
 type="ScalarArray2d"
 sourceType="netCDF" />
 </structure>

 <data>

 <dataItem id="channel"
 type="NonUniformGrid3d"
 sourceName="grid.dat"
 sourceType="plain text" />
 <parameter name="time" type="double">
 <slice value="0.00000">
 <dataItem id="u-values"
 sourceName="u_0000.cdf" />
 …
 </slice>
 …
 </parameter>

 </data>

</dataset>

Listing 1. Example of DataSet XML document.

The structure section specifies composite

DataItems and templates for simple DataItems. The

dataItemTemplate element is used to simplify

DataItems declarations, especially parameterized. If

the template is defined for certain id then attributes

of the DataItem with the same id in data section will

be considered as defined by default and may be either

omitted or redefined with new values.

In the data section there are simple DataItems

defined and arranged in slices by parameters values.

In our example DataItems are defined for every

moment of time and correspond to each component

of the velocity vector and pressure. The DataItem

channel represents the mentioned above spatial grid,

that does not depend on time.

4. IMPLEMENTATION DETAILS
4.1. Architecture Overview
The server-side is currently running on the SMP

mainframe IBM Regatta on AIX and implements two

Web services. The first Web service performs

administrative functions and provides access to

DataSets. Search by metadata values is possible. The

second Web service serves requests for DataItems

and performs filtering. Complementary data request

caching is used to maximize the speed of the service.

The client-side of the system is implemented on the

.NET platform as class libraries. Global view of our

system is shown on Fig. 3.

The central class of the libraries is a DataSet. It is

developed according to the DataSet object model (see

Fig.1) and can be constructed on the basis of an XML

document that represents DataSet entity. The DataSet

class contains metadata and a collection of named

objects of the DataItem class.

Figure 3. Architecture overview.

The structure of the DataItem class is represented by

a tree, the nodes of which correspond to parameters

and leaves – to DataItemSlice objects. The DataItem

class offers convenient methods for data indexing by

a set of parameters, returning an object of the

DataItemSlice class for specified parameters values.

.NET Technologies 2006 FULL papers 66 ISBN 80-86943-10-0

The DataItemSlice methods provide a direct access to

data and return typed data object.

When data object is requested the system

automatically forms and sends a data request to a data

source address that is declared in metadata of the

DataSet. Thus, client applications work with data

transparently and without caring where and how they

are stored.

The following code accesses array of velocity vectors

at the moment 0.0 from the DataSet described in

section 2.3. It can be seen in the DataSet that the

required array is located on a server as three different

files, but the physical representation of the data does

not matter for the client at all.

// Creating object of class DataSet using
// XML-representation of DataSet
DataSet dataset = new DataSet(xmlDoc);

// Fetching DataItem by its name
DataItem velocity =

dataset.DataItems["uvw-values"];
// Creating parameter corresponding to time
CompositeParameter param =

new CompositeParameter(

new ParameterValue("time", 0.0d));
// Fetching DataItemSlice for the parameter.
// It is an instance of DataItem for
// specified parameter value.
DataItemSlice dataVelocity =

velocity[param];

// Getting required data
Vector3dArray2d data =

 dataVelocity.GetData() as Vector3dArray2d;

Listing 2. Getting required data in C#.

4.2. Data Filtering
In most cases an application may request filtering of

the data, i.e. their additional processing. For instance,

a visualization program does not need such detailed

grid data as they are usually computed in numerical

experiments. Therefore thinning filter will be useful

in this situation, because the resulting data after

filtering will have exactly as many points as

necessary for its correct visualization.

Another example of filtering is cropping. Let us

assume that a scientist wants to study part of the data

in detail. There is no need for a full local copy of

existing data in that case, therefore cropping filter

will return only required data.

Data filtering can be performed either by the client-

side of the system or by the server-side. It occurs

absolutely transparently for applications that work

with the system: the decision where filtering will take

place is taken by the system itself.

Thus, besides specific data handling for specific

problem field, filters increase the efficiency of the

system and reduce network traffic.

The following example expands the previous one

given in listing 2 and illustrates how an application

may request data with additional filtering. If there is

no need for such a detailed velocity vectors array as it

stored in files, a thinning filter may be applied to the

data. The “Thinner” filter has parameters

PercentageX, PercentageY and PercentageZ – those

are fractions of points for each axis, which shall

remain after filtering, and we make them equal to 5%.

Code in C# is shown below:

// Creating object of class DataSet using
// XML-representation of DataSet
DataSet dataset = new DataSet(xmlDoc);

// Fetching DataItem by its name
DataItem velocity =

dataset.DataItems["uvw-values"];
// Creating parameter corresponding to time
CompositeParameter param =

new CompositeParameter(

new ParameterValue("time", 0.0d));
// Fetching DataItemSlice for the parameter.
// It is an instance of DataItem for
// the specified parameter value
DataItemSlice dataVelocity =

velocity[param];

// Creating filter "Thinner" for required
// data type and setting up its parameters
Filter filter = FilterFactory.GetFilter(

"Thinner", // filter class name
dataVelocity.TypeDescriptor);

FilterServices.SetFilterParameters(filter,

new FilterParameter[] {

 new FilterParameter("PercentageX", 0.05),
 new FilterParameter("PercentageY", 0.05),
 new FilterParameter("PercentageZ", 0.05)

});

// Getting required data
Vector3dArray2d data =

dataVelocity.GetData(filter)

as Vector3dArray2d;

Listing 3. Getting filtered data in C#.

Here an application gets the required filter,

requesting it from the FilterFactory object by the

filter’s class name and the type of data, to which it

shall be applied. Use of class factories is one of the

keys which enable the system’s high extensibility.

4.3. Performing DataRequest
DataRequest contains DataItem reference and filters,

which shall be applied to this DataItem.

DataRequest’s content provides all information

required to load the data. Any DataItem reference

belongs to one of the three types. The first type,

named dataSource, is designed for server’s handling,

which can locally (for the server) load requested data

according to the reference. The second type, named

dataRef, is used for remote loading of data that

already are available on server as one file or

directory. Besides the data type, dataRef contains the

transfer protocol type and URL. The third type of a

DataItem assumes that data are stored inline in

.NET Technologies 2006 FULL papers 67 ISBN 80-86943-10-0

DataRequest. It is designated for transferring small

pieces of data and improves the overall efficiency of

request processing.

When an application requests data, the client libraries

form DataRequest for specified DataItem from

DataSet. DataRequest is passed by SOAP protocol to

DRS Web service (see Fig.3), which loads requested

data and tries to apply specified filters.

Only part of the filters might be applied, because

some of filters may be either absent on server or

inapplicable for particular data types. After filtering

is completed, the server makes filtered data shared

for the client, removes applied filters from

DataRequest, and replaces all dataSource elements

with dataRefs referring to the data or with inline data

(see Fig.4).

DataRequest

DataRequest

Filter

Filter

DataItem

Filtering

(may be

multiple)

DataItem

with dataRefs

Figure 4. DataRequest lifetime.

The final DataRequest is sent back to the client. In

this stage it contains either inline data or dataRefs,

i.e. what and how a client must load, and a list of

unapplied filters (which may be empty). As the data

are downloading to a local computer, remote

dataRefs become local references. After that, the

client-side of the system parses the data and applies

the filters which have been failed at the server. Data

parsing is performed by special data source objects.

The system can use various data source objects for

each pair of a data source type and a type of data,

which shall be loaded. All information that is

necessary for a data loader is contained in dataRef.

We neither introduce a new file transfer technique

nor restrict the choice of the existing one. The data

transfer type is specified in dataRef by the server

depending on its capabilities or any other term (for

example, a security policy). Currently this is a

transfer by FTP that is used, i.e. the server returns an

address of FTP endpoint and a path to the needed

file. One more file transfer possibility is the usage of

WS-Attachments extension. This option is simple and

interoperable, but it requires an extra bandwidth and

may not be applicable due to a security policy on

some systems.

In all suitable cases both the server and the client

make caching of the request’s result to decrease

request handling time. Data request processing

diagram is shown below.

Data Provider
DataItem’s slice

DataRequestData Services

Internet

Typed data object

Typed data object

Data Explorer

Cache Service

Server running

DataSource System

Sending

DataRequest

to DRS
Remote Data

Loader

Data Stream

DataRequest: only dataRefs

Parser

DataRequest:

only local dataRefs

Local Filtering

DR + Typed data object

Working with cache

Working with cache

File Transfer Server

Figure 5. DataRequest performing schema.

Contents of DataRequests, which are generated by

code on listing 3, are shown on listing 4:

<soap:Envelope … >
 <soap:Body>

 <dataRequest

dataSource="…" dataSet="guid" … >
 <filter name="Thinner">
 <parameters> … </parameters>

 <dataItem type="Vector3dArray3d">
 <composite

constructor="CompositeVectorArray">
 <component> <!-- u-values -->
 <dataItem type="ScalarArray3d">
 <dataSource sourceName="u0000.cdf"
sourceType="netCDF" sourceParameters="u" />
 </dataItem>

 </component>

 <component> … </component> <!-- v -->
 <component> … </component> <!-- w -->
 </composite>

 </dataItem>

 </filter>

 </dataRequest>

 </soap:Body>
</soap:Envelope>

Listing 4. DataRequest that is sent to the server.

<soap:Envelope …>
 <soap:Body>

 <dataRequest

dataSource="…" dataSet="guid" …>

.NET Technologies 2006 FULL papers 68 ISBN 80-86943-10-0

 <dataItem type="Vector3dArray2d">
 <dataRef sourceType="binary"

sourceParameters="">

 <ftp url="ftp://..." />
 </dataRef>

 </dataItem>

 </dataRequest>

 </soap:Body>
</soap:Envelope>

Listing 5. DataRequest received from server

4.4. Extensibility of the System
One of our goals is not to design system for handling

CFD-related data, but to create extensible and

adaptable framework for managing scientific data

sets. Our system can be extended by new data types,

new data sources and new filters.

New data type is just a CLR class with no other

requirements. Additional interfaces such as

IScalarArray2d or INonUniformGrid3d whose names

speak for them are implemented when needed. For

each data type special type descriptor can be defined

in configuration file.

Data sources are used for loading data objects from

files or for composing new data objects from existing

ones (example is constructing vector array from few

scalar arrays). Thus, new data source has to be

developed for each new file format or for new

composite data type. Data sources are also listed in

configuration file.

Data filters transform data objects according to

filter’s parameters. New data filters should implement

two main functionalities: filter should be able to

embed itself in XML data request for server

processing and be able to perform actual client side

filtering if it is not supported on server. Filters are

also defined in configuration file.

For each new type of objects CLR class name and

strong assembly name is specified in configuration

file. On system start-up configuration file is

examined. Assemblies are loaded on demand and

objects are tied together in runtime using reflection

and dynamic type information.

The system’s architecture also allows every module

having special code optimizations. For example, a

filter can be optimized for work with a certain data

type (from any module) and vice versa.

5. VISUALIZATION
Atop the data access system described above we

build a visualization system for graphical exploration

and analysis of data. A sample screenshot is shown

below.

Our visualization system is built around the concept

of workspace – a combination of DataSets and

DataViews. It is important to mention that

Workspace contains only references to DataSets, so

Workspace is a very compact data structure that can

be easily transferred from the researcher's

workstation to his or her notebook providing a

familiar work environment at any location. The

structure of DataSet is shown in the left window on

the screenshot. There you can see a list of DataItems

and their parameters.

Figure 6. Visualization system screenshot

DataView is a visual object formed by a pair of a data

object and a visualization algorithm. On the

screenshot you can see one primary DataView (in the

right-top window) and one dependent DataView (in

the right-bottom window).

The primary DataViews take one of DataItems as its

data object. The visualization algorithm can be

chosen by the user from a list of options that is

formed according to a DataItem type. Options could

be sorted additionally according to the problem

description found in metadata (i.e. physical oriented

visualization algorithms will be on top for CFD

problems).

If a DataItem depends on some parameters, the user

is given a choice either to create a DataView for

individual parameter slices or to display the entire

DataItem with extra dimensions added by parameters.

For example, a scalar 2D data field in coordinates

(u,v) dependent on time can be displayed as an

animation of a 2D surface in time or as a 3D scalar

field in coordinated (u,v,t).

The secondary DataViews is created by applying one

of visualization tools to an existing DataView,

primary or secondary. The visualization tool is an

object that can be applied to a specified type of

DataView, has its own visual representation and

results in a new data object. The green plane in the

.NET Technologies 2006 FULL papers 69 ISBN 80-86943-10-0

right-top window is a section tool that extracts 2D

subset from a 3D vector. The section plane can be

moved up or down using control below. On the

screenshot values of the 2D vector field subset are

shown as a 2D marker field.

So, the Workspace can be thought as hierarchy of

DataViews with DataSets as roots. Interacting with

controls changes data in the DataView and this

change is propagated automatically to all dependent

DataViews. Although the data flow paradigm is not

new in the field of scientific visualization [Vis96a]

our visualization system allows graphical

constructions of new visualization tools instantly

from a visual representation of data. We believe that

this will enable scientists to get new insights into data

on the fly.

6. SUMMARY
The scientific data access system presented in this

paper has following advantages:

• It gives an object oriented view to scientific data,

which means that the client can retrieve metadata and

data as strongly typed objects with caching and

filtering.

• It allows creating a single family of data analysis

tools, because almost any set of scientific data can be

represented as a DataSet.

• It provides an indexing and associative search of

data by their attributes and parameters hiding their

physical location.

• It is highly extensible and provides interfaces for

adding new data types, new types of data storage and

new filters. This makes our system applicable to

almost every branch of science.

• It is designed to interact with existing data storage

formats and there is no need to abandon the existing

computational or simulation software.

7. FUTURE WORK
We plan to extent our approach in three ways:

• Implement data management abilities – currently

our system is a data access system with no ability to

modify DataItems or DataSets.

• Extend a set of visualization tools by extending

our visualization software and providing interfaces

for our data access system from the existing powerful

visualization software such as AVS

• Implement in-memory cache on client computer.

Weak references are not suitable for this task because

when amount of data exceed hundreds of megabytes

weak reference became invalid shortly despite that

there are still a lot of free memory.

• Implement server-side software on .NET Platform

with reusing significant part of client-side code for

data filtering and parsing.

• Design and implement second version API using

language integrated queries and features found in

LINQ [Lnq06w].

8. ACKNOWLEGEMENTS
This project was supported by RFBR grant 05-07-

90378, 04-01-00332 and by the Student Laboratory

of Microsoft Technologies at the Moscow State

University.

9. REFERENCES
[Vis96a] William J. Schroeder, Kenneth M. Martin,

William E. Lorensen. The Design and

Implementation of an Object-Oriented Toolkit for 3D

Graphics and Visualization. IEEE Visualization '96

[Sdm05w] Scientific Data Management Center at

Lawrence Berkeley National Laboratory at

http://sdm.lbl.gov/sdmcenter

[Jim05a] Jim Gray; David T. Liu; Maria A. Nieto-

Santisteban; Alexander S. Szalay; Gerd Heber; David

DeWitt. Scientific Data Management in the Coming

Decade. Microsoft Research Technical Report MSR-

TR-2005-10

[Jim01a] Jim Gray; Alexander Szalay; Ani Thakar;

Peter Z. Zunszt; Tanu Malik; Jordan

Raddick.Christopher Stoughton; Jan van den Berg.

The SDSS SkyServer - Public Access to the Sloan

Digital Sky Server Data. Microsoft Research

Technical Report MSR-TR-2001-104

[No01a] J. No, R. Thakur, D. Kaushik, L. Freitag,

and A. Choudhary. "A Scientific Data Management

System for Irregular Applications", in Proc. of the

Eighth International Workshop on Solving Irregular

Problems in Parallel (Irregular 2001), April 2001

[Rea00a] Reagan Moore. Data Management Systems

for Scientific Applications. IFIP Conference

Proceedings; Vol. 188. pp. 273 – 284, 2000.

[Jef02a] K. G. Jeffery, A. Asserson, A. S. Lopatenko,

Comparative Study of Metadata for Scientific

Information: The place of CERIF in CRISs and

Scientific Repositories. Gaining Insight from

Research Information, 6th International Conference

on Current Reseach Information Systems, August 29-

31, 2002 in Kassel, German

[Sds97w] NCSA Scientific Data Server

http://hdf.ncsa.uiuc.edu/horizon/DataServer/

sds_design.html

[Ogs97w] Open Geospatial Consortium

http://www.opengeospatial.org/

[Dap04w] OPeNDAP: Open Source Project for a

Network Data Access Protocol.

http://www.opendap.org

[Fmt06w] Scientific Data Format Information FAQ

 http://fits.cv.nrao.edu/traffic/scidataformats/faq.html

[Lnq06w] The LINQ Project.

http://msdn.microsoft.com/netframework/future/linq/

.NET Technologies 2006 FULL papers 70 ISBN 80-86943-10-0

MC# 2.0: a language for concurrent distributed
programming based on .NET

Yury Serdyuk

Program Systems Institute of
Russian Academy of Sciences

Russia (152020), Pereslavl-
Zalessky

Yury@serdyuk.botik.ru

ABSTRACT

In this paper, we introduce a new version of MC# — a language for .NET-based concurrent distributed
programming. This language is an adaptation of the basic idea of the Polyphonic C# language (Benton N.,
Cardelli L., Fournet C., Microsoft Research Laboratory, Cambridge, UK) for the case of distributed
computations.
We present the background and goals of developing the language and introduce its novel constructs : movable
methods, channels and handlers. We describe the specific features of MC# and formulate differences between its
current and previous versions. Examples of programming in MC# are given: a program for finding prime
numbers by Eratosthenes sieve, and a program named all2all which demonstrates interaction between distributed
processes. In conclusion, we give a brief description of the current implementation along with the list of
applications that have been developed, and identify directions for future work.

Keywords
Concurrent distributed programming, MC#, movable methods, channels, handlers, Runtime-system, .NET.

1. INTRODUCTION
The wide use of computer systems with massive
parallelism, such as multicore processors, clusters
and Grid-architectures, posed again the problem for
developing high-level, powerful and convenient
programming languages that would allow one to
create complex and at the same time reliable software
systems that efficiently use the possibilities of
concurrent distributed computations and are easily
scalable to a given number of processors, nodes or
computers.

Currently available program interfaces and libraries
for organizing parallel computations, such as
OpenMP [OpenMP] (for systems with shared

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
FULL papers conference proceedings
 ISBN 80-86943-06-2
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

memory) and MPI (Message Passing Interface) [MPI]
(for systems with message passing), have been
implemented for C and Fortran languages, and hence
are very low-level and inadequate for modern object-
oriented programming languages like C++, C# and
Java. Additionally, such interfaces rely on the use of
libraries rather than on appropriate programming
language constructs.

In general, a modern high-level programming
language consists of two parts:

1) basic constructs of the language itself, and

2) a collection of specialized libraries accessible
through appropriate APIs (Application
Programming Interfaces).

New demands on increased programmers
productivity (achieved through a higher abstraction
level of language constructs, among other things), as
well as on reliability and security of programs they
develop, account for a tendency to transfer key
concepts of most important APIs into the
corresponding native constructs of programming
languages.

.NET Technologies 2006 FULL papers 71 ISBN 80-86943-10-0

For example, the embedding of asynchronous
methods and chords into Polyphonic C# [BCF04],
which is an extension of the C# language, allows one
to use it without the System.Threading library, which
is normally required to implement multithreaded
applications on top of .NET. On the other hand, the
introduction of new data type constructors (for
streams, anonymous structures, discriminated unions
and others) along with appropriate query definition
tools into Cω language [BMS05] renders obsolete
the ADO.NET data subsystem (specifically, the
traditional System.Data and System.XML libraries
intended to handle relational and semistructured
data).

We suggest that the next step in this direction be to
introduce high-level constructs for creating
concurrent distributed programs into the object-
oriented language, and thus to free the programmer
from the need to use the System.Remoting library
(and, in many cases, also the System.Threading
library), which is required to develop conventional
distributed applications using C#.

From the practical point of view, the goal pursued by
the developers of MC# was to design a language for
industrial concurrent distributed programming which
is going to involve more and more human resources,
with the oncoming age of multicore computations.
This language aims to replace C and Fortran
languages in this area. It allows to create complex
software systems that have satisfactory effectiveness
when executed on parallel architectures. The choice
C# as a basic language gives the possibility of using a
modern object-oriented programming language
equipped with rich libraries (like libraries for Web-
application development, specifically, for dealing
with Web-services, designing graphical applications,
implementing systems with a high degree of security
etc.), and, at the same time, to eliminate such low-
level and unsafe features as C pointers which
dramatically decrease programmer’s productivity and
the reliability of software systems. In this regard, our
approach coincides with that taken in the
development of the X10 language [SJ05], which is
oriented towards “non-uniform cluster computing” .

In MC# language, in contrast to using MPI interface,
there is no need to distribute computational processes
over cluster nodes explicitly (though such possibility
also is provided by the language) – it is enough only
to identify which functions (methods) can be
executed concurrently. Moreover, in MC# language
the new computational processes can be created and
distributed over accessible nodes during program
execution dynamically (X10 language also provides
for that possibility for “activities”), that is impossible
for MPI-programs. Similarly, there is no necessity to

code by hand an object (data) serialization preparing
moving them to remote node or machine — the
Runtime-system performs an object
serialization/deserialization automatically.

In fact, MC# language is an adaptation of the basic
idea of the Polyphonic C# language (more precisely,
of the basic idea of the join calculus [FG02]) for the
case of concurrent distr ibuted computations. As a
matter of fact, the authors of the Polyphonic C#
language presumed that asynchronous methods would
be used either on a single computer or on a set of
machines where they have been fixed and interact
through the remote method call tools provided by the
.NET Remoting library. In the case of MC#, the
execution of an autonomous asynchronous method
can be scheduled on a different machine selected
either of two ways: by explicit indication by the
programmer (which is not a typical case) or
automatically (in this case, usually a cluster node or
machine in the Grid network with the least workload
is selected). Interaction of asynchronous methods that
are executed on different machines is implemented
through message passing using channels and channel
message handlers. In MC#, channels and handlers are
defined using chords in the Polyphonic C# style.

Channel message handlers are a new feature of MC#
2.0 as compared to the previous version of the
language [GS03]. The second significant distinction
consists in a different semantical treatment of
channels and handlers (see the third key feature of
MC# language in Section 2.1 and a forthcoming
paper [S06]).

The paper is organized as follows. Section 2
describes the novel constructs of the MC#
language  movable methods, channels and channel
message handlers. In Section 3, we demonstrate how
MC# constructs can be applied to develop two
concurrent distributed programs — finding prime
numbers by Eratosthenes sieve and all2all program
demonstrating interaction of distributed processes. In
Section 4, we give details about the current MC#
implementation, which consists of a compiler and a
Runtime-system. We provide conclusions and
directions for the future work in Section 6.

2. NOVEL CONSTRUCTS OF MC#:
MOVABLE METHODS, CHANNELS
AND HANDLERS
In any sequential object-oriented language,
conventional methods are synchronous: the caller
always waits until the method called is completed,
and only then continues its work.

The key feature of Polyphonic C# (which, in fact,
became a proper part of the Cω language — and from

.NET Technologies 2006 FULL papers 72 ISBN 80-86943-10-0

now on we will refer only to the latter) is the
introduction of so called “asynchronous” methods in
addition to conventional synchronous methods.
Indeed, such asynchronous methods are intended for
playing two major roles in programs:

1) the role of autonomous methods implementing
the concurrent parts of the basic algorithm and
executed in separate threads, and

2) that of the methods intended for delivering
data (possibly, with preliminary processing of it)
to conventional, synchronous methods.

In the MC# language, these two kinds of methods
form two special syntactic categories of:

1) movable methods and

2) channels

respectively.

In Cω, auxiliary asynchronous methods used for data
delivery are usually declared together with
synchronous methods. In MC#, the latter are
represented as another special syntactic category that
includes channel message handlers (channel
handlers or even handlers for short).

2.1 Movable methods
Writing a parallel program in MC# language reduces
to labeling with the special keyword movable the
methods that may be transferred to other machines for
execution:

modifiers movable method_name (arguments) {

 < method body>

}

In MC#, movable methods are the only way to create
and run the concurrent distributed processes. A
consequence of the mentioned above properties of the
movable methods is that

1) method call completes almost immediately (time is
spent only on transferring the needed data to the
remote machine),

2) movable methods never return a result (for
interaction of movable methods among them and with
other parts of the program, see Section 2.2 “Channels
and handlers”).

Correspondingly, by the rules of correct definition,
movable methods:

- may not have a static modifier, and

- never use a return statement.

The movable method call has two syntactical forms:

1) object_name.method_name (arguments)

- in this case, the Runtime-system selects the
execution location for a given movable method
automatically, and

2) machine_name@object_name.method_name

 (arguments)

- in this case, the execution location is indicated
by the programmer explicitly.

Worth to note is that the objects created during an
MC# program execution are static by their nature:
once created, they don’ t move and remain bound to
the place (machine) where they were created. In
particular, it is on this machine that they are
registered by the Runtime-system, which is necessary
for delivering channel messages to those objects.

The first key feature of MC# language (or, more
precisely, of its semantics) is that, in general, during a
movable method call, all necessary data, namely

1) the object itself to which the given movable
method belongs, and

2) arguments (both objects and scalar values)
for the latter

are only copied (but not moved) to the remote
machine (in nonfunctional mode – see below). As a
consequence, changes made afterwards to the copy
will not affect the original object.

In particular, if a copied object has channels or
handlers, they also are copied to the remote
machine — they become “proxy” tools for the
original objects (see Section 2.2 for details).

There are two modes of parallelizing MC# programs:
“ functional” and “nonfunctional” (or objective), and
the choice will, in the end, affect the efficiency of
program execution. These modes are defined by the
modifiers functional and nonfunctional in the
movable method declaration (the default value is
functional).

In the functional mode, an object for which a
movable method is called, is not transferred to a
remote machine (i.e., all needed data are passed to
the movable method through its arguments).
Conversely, by specifying the nonfunctional
modifier, we force the object to be moved to the
remote machine.

The use of MC# on cluster architectures, which
typically consist of the frontend machine and the
subordinate nodes, is specific in that the names for
both the frontend and the node are to be specified if a
movable method is being called under explicit
indication of execution location:

 machine_name : node_name@o.m (args)

Movable methods in MC# are similar to “activities”
in X10. In the latter, asynchronous activities are

.NET Technologies 2006 FULL papers 73 ISBN 80-86943-10-0

created by a statement async (P) S, where P is a
place expression and S is a statement. In contrast to
MC# language with a “method level” concurrency, it
is possible for multiple activities to be created in-line
in a single method in X10.

2.1 Channels and handlers
Channels and channel message handlers are the tools
to support the interaction of distributed objects.

Syntactically, channels and handlers are declared
using chords in the Cω style. In the following
example, the channel sendInt for transferring single
integers is defined along with the corresponding
handler getInt:

CHandler getInt int () & Channel sendInt (int x)

 { return (x);}

In such declarations, handlers have the following
general format:

modifiers CHandler handler_name

 return_type (args)

We can also declare a channel or a group of channels
without a handler. In this case, we can use values
being received by the channel through the global
variables.

By the rules of correct definition, channels cannot
have a static modifier, and so they are always bound
to some object much in the same way as ordinary
methods:

Figure 1. An object with channel c and

handler h

Thus, we may send an integer x by the channel
sendInt as

 a.sendInt (x),

where a is an object for which the channel sendInt
has been defined.

A handler is used to receive values from its jointly
defined channel (or group of channels). For example,
to receive a value from the channel sendInt we need
to write

 int m = a.getInt ()

If, by the time a handler is called, the channel is
empty (i.e. if there have been no calls to this channel
at all or all of the values sent through this channel

before were selected during previous calls to the
handler), then the call blocks. After receiving a value
from the corresponding channel, the body of the
chord (which may consist of arbitrary computations)
runs and returns the result value to the handler.

Conversely, if a value is sent on a channel when there
are no pending calls to the handler, the value is
simply saved in the internal channel queue, where all
the values coming with multiple sendings to this
channel are accumulated.

It is worth to note that separate methods (handler or
channels) from the chord are typically called from
different threads of which the entire concurrent
distributed program consists.

Similarly to Cω, it is possible to define several
channels in a single chord. This is a major tool for
synchronizing the concurrent processes in MC:

CHandler equals bool () & Channel c1 (int x)

 & Channel c2 (int y) {

 if (x == y) return (true);

 else return (false);

}

Thus, a general rule for chord triggering is the
following: the body of a chord is executed only after
all methods declared in the chord header have been
called.

The above example illustrates the case of a single
handler for multiple channels:

Figure 2. An object with a single handler for

multiple channels

It is also possible to declare a channel shared by
several handlers:

Figure 3. An object with a “ shared” channel

Object

 h

c Object

 h

c1

c2

Object

 h1

 h2

c1

c2

c3

.NET Technologies 2006 FULL papers 74 ISBN 80-86943-10-0

So, once we have the values in both channels c1 and
c2, handler h1 can be triggered. Similar is the case
for channels c2 and c3 and handler h2. In general, all
this together leads to non-determinism in program
behaviour.

The second key feature of MC# language is that
the channels and handlers can be passed as arguments
to the methods (in particular, to the movable
methods) separately from the object to which they
belong (in this sense, they are similar to the pointers
to methods or, in C# terms, to the delegates).

The third key feature of MC# language is that if
channels or handlers were copied to a remote site (by
which we mean a cluster node or a computer in the
Grid-network) autonomously or as part of some
object, then they become proxy objects, or
intermediaries for the original channels and handlers.
And the point here is that this replacement is hidden
from the applied programmer — he can use the
passed channels and handlers (in fact, their proxy
objects) on the remote site as the original ones: as
usual, all actions over the proxy objects are
transferred to the original channels and handlers by
the Runtime-system. In this sense, channels and
handlers are different from ordinary objects:
manipulations over the latter on a remote site are not
transferred to the original objects (see the first key
feature of MC# language).

Fig. 4 and Fig. 5 schematically demonstrate the
passing and use of channels and handlers on a remote
site. The subscripts in the channel and handler names
denote the original site where they were created.

Figure 4. Message sending by remote channel:

(0) copying of the channel to remote site,

(1) message sending by (remote) channel,

(2) message redirection to the original site.

Figure 5. Message reading from remote handler :

(0) copying of the handler to remote site,

(1) message reading from (remote) handler,

 (2) reading redirection to the original site,

(3) message return from the original site,

(4) result message return.

It turns out that these tools are enough to organize
interaction of arbitrary complexity between the
concurrent distributed processes.

In MC#, distributed processes can interchange
arbitrary objects using channels and handlers. In X10,
data interchange between places is realized through
explicit spawning of asynchronous activities. So, if
some thread wants to get a remote value v, it must
create two activities:

 final place origin = here;

 finish async (v) = {

 final int x = v;

 async (origin) y = x;

 }

In contrast to this, MC# Runtime-system hides from
the programmer the spawning of auxiliary threads
during message passing (see the example programs in
the next Section).

3. PROGRAMMING IN MC#
In this Section, we will demonstrate the specific
constructs of MC# language — movable methods,
channels and handlers — and their semantic
properties, on the example of two concurrent
distributed programs.

First, we will build a parallel distributed program for
finding prime numbers by the sieve method (also
known as “Eratosthenes sieve”).

Given a natural number N, we need to enumerate all
primes in the interval from 2 to N.

The sieving method is the following recursive
procedure applied to the original list [2, … , N]:

1) select the head of the given list and output it
to the resulting list of primes;

Site s

 Object a

 hs cs

Site r

(0) (4)

(2) hs (1)

 (3)

Site s

 Object a

 hs cs

Site r

(0) (1)

(2) cs

.NET Technologies 2006 FULL papers 75 ISBN 80-86943-10-0

2) construct a new list by deleting from the
given list all integers that are multiples of
the head of this list;

3) apply the given procedure to the newly
constructed list.

The main computational subroutine, which we called
Sieve and the recursive calls to which will be
distributed over a computer network, has two
arguments: the handler getList to read the given list of
numbers it will search for primes and the channel
sendPrime to write the resulting list of primes. The
end marker in both lists is -1.

An elementary step of unfolding the distributed
computations (which consists of producing the next
unit of the “conveyor” which sieves the integer
stream) is sketched on Fig. 6.

Figure 6. Unfolding step in the distr ibuted sieve
method

The full program text in MC# is given below. The
original integer list [2, … , N] is sent on the channel
Nats and the resulting list of primes is received from
the channel sendPrime by the handler getPrime:

class Eratosthenes {

 public static void Main (str ing[] args) {

 int N = System.ConvertToInt32 (args[0]);

 Eratosthenes E = new Eratosthenes();

 new CSieve().Sieve (E.getNat, E.sendPrime);

 for (int n=2; n <= N; n++)

 E.Nats (n);

 E.Nats (-1);

 while ((int p = E.getPrime()) != -1)

 Console.WriteLine (p);

 }

 CHandler getNat int() & Channel Nats (int n)

 { return (n); }

 CHandler getPrime int() & Channel sendPrime

 (int p) { return (n); }

}

class CSieve {

 movable Sieve (CHandler int() getList,

 Channel (int) sendPrime) {

 int p = getList();

 sendPrime (p);

 if (p != -1) {

 new CSieve().Sieve (hin, sendPrime);

 filter (p, getList, cout);

 }

 }

 CHandler hin int() & Channel cout (int x)

{ return (x); }

 void filter (int p, CHandler int() getList,

 Channel (int) cfiltered) {

 while ((int n = getList()) != -1)

 if (n % p != 0) cfiltered (n);

 cfiltered (-1);

 }

}

The second program, called all2all, demonstrates
how we can provide for interaction inside a set of
distributed processes in accordance with the “all to
all” principle.

Below, each distributed process is an object of the
DistribProcess class. It starts on a remote site
selected by the Runtime-system, by calling the Start
movable method of the mentioned class.

In turn, each distributed process creates BDChannel
(Bidirectional channel) object containing the channel
Send and the handler Receive, on its own site. By
interchanging BDChannel objects, distributed
processes can send or receive messages to and from
one another regardless of their physical location.
BDChannel object interchange is realized through the
main process which is executed on the machine
where the application was started.

Below we present the full program text in MC#
where the number N of distributed processes is given
as the input parameter.

class All2all {

 public static void Main (str ing[] args) {

 int i;

 int N = System.Convert.ToInt32 (args [0]);

Site i

 Sieve

Site i

 Sieve

 filter

Site i + 1

 Sieve

.NET Technologies 2006 FULL papers 76 ISBN 80-86943-10-0

 // N is number of distributed processes

 All2all a2a = new All2all();

 DistribProcess dproc = new DistribProcess();

 // Launch distributed processes

 for (i = 0; I < N; i++)

 dproc.Start (i, a2a.sendBDC, a2a,sendStop);

 // Receive BDChannel objects from processes

 BDChannel[] bdchans = new BDChannel [N];

 for (i = 0; I < N; i++)

 a2a.getBDC (bdchans);

 // Send BDChannel array to each process

 for (i = 0; i < N; i++)

 bdchans [i].Send (bdchans);

 // Receive stop signals from processes

 for (i = 0; i < N; i++)

 a2a.getStop();

 }

 CHandler getBDC void(BDChannel[] bdchans) &

 Channel sendBDC (int i, BDChannel bdc) {

 bdchans [i] = bdc;

 }

 CHandler getStop void() & Channel sendStop() {

 return;

 }

}

class BDChannel {

 CHandler Receive object()

 & Channel Send (object obj) {

 return (obj);

 }

}

class DistribProcess {

 movable Start (int i, Channel (int, BDChannel)

 sendBDC, Channel () sendStop) {

 // i is a process proper number

 int j;

 BDChannel bdc = new BDChannel();

 sendBDC (i, bdc);

 BDChannel[] bdchans =

 (BDChannel[]) bdc.Receive();

 // Send messages to other processes

 for (j = 0; j < bdchans.Size; j++)

 if (j != i)

 bdchans[j].Send (“Message from process “ + i +

 “ to process “ + j);

 // Receive messages from other processes

 for (j = 0; j < bdchans.Size; j++)

 if (j != i)

 Console.WriteLine (“Process “ + i + “ : “ +

 (str ing) bdchans [j].Receive());

 // Send stop signal to the main program

 sendStop();

 }

}

4. IMPLEMENTATION
All described above is the development and
improvement of the ideas from [GS03]. Therein, the
functions of the channel message handlers were
shared by the synchronous methods in the chords and
the special built-in objects, called “bidirectional
channels” . Below, we describe the current
implementation based on bidirectional channels.

The implementation of MC# language consists of

1) a compiler from MC# to C#, and

2) a Runtime-system.

The compiler’s main function is to replace movable
methods calls by queries to the Runtime-system
which schedules (selects a location of) execution for
the methods. Translating the chords is conducted
mainly in the same way as in Polyphonic C#, using
bitmasks to mark the presence of received channel
messages. Once a bitmask is filled up, received
message content is extracted and the chord body
execution starts. In this part of the compiler, the
mechanism of monitors implemented in the .NET
class Monitor is relied on heavily.

The MC# compiler performs two passes: at the first
pass, it gathers information about channels declared
by the chords and at the second pass, it emits C# code
including, in particular, the needed objects and
methods to deal with the channels. Specifically, the
compiler is implemented using the ANTLR parser
generation framework (http://www.antlr.org).

The main components of the Runtime-system are:

1) Resource Manager  a process
implementing (currently, the simplest)
centralized scheduling of resources (mainly,
the cluster nodes) and running on the cluster
frontend, and

2) WorkNode  a process running on each
cluster work node.

.NET Technologies 2006 FULL papers 77 ISBN 80-86943-10-0

Besides, there are mcsboot and mcshalt utilities to
start and terminate the Runtime-system,
correspondingly.

The main purpose of the WorkNode process is to
accept the movable methods scheduled for execution
on the given work node and to run them in separate
threads. Before running, it deserializes the object
associated with a movable method and the method’s
arguments. The WorkNode process has, as a
component part, a Communicator process running in
its own thread. Communicator is responsible for
receiving and delivering the channel messages
intended for objects located on the given node. For
this purpose, all objects having channels (and
handlers) are registered in a special table located on
the node. Thus, a channel message has the following
format to ensure proper message delivery:

< (IP-)address, Communicator port, object number,

 channel name, message content >

The compiler and the Runtime-system run under both
Windows and Linux. For the latter we use the Mono
system (http://www.mono-project.com)  a free
implementation of .NET framework for Unix-like
systems.

By way of experiments, we have written a large series
of parallel programs in MC#, such as calculation of
Mandelbrot set (fractals), 3D rendering, Web search
through the Google Web-service, radar-tracking
signals processing, solving computational molecular
dynamics tasks, etc. Running these tasks on the
cluster, we used up to 96 processors. For all
mentioned applications, we got an easy to read and
compact code and satisfactory results in terms of the
efficiency of parallelizing. The graph on Fig. 8 shows
the relationship between the processing time (in sec.)
for a 40 Mb input file and the number of processors
in the radar-tracking signal processing task. The tests
were conducted on the “SKIF K-1000” cluster (98th
in Top500, November 2004) of the United Institute
of Informatics Problems, National Academy of
Sciences of Belarus.

0,0
5,0

10,0

15,0

20,0

25,0

30,0
35,0

40,0
45,0

50,0

1 2 4 8 12 16 20 24 28 32

Figure 8. Processing time for 40 Mb

radiohologram

5. CONCLUSIONS
This work presents an extension of C# language with
the high-level features for concurrent, distributed
programming based on the asynchronous
programming model of Polyphonic C#. It can be
considered as a general-purpose language for
practical industrial programming, which oriented
towards creating complex parallel software systems
intended to run on cluster architectures.

We built a prototype implementation of MC#
language for Linux cluster and a network of Windows
machines. (The MC# project site is at:
http://u.pereslavl.ru/~vadim/MCSharp)

Our future work will focus on implementing the MC#
language in full accordance with the ideas put
forward in the paper. Along with that, we are going to
develop a more efficient Runtime-system by
implementing a decentralized scheduling of movable
methods calls and providing support for modern fast
interconnects (Infiniband, QsNet II). A version of
MC# programming system for metacluster
computations is under development.

ACKNOWLEDGMENTS
The author wishes to thank Vadim Guzev and Alexei
Molodchenkov for participating in the
implementation of MC# programming system and
applications for it.

REFERENCES
[BCF04] Benton, N., Cardelli L., Fournet C. Modern

Concurrency Abstractions for C#. ACM
Transactions on Programming Languages and
Systems, Vol.26, No.5, 2004, pp. 769-804.

[BMS05] Bierman, G., Meijer, E., Schulte, W. The
essence of data access in Cω. ECOOP 2005,
LNCS 3586, Springer, 2005. pp. 287-311.

[FG02] Fournet, C., Gonthier, G. The join calculus: a
language for distributed mobile programming. In
Proc. Applied Semantics Summer School, 2000.
LNCS, Vol.2395, Springer, pp. 268-332.

[GS03] Guzev, V., Serdyuk, Y. Asynchronous
parallel programming language based on the
Microsoft .NET platform. PaCT-2003, LNCS,
2763, Springer, pp. 236-243.

[S06] Serdyuk, Y. A formal basis for the MC#
programming language (to appear).

 [MPI] Message Passing Interface: http://www-
unix.mcs.anl.gov/mpi/

[OpenMP] OpenMP specifications:
http://www.openmp.org/specs.

[SJ05] Saraswat, V.A., Jagadeesan R. Concurrent
Clustered Programming, CONCUR 2005, LNCS
3653, Springer, 2005, pp.353-367.

.NET Technologies 2006 FULL papers 78 ISBN 80-86943-10-0

	NET_2006_Full_Papers_All_label.pdf
	B19-full.pdf
	B19-full.pdf
	INTRODUCTION
	RELATED WORKS
	AN OBJECT-ORIENTED APPROACH FOR TRANSPARENT COMMUNICATION AN
	Attachment Overview
	The Attachments in PRISMA
	Design of the Attachment Approach for .NET Objects

	Distributed mobile agent case study
	Applying the Attachment Approach to .NET Remoting
	The AttachmentManager class
	Server behaviour
	Client behaviour
	Object mobility

	EVALUATION AND RESULTS
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	B23-full.pdf
	1. Introduction
	1.1 MVE History

	2. Specification
	2.1 Core
	2.2 MVE Front-end
	2.3 Module libraries
	2.4 Advanced pipeline examples
	2.5 Module creation

	3. MVE-2 in Education Process
	3.1 Student Contribution to the Core Development
	3.2 Student Contribution to the Module Library Development

	4. MVE-2 in Research
	5. Future Development Plans
	6. Conclusion
	7. Acknowledgments
	8. REFERENCES

