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Preface 

 
 
This volume contains the proceedings of the 2nd International Workshop on  
.NET Technologies (.NET Technologies 2004) held in Pilsen, Czech Republic,  
May 31 – June 2, 2004. 
 
The purpose of the .NET Technologies workshop series is to bring together 
practitioners and researchers from academia and the industry to discuss the latest 
developments in .NET and advance the state of the art in the research on related 
technologies. Interest in these topics has been continuously growing, as a 
consequence of the importance and the ubiquity of object-oriented technologies. 
 
For .NET Technologies 2004, papers describing theoretical and practical results were 
solicited in the following areas: software engineering, programming languages and 
techniques, parallel and distributed computing, algorithms and data structures, 
educational aspects of .NET, support for .NET on Unix. 
 
Out of 31 regular papers submitted this year, 11 were accepted for presentation at the 
workshop and are included in this volume. The workshop programme also featured 
four talks by invited speakers: Bertrand Meyer (ETH Zurich/Eiffel Software),  
K. Rustan M. Leino (Microsoft Research, Redmond), Harald Haller (sd&m AG), and 
Damien Watkins (Microsoft Research, Cambridge). The panel discussion on The next 
big step in the development of .NET and a session of short talks completed the 
programme. The workshop was accompanied by a two-day intensive .NET course for 
Czech and Slovak participants.  
 
We are very grateful to the Programme Committee members for their tremendous 
work and for establishing a selective workshop programme. We also thank the invited 
speakers for their interesting contribution. We highly appreciated the work of the 
referees. Last but not least, we would like to thank the authors of the submitted 
papers. 
 
Special thanks are due to the publisher of the Journal of Object Technology (JOT, 
http://www.jot.fm) who kindly accepted to publish the extended version of the best 
six papers in a special issue of JOT dedicated to the .NET Technologies 2004 
workshop. 
 
We gratefully acknowledge the financial support provided by Microsoft Research 
Ltd.(U.K.) and Microsoft Czech Republic 
 
 
June 2004        
 

Vaclav Skala 
        Piotr Nienaltowski  
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 Keynote talks 

 

Spec#: Writing and checking contracts in a .NET language 

K. Rustan M. Leino, Microsoft Research, USA 

Abstract 
The use of various forms of contracts, like preconditions, are increasingly receiving more 
attention within Microsoft.  This talk describes the design of Spec#, an experimental superset 
of the language C#, including pre- and postconditions and object invariants.  Spec# gives rise 
to dynamic checks of contracts.  The contracts can also be checked statically using the 
automatic checker Boogie.  The talk also reports on some initial experience and describes 
some difficult issues in the design. 

 
 
 
 

Language interoperability at work: Eiffel on .NET 

Bertrand Meyer, ETH Zurich, Switzerland 
 
Abstract 
Eiffel on .NET takes advantage of the language interoperability mechanisms specified by the 
Common Language Interface to provide the full power of the Eiffel method and language, 
including Design by Contract, multiple inheritance, genericity and seamless support for 
analysis and design, while ensuring full compatibility with components and applications 
rewritten in other CLS-compliant languages. The talk will present the issues that were faced 
during the implementation of Eiffel for .NET and the technical solutions retained; it will 
discuss the benefits of multi-language programming and provide a number of application 
examples. 
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C Omega: C#, Concurrency and Data Access 

Damien Watkins, Microsoft Research, U.K. 

Abstract 
In the last decade, strongly-typed, garbage-collected object-oriented languages have left the 
laboratory and become mainstream industrial tools. This has led to improvements in 
programmer productivity and software reliability, but some common tasks are still harder than 
they should be. Two of the most critical for the development of the next generation of 
loosely-coupled, networked applications and web services are concurrent programming and 
the processing of relational and semi-structured data. C Omega is an experimental language 
designed at Microsoft Research that makes programming with concurrency and external data 
simpler and less error-prone.  

The C Omega approach to both the data and control issues is to extend C# with new, first-
class, types and language constructs, rather than relying on external libraries, mappings and 
tools. The concurrency extensions, based on the join-calculus, provide a simple and powerful 
asynchronous programming model, which is applicable in both the local (multiple threads on 
a single machine) and distributed (asynchronous message over a LAN/WAN) settings. The 
data extensions add new type constructors giving first-class support of both relational 
(database tables) and semi-structured (XML trees) data. Generalized member access allows 
XPath-like processing to be expressed directly within the language, and checked by the 
compiler.  

 

 

How to implement large applications successfully in .NET 

Harald Haller, sd&m AG, Germany 

Abstract 
For Microsoft .NET is the platform of choice for software development. In this talk we 
demonstrate how to design and implement large applications with .NET technology. Based on 
the experience of several .NET  projects we explain design concepts and architecture for 
client-server systems, web applications and web services that were successfully implemented 
in projects. Useful extensions of the development environment Visual Studio.NET for team 
development are explained. Finally we show typical problems during the development and 
their solution as well as proven concepts for the design of standard components such as GUI, 
communication, data access and integration of existing applications. 

 



XMLSpaces.NET: An Extensible Tuplespace as
XML Middleware

Robert Tolksdorf, Franziska Liebsch,Duc Minh Nguyen
Freie Universität Berlin, Inst. für Informatik, AG Netzbasierte Informationssysteme

Takustr. 9, D-14195 Berlin, Germany
research@robert-tolksdorf.de,franziska@adestiny.de,nguyen@inf.fu-berlin.de

ABSTRACT

XMLSpaces.NET implements the Linda concept as a middleware for XML documents on the .NET platform. It introduces
an extended matching flexibility on nested tuples and richer data types for fields, including objects and XML documents. It is
completely XML-based since data, tuples and tuplespaces are seen as trees represented as XML documents. XMLSpaces.NET
is extensible in that it supports a hierarchy of matching relations on tuples and an open set of matching amongst data, documents
and objects.

1 INTRODUCTION

According to [3], middleware for XML-centric applications
can be classified as middleware that supports XML-based
applications – for example, a class library providing an
XML-parser –, as XML-based middleware for applications –
for example, a protocol suite that uses XML-representation
for messages –, or as completely XML-based middleware –
an example is the XML-based XSL language which trans-
forms XML documents.
XMLSpaces ([10, 11]) extends the Linda coordination lan-
guage by establishing a distributed shared space in which
XML documents are stored. A process, object, component
or agent contributing a result to the overall system will emit
it as an XML document to the XMLSpace. Here, it is stored
until some other active entity retrieves it. For retrieval, a
template of a matching XML document is given. The match-
ing relations possible are manifold, currently, XMLQueries,
textual similarity of XML documents and structural similar-
ity wrt. a DTD are supported.
XMLSpaces follows the Linda concept of uncoupled coor-
dination. Producers and consumers of information do not
have to reside at the same location. Also, they do not need to
have overlapping lifetimes in order to communicate and to
synchronize. The producer can well terminate after putting
a document into the space while the consumer does not even

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
.NET Technologies’2004 workshop proceedings,
ISBN 80-903100-4-4Copyright UNION Agency - Science
Press, Plzen, Czech Republic

exist. The consumer can try to retrieve a matching document
while the producer has not started to exist. This uncoupled-
ness in space and time makes the Linda concept attractive
for open distributed systems.
XMLSpaces adds to Linda expressibility by providing a
richer type of exchanged information. While Linda deals
only with tuples composed of a set of primitive data types,
XMLSpaces allows any well-formed XML document in tu-
ple fields. The set of matching relations is not fixed but can
be extended. The distribution and replication schema imple-
mented in XMLSpaces is well-encapsulated and extensible.
XMLSpaces was implemented at TU Berlin on top of Java
using RMI. For the basic tuplespace functionality, it relied
on TSpaces, an IBM implementation of Linda with small
extensions. In addition, it implemented a set of matching
relations and a set of distribution strategies.
Following the above classification, XMLSpaces is middle-
ware that supports XML-applications. In this paper, we de-
scribe an evolution of XMLSpaces, called XMLSpaces.NET
which goes even further and tries to be a self contained
XML-middleware. It consists of two parts. First, the
implementation of an XMLSpaces kernel in C# that in-
cludes the basic coordination mechanisms and the specific
XML support. Second, the implementation of a distributed
XMLSpaces on top of the .NET framework. In this paper
we describe the ideas for a complete XML-representation for
both tuples, subtuples and tuplespaces in XMLSpaces.NET,
its architecture and current implementation on the .NET plat-
form.

2 TUPLESPACES IN XML

A generic middleware has to offer means to exchange data,
documents and objects among distributed applications. See
[3] for a review of the historic distinction between object-
and document-oriented middleware. XMLSpaces.NET pro-
vides an integrated representation of data in standard Linda-
tuples, objects from common programming platforms and



documents in XML representation. The operations – fol-
lowing the Linda coordination language – implemented in
XMLSpaces.NET become more powerful since they can be
applied to all three mentioned kinds of data of interest in a
uniform manner.

2.1 XML-based Tuplespaces

A standard Linda-tuple is a list of fields. Those fields
carry values from or denote some primitive types, usually
from that of a host language. For richer structuring of tu-
ples, XMLSpaces.NET extends that basic notion by allow-
ing nested tuples. An XMLSpaces.NET-tuple thus contains
a sequence of fields or XMLSpaces.NET-tuples and is ac-
tually a tree of a certain “depth” with primitive data or ob-
jects as leaves. Such atupletreeis sufficient to represent
all our tuples, since fields cannot contain references. The
common Linda operations supported by XMLSpaces.NET
always manipulate a complete tuple at a time, so the struc-
ture of an existing tupletree is never changed or manipulated.
As mentioned above, we strive for a middleware that sup-
ports data, documents and objects. A standard Linda-tuple
can be considered as data with fields being primitives from
some simple type-system. Lindas standard matching scheme
can be applied for such tuples. For now, we leave the aspect
of matching nested tuples open.
To support documents, we allow well-formed XML docu-
ments as tuple fields. The aforementioned XMLSpaces al-
ready allowed for tuples that contained XML documents and
offered a set of matching relations to select tuples contain-
ing XML documents as fields, for example by referencing
a DTD to which a document in a field had to comply. Fur-
thermore, a tuple can contain an object from some program-
ming language – Java objects or .NET objects are examples.
Matching on them is object- resp. class-specific.
Our aim is to design an integrated and self contained XML-
middleware. So far, we have talked about tuples, primitive
data, XML documents and objects. For XMLSpaces.NET
we have to find a uniform notion that integrates these. The
natural choice is, of course, to use an XML representation
for the tuples. A tuple (and a nested tuple, too) is a tree with
fields as leaves or nested tuples as subtrees. It is obvious, that
there can be an XML representation for such tuples. XML
documents in fields are trees, since they are wellformed. Fi-
nally, the objects that we want to support can also be consid-
ered as trees, at least there can be some tree - based serializa-
tion of them. It is a reasonable assumption that in a modern
object system, one can generate an XML-based serial repre-
sentation which maps an object into an XML-document.
With that XMLSpaces.NET takes the idea of an XML based
coordination medium a step further, since any tuple in
XMLSpaces.NET is an XML document. We can go on to
apply that principle to tuplespaces.
A tuplespace is a collection of tuples. In the case of multiple
or nested tuplespaces, it is a collection of tuples and spaces.
The tuplespaces are in any case also trees.
For XMLSpaces.NET, we consider a tuplespace as a collec-
tion of XML documents as described. This collection can
be represented, in turn, as another tree similar to the tuple-
tree described. The tuplespace differs from tuples in that it
cannot contain fields as direct descendants of the root node.

So – at least conceptually – XMLSpaces.NET considers the
complete coordination medium as a single XML document
with the first level being the tuplespace (or one or several
levels in the case of multiple or nested spaces) and the further
levels being tuples and nested tuples. The leaves of this one
XML document are the fields which are primitives, XML
documents or XML serializations of objects. This view is
one contribution of XMLSpaces.NET

2.2 Matching in XMLSpaces

Fields in Linda tuples are eitherformals– containing only a
type as in〈?int〉 – or actualscontaining a typed value as in
〈2〉. Tuples that contain formals are considered templates in
Linda.
In XMLSpaces.NET an item used with tuplespace opera-
tions can be classified as a tuple or a template. A tuple
contains only actual fields or tuples as fields, like〈1,2〉 or
〈1,〈2,3〉〉. A template can also contain formal fields or tem-
plates like〈1,?int〉 or 〈1,〈?int〉〉. The set of tuples is a subset
of templates.
We do not introduce the classification as typing in
XMLSpaces.NET, since this would require us to consider
either tuples as subtypes of templates (they are more special
in that they cannot contain formals), or vice versa (templates
are more special in that they can contain formals). Thein
andread operations expect something that is classified as a
template, an out something classified as a tuple. So the item
〈1,2〉 is classified by itsusein an operation as a tuple or a
template.
Matching in XMLSpaces.NET distinguishes actuals and for-
mals as in Linda. Any matching tuple and templates must
have the same length, that is the same number of fields and
subtuples or subtemplates.
We now distinguish two extreme kinds of matching when
considering subtuples. FlatTemplate-matching performs
matching only on the fields of the first level of the tuple-
tree. The content of fields containing primitive data, XML
documents or objects is not even tested for equality or type-
equivalence but only considered as being of the metatype
“tuplefield”. Similar, nested tuples and templates are only
considered as being of the metatype “subtuple/subtemplate”.
It suffices thatsome(sub-)subtuple is present in a field, its
structure and content is not considered further. In contrast
to that,DeepTemplate-matching performs a complete recur-
sive matching of the content of contained subtuples and tem-
plates considering type- and value-equivalence.
We write〈1,2〉D for a template that requires deep matching
and 〈1,2〉F for one with flat matching. A tuple〈1,〈2〉,3〉
will be matched by a template〈1,〈2〉D,3〉D, but not by
〈1,〈0.0〉D,3〉D. Deep matching is intuitively the standard
Linda matching recursively applied to nested tuples. Flat
matching transforms the typing to a metalevel. A flat tem-
plate 〈1,〈2〉F ,3〉F matches both〈1,〈2〉,3〉 and 〈1,〈0.0〉,4〉.
The template is transformed into〈F,T,F〉, where F means
field and T means tuple. Flat and deep matching can be
combined. 〈1,〈2〉F ,3〉D matches〈1,〈2〉,3〉 and 〈1,〈0.0〉,3〉
but not〈1,〈0.0〉,4〉.
Finally, flat matching takes precedence over deep matching.
In a template〈1,〈2〉D,3〉F , the second field will be trans-
formed to the metatype T, overriding the deep matching.



This means that〈1,〈2〉F ,〈3〉D〉F is equal to〈1,〈2〉F ,〈3〉F 〉F .
We therefore make deepmatching the default and require
only the notation for flat matching if necessary. So we
write 〈1,〈2〉F ,3〉D as 〈1,〈2〉F ,3〉 and 〈1,〈2〉F ,〈3〉F 〉F as
〈1,〈2〉,〈3〉〉F .
It turns out that there are further interesting relations be-
tween flat and deep matching. While flat matching ignores
all further characteristics of fields and subtuples,flat/size
matching requires that subtuples must be of the same size
as the one given as template. Size is defined as the sum
of the number of fields and subtuples. We write〈. . .〉FS

for a template that requires this matching. The template
〈1,〈2〉FS ,3〉D matches〈1,〈0.0〉,3〉 but neither〈1,〈2,3〉,3〉
nor 〈1,〈2,〈3〉〉,3〉.
The “metatyping” of fields can also be of interest. We
introduce flat/type matching for that case. Here, subtu-
ples must contain the same number of fields and subtuples.
We write 〈. . .〉FT for that kind of matching. The tem-
plate〈1,〈2〉F ,3〉FT matches〈1,〈2〉,3〉 and〈〈1〉,2,3〉 but not
〈〈1〉,〈2〉,3〉. As a further relation of interest, we introduce
flat/valuematching. Here, subtuples are not considered fur-
ther while fields have to have equal value. We write〈. . .〉FV .
The template〈1,〈2〉F ,3〉FV matches〈1,〈0.0〉,3〉 but neither
〈1,2,3〉 nor 〈0.0,〈2〉,3〉.
The relations mentioned are ordered, sinceD ⇒ FV ⇒
FT ⇒ FS ⇒ F . Further possible relations are currently
under study. The differentiated and extensible view on struc-
tural matching of nested tuples is one of the contributions of
XMLSpaces.NET.
Further matching is possible which combines the relations
above. In the current implementation XMLSpaces.NET also
supports a matching based on the FV and FT relations. It
checks for value- and type-equivalence for fields on the first
level of the tupletree, but only for equal numbers of fields
and subtuples in any subtuples.
Three cases of field matching have to be distinguished for
which different matching relations are defined:
Primitive datacan be matched on type- and value equiva-
lence as in Linda. In addition, we foresee matching relations
like comparisons (〈≥ 5,≤ 3〉).
Objectsare matched on type and object equivalence. Object
equivalence is defined here by equal representation of a nor-
malized serialization. It is implemented by comparing the
respective SOAP serializations of objects.
Type equivalence of objects and its use in matching is an in-
teresting topic and has led to several proposals in tuplespace
research ([2, 8, 9] and others). Objects usually are typed
and classified. In most object oriented systems, there is a
type- and class-hierarchy. With that, two objects can be
in several relations – they can be type compatible if their
interfaces are in a subtype relation or can be specializa-
tions/generalizations if their classes are in a sub-/superclass
relation. The hierarchies mentioned form trees. Again, we
have a deep and a flat matching. A template can reference a
class or a type like〈?AClass〉F . For flat matching, an object
matching such a field has to be an instance of that class or
type like〈aObject〉. Deep matching here means that match-
ing objects are instances of direct or indirect subclasses or
subtypes like〈bObject〉 if BClass is a subclass of AClass or
the interfaces of the objects are in a subtype relation.
XML documentsare matched according to some further

matching relation since we lack a definition of normalized
equivalence of XML documents.
The flexible and extensible matching of values is another
contribution of XML-Spaces.NET.

3 ENGINEERING XMLSPACES

In this section we give an overview of the internal structure
and architecture of XML-Spaces.NET.

3.1 Local operations

As aforementioned, nested tuples have a tree-structure,
therefore it is easy to build a complex nested tuple from the
subtuples (subtrees). Fig. 1(a) shows, that two classes with
appropriate methods and constructors are sufficient to de-
scribe nested tuples.
While nested tuples provide structure to what is put into a
tuplespace, fields contain the specific data. A field should
be capable of storing any type that is valid in a host pro-
gramming language that uses XMLSpaces.NET. In addition
XMLSpaces.NET adds XML-documents as a valid type.

Tuple Field

1 1..*

1

0..*

contains

contains

(a) Tuple and Field

XmlTemplate

FlatTemplate DeepTemplate

XmlTuple

+match(in object) : bool

«interface»
IMatchable

+match(in XmlDocument) : bool

«interface»
IXmlMatchable

1

0..*

1 0..*

«interface»
ITuple

implements co
nt

ai
n

s

1

0..*
contains

(b) Template

Figure 1: Tuples and Templates

After creating tuples and writing them to a tuplespace with
anout, it is necessary to retrieve them. Linda specifies two
retrieval operations, a consuming (in) and a non-consuming
(read) one. To retrieve a tuple from a tuplespace, a template
is defined against which a tuple has to match. If the template
contains only values it acutally is a tuple. As stated in sec-
tion 2, one can see Template as a subclass of Tuple and vice
versa. For an implementation, however, it is necessary to de-
cide which approach to take. We therefore define Template
as a subclass of Tuple, because apart from (actual) fields and
tuples, a template can contain templates and formal fields.
At least three groups of types can be stored in a field: primi-
tive types, objects and XML-documents (see section 2.1). In
our implementation we can join two groups, primitive types
and objects, since they are part of the host programming lan-
guage C#.



The definined matching-relations on the two remaining
groups (types of the host language and XML Documents)
are totally different. Types of the host programming lan-
guage can be checked for their specific type and value, us-
ing the programming language operations. The document
type of a wellformed XML-document is determined by its
structure and its value by the values of the tags, attributes
and contained text. An XML-document itself could have a
structure and contents that is itself as complex as a complete
tuplespace. Matching relations can be defined on different
levels of granulation, i.e. an XML-document’s structure or
even values of a single element or attribute. The most ob-
vious way to define matching relations is by using XPath-
expressions. Although XPath already offers a wide variety
of matching-relations, many more matching-relations can be
imagined, e.g. validation against XML-schema or XQuery.
To keep the creation and maintenance of matching-relations
flexible, we have defined two interfaces, which stand for one
type of matching-relation each.
With nested tuples, there are at least two different ways of
matching (see section 2.2). XMLTemplate is defined as an
abstract class, that contains rules for combination of Tem-
plates, Tuples, Fields and matching-relations. Any subclass
of XMLTemplate can be used interchangeably. By defining
a class that extends XMLTemplate it is possible to extend the
set of templates. As we have observed in Sec. 2.2, there are
many interesting templates for nested tuples that should be
realizable via an easy extension-mechanism. The matching-
algorithm should be able to decide which template to use
at runtime, so new templates are just defined and used in
matching without having to change existing code.

3.2 Remote Operation

Any active entity that emits tuples to or retrieves tuples from
a TupleSpace is considered to be a client. In order to create
and work on a tuplespace, a client needs a TupleSpace ob-
ject. TupleSpace objects serve as references to tuplespaces
on a server. Clients may have many TupleSpace objects, of
course. Apart from the traditional Linda-operations (in, out,
read, eval) a TupleSpace object contains methods to log on
or create tuplespaces and manipulate attributes that affect its
behavior. Examples of such planned attributes are timeouts,
lease-time of objects etc.
The server manages the tuplespaces and the distribution
strategies. It has a collection of TupleBuckets, which rep-
resent tuplespaces. Any TupleSpace object that a client uses
is associated exactly to one TupleBucket. However, many
TupleSpace objects may be associated to the same bucket
and thereby share the same tuplespace.
We plan to support three types of replication (none, full and
partial replication) as described in [10, 11].
In a system where the tuples are not replicated, all servers
manage their own tuplespaces only. If a client writes a tu-
ple to a tuplespace that is on the local server, we have the
non-distributed case and simply write (out) the tuple to the
tuplespace. If the target tuplespace is on a remote server,
a Distributor object forwards the tuple to the server, which
manages that tuplespace. Anin or read is executed on the
local server first and then performed on remote servers, if
the tuple or tuplespace can not be found. This strategy is

easy to implement and consumes little resources compared
to strategies with replication.
The counterpart to that strategy is the full replication strat-
egy. Every tuple is stored locally and on every remote server.
This brings about a lot of communication and organiza-
tion overhead among the servers, as with every operation
all servers have to be notified and their tuplespaces must be
changed according to the source server. This strategy offers a
high failsafety. The disadvantages, however, are potentially
heavy network traffic and a high consumption of resources.
Between these two extremes is the partial replication strat-
egy in order to gain the advantages of both. In a system per-
forming partial replication all servers are regarded as nodes
in a rectangular grid. The grid is partitioned into horizon-
tal and vertical stripes, assigning each node to exactly one
intersection of stripes. Each horizontal stripe is defined as
an in-set and each vertical stripe is defined as anout-set.
Tuplespaces of nodes inin-setsmust be disjunct, whereas
tuplespaces of nodes inout-setsare exact copies.
This structure limits all operations to only a subset of
servers. Allin operations are performed on onein subset
of servers. The advantage forout operations is that they are
performed on one out-set only. If a tuple is consumed or
added, only the nodes in thatout-setneed to be updated.
However, the number of participating servers should be dy-
namic. This does not affect the non-replication and the full
replication strategy, but for the partial replication strategy it
is impossible to guarantee a rectangular grid of nodes. To
solve this problem simulated nodes were introduced. When-
ever the number of nodes is not sufficient to form a rectan-
gular grid, i.e. when new servers want to participate in or
leave the distributed tuplespace, the neighbour in thein-set
of such a “hole” in the grid simulates its presence. As they
are members of the samein-setthey have the same contents.
In addition to these issues, a distributed system performing
any kind of replication must guarantee the integrity of its
data. Therefore all distributed operations must follow a com-
munication and operation protocol to lock and release tuples
and thereby guarantee data integrity.

4 IMPLEMENTATION

We use Microsoft’s .NET Framework to implement
XMLSpaces.NET. It already features functionality we need
to implement the Linda-System and the extensions. Lan-
guages like VB.NET, C++.NET, Python.NET were extended
to work with the .NET Framework. We choose C# as the host
language, as it is specially developed for the .NET Frame-
work. All languages, however, compile to the Microsoft In-
termediate Language (MSIL) and there should be no signif-
icant difference in terms of performance.
After XMLSpaces.NET is released, clients can be written
in any host language of the .NET Framework, as they are
capable of accessing the same assemblies.

4.1 Tuples

Tuples use the built-in .NET typeSystem.Xml.XmlDocument
to represent their contents.System.Xml.XmlDocumentis an
implementation of the W3C’s DOM and DOM2. It is there-
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fore an in-memory representation of an XML-Document
with methods for manipulation. In order to store data into
XML, we need a serialization pattern. Pattern in this con-
text means the XML-structure that represents the types. The
.NET Framework has a uniform type-system for all host
languages, called Common Type System (CTS). Types are
namedSystem.*, where * is any of the types defined in
.NET. Depending on the host language, the available types
may vary. For example, C# does not support pointers so
the Pointer- Types are not available in C# but they exist in
C++.NET. XMLSpaces.NET is capable of handling all pos-
sible types, as the type-information is extracted during run-
time and stored in the XML-document. On the other hand
only clients that know of those specific types (written in a
host language in which those types are available) will need
to retrieve tuples with such fields.
For these primitive types a serialization is found easily, as
we only need a string that represents the value. How-
ever, a string representing the value is ambiguous, since
”1” might be System.Int16, System.Int32, System.Int64, Sys-
tem.Charor a System.String. We therefore need to store
the value’s type in order to deserialize it correctly. The
serialization for primitive datatypes is therefore:<Field
type=”System.*”>VALUESTRING</Field>.
Objects, in this context are instances of classes, arrays or
structs (container for structured data in C#). They are se-
rialized differently, of course. We could useReflectionto
do the serialization to XML manually, but the .NET Frame-
work already features functionality that serializes an ob-
ject into a SOAP-document ([12]). Any other XML seri-
alization of objects can be used instead, of course. The
serialization for primitive datatypes is therefore:<Field
type=”Soap”>SOAPDOCUMENT</Field>. It is possible
to serialize primitive datatypes into SOAP-documents as
well, but we have chosen to serialize into the indtroduced
form, because the resulting SOAP-document would be much
larger and thus takes more time for matching operations and
occupies more memory.
XML-Documents do not need to be serial-
ized, as they can already be represented as
strings. The third serialization pattern is<Field
type=”XmlDocument”>XMLDOCUMENT</Field>.

4.2 Templates

As we have stated in section 3.1, we choose Template to
extend Tuple with functionality for matching. It is obvi-
ous that we only need to make small modifications. Apart
from Tuples a Template may contain other Templates and a
field can be substituted by a matching-relation. We imple-
ment two interfaces, which form the basis for the extensi-
bility of XMLSpaces.NET. Their serialization is as follows:
<Field type=”IMatchable”>SOAPDOCUMENT</Field>
and<Field type=”IXMLMatchable”>SOAPDOCUMENT
</Field>.
We can determine if an object is an instance of a class that
implements one of those interfaces. Thereby we differentiate
two more types that are serialized in Templates,IMatchable
and IXMLMatchable. The SOAP-Formatter of the .NET
Framework serializes those objects, which produces well-
formed XML-documents.
Only in a template, instances of classes with these inter-
faces have to be handled separately, as they are needed to
perform the matching. In a Tuple templates and those ob-
jects would be treated like any other object, allowing even
instances of matching-relations and templates to be stored in
the tuplespace and be exchanged among clients.
So far only matching-relations where investigated. How-
ever, we need an extensibility-mechanism for templates,
too. It is necessary to store the type of the tem-
plate in the XML-representation. Any object in C#
has a fully qualified name as its type description, e.g.
XMLSpaces.Templates.DeepTemplate. We extend the XML-
representation of a tuple to contain XML-elements, where
the type attribute stores the fully qualified name of the tem-
plate. On one hand the resulting XML-document contains all
information that is needed for matching and keeps the core
implementation independent from any modifications. On the
other hand, there is no limitation to the number of templates.

4.3 Extending Matching Relations

In C# any class or primitive data type is a sub-class ofob-
ject. We therefore define an interfaceIMatchablewith a sin-
gle methodbool matches(object o). Any matching operation



on objects, i.e. primitive data types and instances of objects,
can be defined using this interface. This concept is much
more powerful than the Linda matching, which is either a
type-match, or an exact match of value. Our approach al-
lows the definition of finer relations. A string for example,
can be matched in many different ways. A few examples
are to match the string exactly, by ignoring the case of the
letters, by matching on a substring or its conformity to a reg-
ular expression. Depending on the use of XMLSpaces.NET,
different matching-relations may be preferred.
XML-documents can be matched in a wide variety of ways.
There are existing standards such as XPath, XPointer, XSLT
and drafts for future standards like XPath2 and XQuery.
It is essential that the set of matching relations for XML-
documents is at least as extensible as the set for objects
and primitive types. We define the interfaceIXMLMatch-
able for that purpose. It contains a single methodbool
matches(XmlDocument doc). Any matching-relation for
XML Documents that is not part of the basic set released
with XMLSpaces.NET can be defined by implementing this
interface. If future development of the .NET Framework in-
tegrates, for example, XQuery (which it currently does not),
or an API to an existing XQuery system is available, it will
be easy to extend the matching-relations of the basic system
with that matching relation.

4.4 Matching

A tuplespace consists of a collection of tuples. Following
our concept, a tuplespace is a special form of a nested tu-
ple. It contains only tuples and no fields on the first level.
Again, we can represent the whole tuplespace as an XML-
document. From a higher level a tuplespace can be consid-
ered as a tuple of an other tuplespace. This makes it possible
to store whole tuplespaces in another and retrieve it at a later
time as if it were a tuple.
Matching in XMLSpaces.NET (as in Linda) occurs only on
in and read operations. All arguments passed to them are
regarded as templates. Even if a tuple is passed to these
methods, a DeepTemplate is wrapped around it to perform an
actualmatch. As a tuplespace is an XML-document, we can
use XPath, which is implemented in the .NET Framework,
to perform a preselection (number of fields and subtuples)
of potentially matching tuples. The server then checks if a
tuple of that preselected set matches on a given template.
A client requests a tuple by callingin or read on the Tu-
pleSpace object. The call is delegated to the server, which
does the preselection on the TupleBucket and performs the
match on the collection of potential matches. The first
matching tuple is returned to the TupleSpace object and
deleted from the TupleBucket. The other tuples are left un-
touched. The TupleSpace returns either the retrieved tuple
to the client, or a null-reference.
The template determines to which depth (DeepTemplate,
FlatTemplate, etc.) a tuple is checked and how exact the
Fields of the tuple are examined. As stated in Sec. 2.2 there
are many interesting types of templates that match a tuple on
a very high level (FlatTemplate), where only the metatypes
of fields and subtuples are checked, or on a very low level
(DeepTemplate), where a template has to match exactly on
the tuple. The matching-algorithm traverses the DOM-tree

of the XML-document and compares the nodes. Depend-
ing on the template the fields and depth are checked dif-
ferently, so the algorithm has to determine whether there
are any nested templates and switch to the algorithm of the
nested template.
Whenever an IMatchable or IXMLMatchable object is found
in a template, it is deserialized and thematches()method
is called with the required parameter, i.e.System.objectfor
IMatchableandSystem.Xml.XmlDocumentfor IXMLMatch-
able. If any field does not match or any IMatchable or
IXMLMatchable object returns false, the algorithm termi-
nates.
Every match operation performs following actions: a) pre-
select a set of matching tuples on the bucket based on their
number of fields and subtuples, b) perform the match method
of the template on each tuple in the set of potential matches.
Using the number of fields and tuples we can also decide
early whether to continue matching on deeper levels of an
XML-document or not. This information limits the matching
times on nested tuples as the number of fields and tuples can
be checked on any subtupletree.

4.5 Distribution

The .NET’sRemoting Frameworkis used to implement the
client-server architecture. Using a directory service, such as
Microsoft’s Active Directory[5] or OpenLDAP[7], allows
a dynamic configuration of the participating servers and the
replication mode, i.e. switching the replication mode of all
servers during runtime.
However, on a campus networkActive Directoryis not al-
ways flexible enough, as theschemaof the directory has
to be modified to meet the needs of XMLSpaces.NET. The
schema change might require administrative rights not avail-
able to an end-user. OpenLDAP is an alternative in this case.
We decided to stay as independent as possible of those tech-
nical problems and have implemented an extra class to main-
tain the server list.
The distributed system differs from the non-distributed one
in the use of the buckets. While in a non-distributed sys-
tem the server directly calls methods on its local buckets, a
distributor object manages the calls to the local buckets and
the remote buckets. The implementation of the distributed
system profits from the XML structure of the TupleBucket.
If each tuple is assigned a unique identifier pointing to its
source location, a TupleBucket is able to group those tuples
in an XML subtree associated to that remote source. This
is beneficial for the implementation of the replication as it
is easy to sort out tuples of different servers, since all tuples
with the same source server are under the same subtree. For
an out operation the Distributor inspects all servers in the
server list for their replication mode, adds the identifier to
the tuple and sends it to appropiate target servers, depending
on the replication strategy, where they are stored to a Tuple-
Bucket’s subtree according to its identifier.
For anin operation the identifier is ignored and the search
includes all tuples in the tuplespace. The removal of a match
is easy, as the tuple’s identifier points to the correct subtree
in each TupleBucket, in which the tuple can be found and
therefore speeds up the operation. The XPath API allows a
fast search on the XML structure of the TupleBucket using



the tuple’s identifier.
In case the replication mode changes, or a server deregisters
from the server list, the whole contents of the server’s tu-
plespace can be easily removed by deleting the subtree rep-
resenting that server’s replicated tuplespace. If the replica-
tion starts up, the contents of a TupleBucket can be added as
a subtree to a remote server’s TupleBucket.
For locking a tuple we add a boolean attribute “locked” to
the tuple’s XML root element. If an operation is being
performed on the tuple the attribute has to be set to “true”
and else “false”. The .NET Framework’s native support for
XPath queries and the DOM2 make this approach easy.

5 PERFORMANCE

We ran several performance tests on our system, a 2.40 GHz
Pentium 4 with 512MB RAM running Microsoft Windows
XP Pro and the Microsoft .NET Framework 1.1. As there
are many dependencies in the XMLSpaces.NET system, we
decided to explore the performance along the following di-
mensions: 1) type of tuple, i.e. tuples containing primitive
data types, objects, or XML documents 2) number of tuples
in the tuple-bucket 3) number of potentially matching tuples
in the bucket, i.e. tuples that have equal tuplecount and field-
count as the template or tuple we want to match against
For the implementation of the performance test we designed
some reference tuples, which contained 5 fields with primi-
tive data or 5 fields with an object each or 5 fields with an
XML document each.
The tests were ran on buckets of size 500, 1000 and 2000. At
the beginning of each test the corresponding number of tu-
ples is randomly generated to fill the bucket. The randomly
generated tuples built from template fields to make sure they
have a determinable form. The tuples only vary in the num-
ber of fields and their depth. At this point we assumed two
different probabilites on matching tuples: In one experiment,
we assumed that 25% of the tuples in the bucket are potential
matches, in the other, we assumed 50% of potential matches.
No templates were used to retrieve tuples, as we intended to
measure the time taken for an exact match of tuples. Ow-
ing to the recursive matching algorithm any match against a
template (using matching relations) is usually faster since a
template match only compares a fragment of information an
exact match does.
Using this testbed we had the system play “ping pong” for
each of the above defined type of tuples and got the results
shown in Figure 3. Two clients play “ping pong” when each
has a tuple the other is waiting for, i.e. one client writes
its tuple to the tuplespace and waits for the tuple of the
other client. The other client starts by waiting for the tu-
ple and writes its own tuple only after having received the
other client’s tuple etc.
The observations can be explained easily. A match took
longer the more potential matches were in the bucket, as the
algorithm tries to match against any of the potentially match-
ing tuples. In the worst case it is the last tuple (or none) that
matches the template-tuple.
Apart from the number of potential matches the time elapsed
for a match depends upon its type. As explained earlier the
serialization pattern for primitive types is relatively compact

and, except the type “string”, cannot be very long. It is
therefore easy to see that this type of matching is the fastest.
As objects are serialized to SOAP-format XML documents
they should be matched in approximately the same time as
equally large XML documents. However, all objects that are
represented in the SOAP - format have a large root element
in common, which identifies the SOAP version and Common
Language Runtime (CLR) the system is running on. If many
potentially matching tuples with objects are in the bucket the
overhead for comparing that root element is relatively high.
One possible optimization is to skip the header and compare
only the body of the SOAP envelope. The consequenc is,
however, that objects of systems running different CLR are
identified as the same object, even though they represent dif-
ferent ones.
The XML representation gives us some advantages. Us-
ing the attributestuplecountandfieldcountwe can make a
preselection with XPath. As in our two test scenarios there
are 50% or 25% of potentially matching tuples in the tuple
bucket, the preselection speeds the matching algorithm up
by the maximum factor of two or four.
Currently the matching algorithm is very simple and com-
pares each node in the XML representation of the tuple to
the template or the template-tuple. Performance improve-
ment might be achieved if the matching algorithm was to ap-
ply the preselection to each subnode. Additionally one can
think of an extended preselection that uses the value of the
current node. The result could be an even smaller range of
potentially matching tuples and a faster matching algorithm.
Of course the performance improvement that is possible de-
pends heavily on the implementation of the XPath API. With
an efficient implementation, though, one can still expect fur-
ther improvements.

6 RELATED WORK

There are several projects documented on extending Linda-
like systems with XML documents. However, XMLSpaces
seems to be unique in its support for multiple matching rela-
tions and its extensibility.
MARS-X [1] is an implementation of an extended JavaS-
paces [4] interface. Tuples are represented as Java-objects
where instance variables correspond to tuple fields. Such
an tuple-object can be externally represented as an element
within an XML document. Its representation has to validate
towards a tuple-specific DTD. MARS-X closely relates tu-
ples and Java objects and does not look at arbitrary relations
amongst XML documents.
XSet [14] is an XML database which also incorporates a
special matching relation amongst XML documents. Here,
queries are XML documents themselves and match any other
XML document whose tag structure is a strict superset of
that of the query. It should be simple to extend XMLSpaces
with this engine.
[6] describes a preversion for an “XML-Spaces”. However,
it provides merely an XML based encoding of tuples and
Linda-operations with no significant extension. Apparently,
the proposed project was never finished.
TSpaces has some XML support built in [13]. Here, tu-
ple fields can contain XML documents which are DOM-



25 % potential matches

11
,9

6

24
,9

0

36
,5

0

93
8,

4
4

21
48

,0
6

45
23

,6
0

25
7,

0
9

27
7,

3
3

30
8,

7
8

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

4000,00

4500,00

5000,00

pr
im

itiv
e 

50
0

pr
im

itiv
e 

10
00

pr
im

itiv
e 

20
00

ob
ject 

500

ob
ject 

100
0

ob
ject 

200
0

xm
ldo

c 5
00

xm
ldo

c 1
00

0

xm
ldo

c 2
00

0

m
s

(a) 25% potential matches

50% potential matches

13
,5

3

25
,4

7

53
,5

6

21
64

,5
6

43
09

,7
2

90
20

,2
8

27
3,

9
0

28
6,

1
3

32
2,

3
0

0,00

1000,00

2000,00

3000,00

4000,00

5000,00

6000,00

7000,00

8000,00

9000,00

10000,00

pr
im

itiv
e 

50
0

pr
im

itiv
e 

10
00

pr
im

itiv
e 

20
00

ob
ject 

500

ob
ject 

100
0

ob
ject 

200
0

xm
ldo

c 5
00

xm
ldo

c 1
00

0

xm
ldo

c 2
00

0

m
s

(b) 50% potential matches

Figure 3: Performance

objects generated from strings. Thescan-operation provided
by TSpaces can take an XQL query and returns all tuples
that contain a field with an XML document in which one or
more nodes match the XQL query. This ignores the field
structure and does not follow the original Linda definition of
the matching relation. Also, there is no flexibility for further
relations on XML documents.

7 SUMMARY AND OUTLOOK

With the XMLSpaces.NET conception we have developed a
very extensible XML-based middleware. The further work
is on finalizing the set of supported matching relations. The
challenge here is to find a set of practically useful relations
amongst the wide variety of possible combinations. Also,
comparisons like〈≥ 5,≤ 3〉 have to be carefully limited not
to deadlock the selection of matches.
As mentioned in the beginning, the XMLSpaces.NET
project consists of two parts. The XMLSpaces.NET kernel
in C# and the distribution of the kernel itself by applying
mechanisms like replication etc. Part of the research on dis-
tribution will be to explore possibilities to support detach-
ment of parts of a tuplespace for transportation and manipu-
lation by mobile devices.
Furthermore, we will explore to what extend we can easily
incorporated further functionalities like secure spaces by the
adoption of the respective XML technologies. We hope that
such extensions are quite seamless.
In conclusion, XMLSpaces.NET is a flexible XML-based
middleware founded on the tuplespace principles. The main
contributions are the integrated view on data, documents and
objects, the support for structural matching, the extensibility
and flexibility of match mechanisms and consequent usage
of XML technologies.
Acknowledgment XMLSpaces.NET is funded under con-
tract 2003-144 by Microsoft Research Cambridge.

REFERENCES

[1] G. Cabri, L. Leonardi, and F. Zambonelli. XML Dataspaces
for Mobile Agent Coordination. In15th ACM Symposium on
Applied Computing, pages 181–188. ACM Press, 2000.

[2] C. J. Callsen, I. Cheng, and P. L. Hagen. The auc c++ linda
system. In G. Wilson, editor,Linda-Like Systems and Their
Implementation, pages 39–73. Edinburgh Parallel Computing
Centre, 1991. Technical Report 91-13.

[3] P. Ciancarini, R. Tolksdorf, and F. Zambonelli. Coordination
Middleware for XML-centric Applications.Knowledge Engi-
neering Review, 17(4), 2003.

[4] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces principles,
patterns, and practice. Addison-Wesley, Reading, MA, USA,
1999.

[5] Mircosoft. Active Directory, 2004. http://www.microsoft.
com/windows2000/technologies/directory/ad/defau% lt.asp.

[6] D. Moffat. XML-Tuples and XML-Spaces, V0.7.
http://uncled.oit.unc.edu/XML/XMLSpaces.html, last seen
May 6, 2002, Mar 1999.

[7] OpenLDAP Community. Openldap. Website, 2004.
http://www.openldap.org.

[8] A. Polze. The object space approach: decoupled communica-
tion in c++. In Proceedings of TOOLS USA’93, pages 195–
204, 1993.

[9] R. Tolksdorf. Laura: A coordination language for open dis-
tributed systems. InProceedings of the 13th IEEE Interna-
tional Conference on Distributed Computing Systems ICDCS
93, pages 39–46, 1993.

[10] R. Tolksdorf and D. Glaubitz. Coordinating Web-based Sys-
tems with Documents in XMLSpaces. InProceedings of the
Sixth IFCIS International Conference on Cooperative Infor-
mation Systems (CoopIS 2001), number LNCS 2172, pages
356–370. Springer Verlag, 2001.

[11] R. Tolksdorf and D. Glaubitz. XMLSpaces for Coordination in
Web-based Systems. InProceedings of the Tenth IEEE Inter-
national Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises WET ICE 2001. IEEE Computer
Society, Press, 2001.

[12] World Wide Web Consortium. Simple Object Access Pro-
tocol (SOAP) 1.1. W3C note for public discussion, 2000.
http://www.w3.org/TR/SOAP/.

[13] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. T Spaces.
IBM Systems Journal, 37(3):454–474, 1998.

[14] B. Y. Zhao and A. Joseph. The XSet XML Search En-
gine and XBench XML Query Benchmark. Technical Re-
port UCB/CSD-00-1112, Computer Science Division (EECS),
University of California, Berkeley, 2000. September.



Design and implementation of a FIPA compliant 
Agent Platform in .NET 

 
Miguel Contreras  Ernesto Germán  Manuel Chi     Leonid Sheremetov 

Instituto Mexicano del Petróleo 
Eje Central Lázaro Cárdenas #152 

Col. San Bartolo Atepehuacán. 
 México, D.F. 07730, México 

mcontrer{egerman, machi, sher}@imp.mx 
 

ABSTRACT 
The aim of this paper is to describe the design and implementation of an agent platform called CAPNET 
(Component Agent Platform based on .NET) that is fully compliant with the specifications of the Foundation for 
Intelligent Physical Agents (FIPA) and implemented as 100% managed code in the .NET framework.  

Keywords 
Distributed Computing, Multi-Agent Systems , FIPA, Agent Platform, .NET Framework. 

 

1. INTRODUCTION 
Agent-based computing has the potential to 
significantly improve the theory and the practice of 
modeling, designing, and implementing complex 
distributed computer systems [Jen00, Woo99]. 
Autonomous agents are entities that can complete 
their objectives while situated in a dynamic and 
uncertain environment, that can engage in rich, high-
level social interactions, and that can operate within 
flexible organizational structures and systems. 

Agent-based software should be robust, scalable and 
secure. To achieve this, the development of open, 
stable, scalable and reliable architectures that allow 
compliant agents to discover each other, 
communicate and offer services to one another is 
required. These architectures go beyond the 
capabilities of the typical distributed object oriented 
programming techniques and tools. The FIPA's 
Agent Platform (AP) reference model seems to be an 
effective approach to address this problem [Fip00].  

An AP is a software architecture that controls and 
manages an agent community allowing the survival 

and mobility of an agent in a distributed and 
heterogeneous environment. 

In the last few years, several APs have been 
developed, and special attention has been paid to 
interoperability and compatibility issues. In this 
sense, the FIPA reference model has emerged as a 
standard for interoperability sustaining the 
development of APs. Most of the FIPA compliant 
APs were developed in Java language, such as JADE 
[Jad00], FIPA-OS [Nor99] and Zeus [Zeu00] just to 
mention a few of them. One exception to this trend 
was the original CAP [She01] agent platform 
implemented using Microsoft DCOM and ActiveX 
technology. The purpose of CAP was to enable the 
construction and operation of multi-agent systems 
(MAS) using Windows programming languages and 
platform. 

Our recent work has lead to the development of a 
completely new AP, named CAPNET under the 
novel Microsoft .NET Framework and Compact 
Framework in 100% managed code written entirely 
in the C# language. This new agent platform uses a 
great number of the technologies available in .NET 
and the windows platform, such as Web Services 
(WS), remoting, asynchronous callbacks, delegates, 
XML, database connectivity, performance counters, 
event log, Winforms, Windows Services and network 
access, among others.  

The main objective of CAPNET is to bring an 
integrated infrastructure that covers the 
programming, deployment, administration and 
integration with legacy applications of MAS (Fig. 1). 
It consists of a run-time environment that supports 
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MAS deployment, development environment in the 
form of agent templates, programming tools and a 
component gallery and some connectors to enable the 
integration with enterprise applications. The run-time 
environment is described in this paper focused on the 
design and technical details of its implementation on 
the .NET Framework. 

 

 

Figure 1. MAS development and deployment in 
CAPNET 

This paper is structured as follows: in section 2, basic 
concepts of agents and multi-agent systems are 
presented along with a short description of the FIPA 
specifications. In section 3, the CAPNET 
architecture is defined. In section 4, the most 
important implementation details are addressed and 
technically described. Finally, the main features and 
advantages of this work are discussed, along with 
some future work. 

2. AUTONOMOUS AGENTS  
An agent is a computational entity that interacts with 
one or more software counterparts or real-world 
systems [Fra96]. Unlike traditional computer 
programs, agents exhibit the following capabilities to 
various degrees: autonomy, reactiveness, proactive-
ness, mobility, intelligent behavior and social 
abilities. 

The autonomy and pro-activeness features of an 
agent allow it to plan and perform tasks defined to 
accomplish the design objectives. The social abilities 
enable an agent to interact in MAS and cooperate or 
compete to fulfill its goals. An agent may be static or 
mobile. In the latter case it is able to migrate along 
with its associated data, state, and logic to another 
host to interact with local resources and other agents 
to perform a given task. 

The open nature of the MAS is provided by the agent 
organization, similar to that of distributed 

enterprises, and supported in the agent platform’s 
tools, which are responsible to provide flexibility 
both in component aggregation and interaction 
between them [She03]. The AP reference model of 
the FIPA provides the framework of normative work, 
inside which the agents exist and operate; it also 
establishes the logical and temporal contexts for the 
creation, operation and destruction of agents [Fip00]. 
The reference model considers an AP as a set of four 
components: Agents, Directory Facilitator (DF), 
Agent Management System (AMS), and Message 
Transport System (MTS). The DF and AMS are 
special types of agents that support the management 
of other agents, while the MTS provides a message 
delivery service (fig. 2).  

 
Figure 2. Agent Management Reference Model 

[Fip00]. 

The functionality of the main components of the 
FIPA spec are: the AMS provides white-page and 
life-cycle service, maintaining a directory of agent 
identifiers (AID) and agent state. The DF is the agent 
who provides the default yellow page service. The 
MTS is the software component controlling all the 
message exchange within the platform, including 
messages to/from remote platforms. 

The agents are the main parts of a platform. An agent 
encapsulates one or more services inside a unified 
and integrated execution model. FIPA maintains an 
open concept of what an agent is, to be able to 
include a great number of agent applications, and not 
limit the form in which they are implemented. The 
Software refers to all those systems that do not have 
characteristics of agents but that are used by agents 
to fulfill their tasks. Here, domain specific systems, 
as well as the Application Programming Interfaces 
(API) for handling communication protocols, 
databases, security algorithms, etc. are included. 

3. CAPNET ARCHITECTURE 
The main objectives of CAPNET design are to 
construct a platform that enables developers to easily 



create and integrate distributed agent applications in 
a consistent and scalable way. The Platform should 
be able to interoperate with applications developed in 
other APs as well. 

The architecture of CAPNET is shown in fig. 3. In 
this architecture four main parts are shown: i) 
application agents, ii) agent management and 
directory facilitator services, iii) built-in security 
services, and iv) message transport system and 
connectivity techniques. The message transport 
mechanisms are the core of the platform, supporting 
a wide variety of transport types. Among the 
considered transport managers are all those required 
to ensure platform interoperability with other widely 
available APs such as those mentioned in section 1. 

 

Figure 3. CAPNET architecture 

The services of transport, delivery and reception of 
messages represent a central point within the 
CAPNET platform. In CAPNET, an agent 
communicates with others using a service provided 
by the MTS. This level of abstraction allows 
developers of multi-agent systems to design them 
based on schemes of loosely coupled messaging 
systems between components. With this type of 
asynchronous messaging the communication can be 
seen as a distributed messaging system similar to a 
Message Oriented Middleware (MOM) [Ber96] or 
publish/subscribe architectures [Pal03].  

To assure MTS reliability, some additional 
mechanisms are implemented. When an agent sends 
a message, it knows if the MTS has delivered it to 
the destination agents or not. If some adressee could 
not be contacted then the emitting agent receives a 
notification indicating that the message could not be 
delivered. It is the responsibility of the emitting agent 
to maintain its state or to block its execution while it 
waits for the answer. 

Two cases for message delivery exist. The first one 
takes place when the addressee agent is accessible 
through the same MTS and the internal mechanism 
of the MTS is used. In the second case, the message 
addressee is registered in other MTS. In this case, a 
component called Message Transport Adapter 
(MTA) has been implemented to determine the type 
of message transport that is needed to complete the 
operation and to use the appropriate technological 
infrastructure for it. The MTA uses the services of 
Message Transport Protocol Factory (MTPF) to 
instantiate the component that really implements the 
access to the physical transport. This component in 
our architecture is called Transport Manager (TM).   

If a new transport mechanism is required, a new TM 
component has to be created implementing the 
standard interface known by the MTPF and the 
MTA. If that interface is implemented, the 
interaction with the MTPF is assured and the 
particular implementation of the transport mechanism 
is completely open to the developer, and can include 
any form of communication both synchronous and 
asynchronous, such as raw sockets, MSMQ, FTP, 
SMTP, etc. The TM has to be registered in the 
platform in order to be used. At the time of writing 
the TMs for HTTP and .NET Remoting have been 
implemented, and several more are in process.  

In a heterogeneous multi-agent environment, security 
becomes an extremely sensitive issue. Security risks 
exist throughout the whole agent life-cycle: agent 
management, registration, execution, agent-to-agent 
communication and user-agent interaction. Agent 
Platform Security Manager is out of the scope of this 
paper, the details on its architecture and 
implementation can be found in [San03].  

4. IMPLEMENTATION DETAILS 

4.1 The Message Transport Mechanism 
The MTS was implemented as a singleton 
remoteable object [Ram01] that can be instantiated 
by the agents in order to be able to send and receive 
messages. This remote object is able to deliver 
messages to the agents based on delegated method 
and publish/subscribe mechanisms for events. 



The mechanism for message delivery is a type of 
asynchronous callback allowing messages to be 
delivered as they are received by the MTS. The 
agents use a special class working like a listener of 
incoming messages. This listener contains a delegate 
method which is invoked when the MTS receives a 
message.  

When agents are initialized they subscribe to the 
MTS sending a listener object. This object is 
registered in the events manager administered by the 
MTS. When a message has to be delivered by the 
MTS, it consults events manager to look for the 
listener of the destination agent of the message. This 
way it can invoke the delegated method that was 
registered for the listener of the agent. 

If an agent wishes to send a message (fig. 4), it 
contacts its MTS. When a message is received by the 
MTS, it is processed as specified by FIPA. When it is 
prepared for delivery to the destination agent(s), if 
any of them is located in a different CAPNET, MTS 
contacts the MTA to delegate the delivery. The MTA 
determines the required type of delivery based on the 
destination agent’s address. Using this information 
the MTA obtains a concrete TM from the MTPF.  
That TM is the object capable of performing the real 
delivery of the message and once obtained, the MTA 
invokes the delivery functionality on it. 

 

 

Figure 4. Sequence for message sending. 

When a message is received by a TM, it extracts the 
important fields and constructs a new platform 
specific Transport Message object to be sent to the 
known MTA. This MTA forwards the Transport 
Message to the MTS, which sends the message to the 
destination agent. Message receiving is similar. 

4.2 The AMS and DF Services 
The AMS and DF services of the platform have been 
implemented using a multi-tier architecture (Fig. 5). 

We shall only describe the AMS Service, since the 
implementation of the DF is almost identical.  

The agent tier (Tier 1 in the figure) is implemented 
by the functionality provided by the BasicAgent class 
(described in the next section), and involves all the 
communication, interaction and conversation 
mechanisms that provide the social interaction 
capabilities. This layer is responsible for listening to 
other agents requests, implemented as an ACL 
(Agent Communication Language) request message 
specifying the action and its parameters, and 
launching the corresponding services.  

 

 

Figure 5. AMS Service implementation. 

The application-logic tier (Tier 2) is implemented in 
the services (actions) that the AMS_Agent is able to 
perform. The actions that this agent is able to 
perform are: registration, deregistration and 
modification of agent descriptions in the white page 
directory, and search of agent descriptions. 

The data access tier (Tier 3) is implemented in the 
AMS_Component which is a remoteable component 
hosted in a Windows Service. This component 
designed as a “singleton” exposes two interfaces: the 
IAMS interface for the AMS_Agent and the 
IAMSAdmin interface for the administration and 
monitoring applications, such as the Society Viewer 
(that shows the registered agents and their inte-
ractions) or the AMS_Administrator among others. 

The AMS_Component registers and updates 
constantly a set of performance counters. These 
counters allow system administrators to monitor and 
record the state of the platform and to raise events or 
generate alarms under certain conditions they are 
interested in. 



The data tier (Tier 4) is implemented in a relational 
database using Microsoft SQL Server as the DBMS 
that stores Agent Descriptions of all the registered 
agents.  

4.3 Agent Implementation 
The construction of a set of basic elements that 
constitute the internal architecture of the agents in a 
FIPA compliant environment is crucial for 
application development. These elements provide the 
ways to develop agents, their unique identifiers, 
registry information, ACL message construction, 
message reception and handling, content codification 
and representation with different content languages, 
the platform services description and application 
agents services. In the following sections these 
elements are described in more details. 

4.3.1 Basic Agent 
In order to be successful or, at least, easy to use, the 
AP has to provide some mechanism for agents 
creation. Being the central element of the 
applications, a basic agent class takes advantage of 
the entire infrastructure in a transparent way. This 
class allows carrying out several tasks like i) 
instantiating the local MTS and registering its 
listener in it for incoming messages reception, ii) 
registering of AMS and DF services, and iii) 
processing of received messages. AMS and DF 
registration have been implemented using the 
conversation mechanism designed to control the 
messages exchange. This mechanism is described in 
the following section. 

In order to support agents programming for the AP, 
an API is provided. This API includes classes to 
construct the unique agent identifier (AID), DF 
service descriptions (ServiceDescription), the local 
platform description (APDescription), AMS agent 
descriptions (AMSAgentDescription), DF agent 
descriptions (DFAgentDescription), etc. Figure 6 (in 
appendix) shows the diagram of CAPNET utility 
classes. 

Two mechanisms for message processing are 
developed: polling and callback. Polling is the 
mechanism that allows an agent to process messages 
in a synchronous way and is used by the 
conversations mechanism to control the predefined 
message sequence in an interaction protocol. 
Callback works similar to the MTS message delivery 
mechanism. Events are declared in each agent to 
process each one of the message types or a pre-
established conversation. The particular mechanism 
to be used is dynamically determined according to 
the attributes of the message (conversation-id and 
protocol). 

4.3.2 Conversation Manager 
A conversation manager is an internal component of 
each agent linked to its communication capacity. 
Conversations are important to facilitate the 
interaction between different agents to carry out 
some tasks within a multi-agent environment. 
Besides facilitating the interaction, a conversation 
manager allows an agent to control its course of 
action on the basis of the results that are obtained 
during their conversations. A conversation manager 
allows an agent i) to add new conversations required 
during the communication process, ii) to add agent 
interaction protocols (AIP) that can be used to 
control the message sequence in a conversation, and 
iii) in general, to offer access to the completion state 
and results of a conversation. 

A conversation is added when a message establishes 
a conversation and AIP identifiers. A new 
conversation is dynamically created determining (by 
means of the .NET reflection mechanism) the AIP 
from the CAPNET library. It is important to mention 
that an AIP can have several implementations. Each 
new conversation is handled in a new execution 
thread in such a way that an agent can carry out 
parallel interaction through simultaneous 
conversations. 

We have defined a set of classes and interfaces that 
helps to create conversations and AIPs in a standard 
way. At the moment, two interfaces for the 
synchronous and asynchronous conversations are 
implemented. When a new interface is created, it 
must inherit from a conversation class to establish its 
attributes (conversation-identifier, AIP class to be 
used in conversation control and delay time-out 
between messages) and must implement some of the 
interfaces of conversation type, that mainly serve to 
give access in run time to an AIP’s concrete 
implementation. 

4.3.3 Agent Communication and Content 
Languages 
In order to provide communication functionality, 
FIPA-ACL is implemented [Fip00]. XML is used as 
the standard encoding for messages. The content of 
the ACL messages is represented in a content 
language allowing agents to obtain and handle 
objects from the agent’s knowledge base. It enables 
knowledge interchange and handling between 
heterogeneous applications and guarantees high 
interoperability and autonomy degrees. For CAPNET 
message coding two languages are implemented: 
FIPA-RDF0 (using XML representation with 
validation through schemes) and FIPA-SL (using the 
string representation scheme, a grammar and parser 
for construction and validation of these content 
objects). 



4.3.4 Dynamic action invocation 
Agents can carry out actions in favor of others. 
Because the action requests are codified in a sort of 
text format and are not obtained directly through 
method invocation, agents extract the requested 
action and achieve dynamic invocation by means of 
.NET reflection mechanism. The content language 
allows expressing an action, its internal results and 
its arguments. The agent itself determines how to 
extract the action and its attributes to carry out the 
invocation. 

4.4 Administration Tools 
Along with the platform, a set of tools for its 
configuration and administration have been 
developed. These tools include a society viewer, a 
ping agent, AMS and DF administrator, Pocket PC 
version of the AMS and DF administrator, platform’s 
communication infrastructure configurator, etc. 

One of the most important tools is the AMS 
administrator (fig. 7), because it allows monitoring of 
agents registered at the AP, their state and properties. 

  

Figure 7. AMS Administration architecture. 

 

This tool is designed to connect directly to the 
AMS_Componet using the IAMSAdmin interface via 

.NET Remoting. When communication using 
remoting is not possible (because of network 
restrictions or using the Pocket PC version of the 
administrator) a Web Service is used to form a bridge 
to the AMS_Component. The latter approach 
however has a drawback: the administrator has to 
request constantly the last state of the AMS, whereas 
using remoting the Administrator is able to subscribe 
to the published events of the AMS_component, in 
order to receive instant notifications of any changes 
occuring in the AMS as a result of registration, 
deregistration or modification of agent descriptions 
in the AMS. 

5. DISCUSSION AND 
CONCLUSIONS 
In this paper we have presented an Agent Platform 
named CAPNET that constitutes an excellent 
example of a distributed system built on top of the 
.NET Framework. One particular feature of this 
platform is that its primary goal is to enable the 
developers to construct another kind of distributed, 
flexible and open systems (MAS) using it as the 
basic infrastructure for communication and adminis-
tration of the elements that will be part of them.  

The architecture proposed for the core of the 
CAPNET is divided into three main blocks: directory 
services, security and message transport services. 
Along with those elements a set of tools for the 
administration, monitoring and development of MAS 
for the platform have been constructed. 

Since agent communication plays a key role in social 
interaction, a great effort was invested in order to 
make it very extensible and interoperable. To achieve 
this, the low level transport mechanisms (TM) were 
isolated from the core of the MTS and integrated into 
it using the “factory pattern” that enables the 
possibility to have several concrete implementations 
of TMs for different protocols or communication 
techniques. Another advantage of using this design 
pattern is that it will easily accept the implementation 
of load balancing techniques in the future. 

The implementation of the CAPNET required the 
extensive use of remoting for different tasks such as 
agent communication and administration. The use of 
remote delegates allowed the agents to subscribe to 
the events published by the MTS, and also enabled 
the administrative tools to get instant notifications of 
the changes in the state of the platform services. 

All the remoteable AP components involved in the 
message transport mechanisms (MTS and Remoting 
TM) and directory services (AMS and DF) were 
implemented as Server Activated Singleton Objects 
and hosted in Windows Services.  



This particular implementation has the advantage of 
high availability of these components and will 
eventually lead to the clusterization of these services 
to increase the reliability of the AP in future 
versions. 

The use of XML as the standard encoding for 
messages has several advantages. Some of them are: 
native support on the .NET framework for managing 
XML documents, easy integration with the modern 
commercial and industrial applications available and 
the natural integration to the semantic languages. 

In order to take advantage of the features of the 
development platform, the CAPNET services report 
their state to the operating system via performance 
counters and the event log. 

In order to make CAPNET compatible with the .NET 
Compact Framework (CF) and to be able to deploy 
administration tools and agent systems in mobile 
devices, alternative mechanisms to remoting for 
communications had to be implemented. These 
mechanisms included the use of Web Services, easily 
accessible for applications written for the CF and 
capable of bridging to the main CAPNET 
infrastructure. 

The communication capacities of the platform were 
stress tested with a custom made benchmark 
application that involved the creation of 100 agents 
distributed in 10 hosts in a single segment of a 
10Mbps LAN. The benchmark measured the time it 
took for each agent to send one message to each 
other agent, and one to itself (sending a total of 
10,000) XML encoded messages with a length of 
300 bytes/each. The results obtained showed that the 
full load of 10,000 messages took a variable time of 
83 to 108 seconds to be delivered in 40 different 
simulations at different times (the network 
infrastructure was not exclusive for this purpose and 
had peek use hours). 

A very important feature to be implemented in future 
versions of CAPNET, will be the support for agent 
mobility, that will enable the agents to traverse hosts 
to perform their tasks. 

Several prototype MAS are under development using 
CAPNET, which will help to test its functionality for 
concrete applications. Most of these prototypes were 
earlier implemented using JADE or the first version 
of the CAP and include supply chain configuration, 
secure desktop, contingency management (fig. 8). 
Details can be found in [She04, Smi04]. 
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ABSTRACT 
With the appearance of low cost high performance embedded and mobile computers the applications running on 
these computers can offer novel services on board of a wide variety of transportation vehicles. These services 
include providing navigation aid based on GPS (Global Positioning System) and digital maps in the field of 
personal in-car navigation. Considering public transportation vehicles the most important services are automatic 
next-stop annunciation, electronic sign control, automatic passenger counting, dispatch communication and 
Wireless LAN (Local Area Network) data management.  Most of these applications can be decomposed into a 
common set of components. This paper describes a component-based framework developed in .NET to support 
the development of navigational applications. The core of the framework is the component configuration, 
component wiring and communication infrastructure which facilitates the low coupling of components and also 
enables the tight integration of services. Utilizing this infrastructure and building a predefined set of component 
building blocks the development time and cost of specific applications can be reduced significantly. 

Keywords 
navigation system framework, component framework, embedded event-driven applications 

 

1. INTRODUCTION 
Recently a boom in the market of general purpose 
personal mobile devices (Pocket PCs, Smartphones, 
etc.) can be observed. In addition, GPS receivers can 
easily be connected to most of these devices, then 
installing a map software (e.g. Microsoft Packet 
Streets) a complete navigation system can be 
developed. As an operating system Microsoft Mobile 
2003 SE is one of the candidates targeting these 
devices.  

Though the complete functionality is available, it is 
not possible to directly use these personal devices as 
on-board controllers on public transportation 
vehicles. In this field the environment calls for more 
ruggedized devices. Fortunately, the appearance of 
low cost high performance PC/104 (and other PC 

compatible) embeddable computers enables the 
application of powerful Operating Systems, such as 
Windows CE or Windows XP Embedded. The first 
public transportation vehicles equipped with on-
board computers appeared quite a long time ago. 
Most of these systems were deeply embedded and 
provided relatively simple services, such as GPS 
based location identification and automatic next stop 
annunciation. Modern on-board computer systems 
can offer significantly wider ranges of services 
[Zhao97], as it will be described in details in  
section 2.  

Applying modern managed runtime platforms (such 
as the .NET Framework or the .NET Compact 
Framework) on top of the Operating System these 
computers open new ways for rapid application 
development providing high quality integrated 
services. The .NET Framework is a general purpose 
framework which provides general services that are 
used by most applications. 

This paper presents a specialized component based 
framework built on top of the .NET Framework to 
maximize the productivity developing embedded 
navigation applications. With the help of this 
framework the developers should be able to create 
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complex navigational applications offering strongly 
integrated high level services. These services are 
realized by components, the low coupling and 
flexible configurability of components is guaranteed 
by the framework according to the fundamental 
design for change and reuse concept. 

The core services of this framework constitute the 
infrastructure that takes care of the component related 
(configuration, startup, communication) and the 
threading issues, so that application developers can 
fully focus on solving application specific problems.  
Utilizing this infrastructure the first step is to develop 
components, then to configure and wire them together 
(in an XML configuration file) according to the 
application specific requirements.  

Although the framework currently requires the full 
.NET framework due to making use of a few legacy 
components by COM Interop, care has been taken to 
minimize the utilization of features that are not 
available in the .NET Compact Framework to ease 
porting in the future. The navigation framework 
currently targets the Windows XP Embedded 
platform with the full .NET Framework installed. 

A remarkable amount of research has been conducted 
related to embedded component based frameworks 
[Muller01], [Doucet02]. Most of these frameworks 
have been developed to realize applications running 
on low performance embedded chips and therefore a 
lot of emphasis has been put on performance, 
memory optimization, real-time execution 
requirements and similar issues, which can be best 
achieved by unmanaged C or C++ runtime 
environments. As a typical example, the Balboa 
component framework [Doucet02] uses C++ for 
component development and defines a high level 
component integration language (CIL) that supports 
introspection and loose typing. Most achievements of 
this environment are readily provided by the .NET 
Framework. Instead of focusing on component 
integration problems in unmanaged environments the 
framework described in this paper targets embedded 
systems offering high level, complex, strongly 
integrated services by loosely coupled reusable 
components. Also, medium to high performance 
embedded computers are supposed to be available 
running managed execution environments.  

2. EMBEDDED AND MOBILE 
NAVIGATION SYSTEMS 
Public transportation systems exhibit a set of highly 
complex navigation applications for on-board 
computer systems [Bened00], [Bened04]. These 
systems can automate several tasks, such as making 
next stop announcements or driving electronic next-
stop, route and destination signs. Though the vehicle 

position can be determined applying a GPS, in most 
cases dead reckoning capabilities based on evaluating 
odometer and compass information are also required 
to handle those cases when GPS satellite visibility is 
blocked by high buildings or tunnels. 

Processing normal operating records on-board 
systems can feed a number of statistical calculations: 
passenger counting on a per stop basis, logging 
detected off-route events (detours), detecting late 
arrivals, early departures and alarm conditions 
represent a great source of valuable business 
information for transit authorities. 

The offload of collected data and the update of the 
on-board route-schedule database can be fully 
automated if the vehicle and the garage have Wireless 
LAN installed and appropriately configured. 

Images taken by on-board cameras can also be 
captured so that accidents and incidents can be 
played back to clarify what happened in a specific 
situation. 

Vehicles can be connected online to the dispatch 
centre via some remote communication link, such as 
GPRS (General Packet Radio Service). Vehicles 
report their position and status (alarm, delay, device 
status, vehicle health problems) so that dispatchers 
can see and effectively handle fleet related problems. 

As described above, a typical on-board system is 
connected to several back-end and front-end systems. 
Figure 1 depicts a whole fleet information system 
built around the on-board system. 
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Figure 1. The system architecture of a fleet 

information system  
There are several key points regarding the software 
modules running on the on-board computer.  Beyond 
the fact that a number of tasks have to be handled by 
the same computer, these tasks have to work in a 
tightly integrated way. For instance, when the driver 
changes route, the new route identifier has to be has 
to be sent to the electronic signs installed on the 



vehicle. In addition, it has to be logged into a file 
(source of statistical data), it has to be sent to the 
dispatching centre via the remote communication link 
and it has to be used as labeling data for the captured 
video frames. When developing applications the 
programmers have to be able to handle this complex 
net of interrelationships between the system modules. 
There is another important aspect: different transit 
authorities may have significantly different 
requirements, different vehicle infrastructures, so 
each software component should be easily 
replaceable and new modules should be easily 
pluggable without affecting the others.

Figure 2 illustrates the most important logical 
components required on board in case of a public 
transportation vehicle. 

Figure 2. On-board components 
In the following sections the component model of the 
framework, the details of component definition, 
component configuration, system startup, inter-
component communication and threading issues will 
be presented. 

3. COMPONENTS 

Component Definition 
As mentioned earlier, the framework follows a 
component-based approach. A component in our case 
has a more specific meaning than the general 
technical definition of most books and papers. A 
component conceptually is a building block 
encapsulating some processing logic and providing 
services for other components. It is a wrapper around 
some domain specific logic allowing the framework 
to treat components uniformly and to provide services 
for component startup, initialization, configuration, 
shutdown, according to the Service Configurator 
design pattern [Dougl99]. Components can contain 
an arbitrary number of objects possibly realizing very 
complex component logic.  

Components are implemented in .NET assemblies to 
facilitate flexible system configuration:  enabling or 
disabling a component will result in the given 
component being loaded or not loaded by the 
framework at startup, respectively. Components are 
specialized based on the layer they belong to. As a 
matter of fact, three layers are defined. Port type 
components (serial ports, parallel ports, sockets) form 
the lowest layer, they communicate with the outside 
world. Device type components abstract GPS, 
odometer and other devices for the higher level logic. 
Application logic components perform the real 
domain specific tasks. Fig. 3 shows one simple 
configuration made up by eight components.  

Figure 3. A simple system configuration 

Component Structure 
Each component has to have certain predefined 
interfaces and has to follow some predefined rules so 
that it can be managed by the framework. 
Components are composed of three parts as shown in 
Figure 4. 

Figure 4. Component structure 
The Logic part represents the objects performing the 
domain specific tasks the component is responsible 
for.  

The Configuration Port is the connection point to the 
central Component Manager object, which is the 
central configuration management unit of the whole 
framework with respect to component startup, 
shutdown and configuration. The ConfigurationPort 
class provides built in support for the component for 



starting/stopping/restarting and configuring based on 
a configuration file section belonging to the 
component. The component developer has to derive a 
new class from the ConfigurationPort class. This 
class has a CreateSubComponents method, which 
shall be overridden by the component developer to 
instantiate the objects internal to the component.  

The Message Port objects implement message-based 
communication with other components, as it will be 
described in more detail later on. They basically 
receive messages from components they are 
connected to and forward messages to the Logic part. 
They also transform events raised by the Logic part to 
messages to be published to other components.  

Although the development of a new component may 
look complicated, all what a component developer in 
most cases has to do (besides writing the component 
logic code) is derive two classes from the 
ConfigurationPort and MessagePort classes and 
override some of their methods.  

4. COMMUNICATION 

Conceptual Considerations 
The cornerstone of being able to create applications 
that are manageable and extendible despite the 
complex interrelationships between their components 
is to define a communication infrastructure that yields 
low coupling between components.  Instead of using 
strongly typed interfaces, the communication 
primarily based on events following the publisher-
subscriber pattern results in a far more flexible 
solution. Taking this into consideration an event 
driven approach following the push model 
[Szyper98] has been chosen, no direct method calls 
are used.  

The push model communication concept naturally 
suits the event-driven nature of the embedded 
application domain the framework has been primarily 
designed for. The representative configuration shown 
in Figure 3 is a good example. In most cases the GPS 
device calculates and sends new position information 
once in every second. This data is received by a serial 
port component, which raises an IncomingData event 
("event" means conceptual events and not .NET 
events in this case). The GPS Device component 
receives this event as it is registered at the Serial Port 
component. It analyses the data and extracts the 
position information according to the communication 
protocol of the GPS device. The position information 
is sent to the Positioning component, which possibly 
checks GPS coordinate validity based on data 
received last from the odometer device and sends the 
noise filtered position to the Route Processor 
component. Next, the Route Processor checks if the 

vehicle has entered/left a close proximity of a stop 
and rises appropriate events. The Sign Control 
component is registered to stop change events and 
updates the electronic signs according to a specific 
sign communication protocol. 

This approach has several advantages. First it 
inherently supports the broadcasting and multicasting 
of events.  When the components are developed it is 
not known which other, not yet existing components 
will be interested in their events. This is not an issue 
if events are used. The subscription schema is defined 
in an XML configuration file processed by the 
framework at application startup. Even though this 
configuration file has to be edited manually now, an 
application with an intuitive user interface is being 
developed to help creating wiring definition. 

Events can be implemented as sending and receiving 
message objects. In this case the parameter of a 
callback (event handler) method is always an object 
that can be perceived as a message encapsulating the 
type and the parameters of the event. This approach 
enables the logging of these messages to a log file 
during in the field operation, which can be played 
back in simulation mode later on. Multithreading 
combined with message queues yields a solution that 
can handle communication with slow hardware in a 
separate thread and also can hide threading issues 
from the programmer. Furthermore, messages can be 
easily serialized and sent via sockets making 
communication transparent across process or machine 
boundaries.  

However, there are some liabilities. Realizing calls as 
sending messages makes calls requiring result more 
difficult to handle, as the correspondence between a 
particular request and a particular response has to be 
handled explicitly by the programmer.  

Implementation 
In the navigation framework inter-component events 
are implemented as sending and receiving message 
objects. In fact, messages are parameters of .NET 
delegates. When a .NET delegate is fired, the 
registered objects receive the message as the 
parameter of the event handler method. The type of 
event is encoded by the type of the message 
parameter. Therefore, there is no need to define a 
separate .NET event member for each event type, 
new message types can be introduced without 
modifying the interface of the related classes. The set 
of services offered and the events published by a 
component can be represented by different command 
and status type messages, respectively. There is a 
class hierarchy of messages with the IMessage 
interface as the root. Figure 5 shows a few message 
types involved in GPS communication.  



LLAPositionFix

+ latitude : double
+ longitude : double
+ altitude : double
+ dateTime : DateTime

XYZPositionFix

+ x : double
+ y : double
+ z : double
+ dateTime : DateTime

GPSTime

+ GMTDateTime : DateTime

XYZVelocityFix

+ xVelocity : float
+ yVelocity : float
+ zVelocity : float
+ dateTime : DateTime

IGPSMessage

IGPSCommand
IGPSReport

IMessage

Figure 5. A part of the message class hierarchy 
Each component has at least one Message Port object 
at the component boundary as mentioned earlier. This 
acts as a communication gateway between the logic 
part and other components. It has an OnNewMessage 
event handler method with an IMessage parameter, 
which is a reference to the message object received. 
The OnNewMessage method is registered (via .NET 
delegates) at other components and is called when 
there is a new incoming event for the component. The 
registration of this event handler at the event source 
components is performed by the framework at system 
startup. It is the responsibility of the component 
developer to “translate” incoming events to 
appropriate method calls into the component logic. 
The component developer also has to decide which 
events originated by the logic part should be 
transformed into messages and then forwarded to 
other components through the Message Port.  

The core framework objects constituting the 
infrastructure services handle messages only through 
the IMessage interface, so they do not need to be 
recompiled when new components with new message 
types are introduced in the framework. 

Messages are arranged into a class (or type, as 
interfaces are also involved) hierarchy. A few 
examples of different message types are the 
following: GPS related messages (e.g. position and 
time), position messages (either GPS or calculated 
from odometer and compass data), route processing 
status messages for detected off-route and late arrival 
conditions. 

Filtering incoming events based on the type of the 
incoming event is possible in the Message Port. The 
following code snippet illustrates a component that is 
interested in GPS report messages only and ignores 
all other messages: 
protected override void NewMessage(IMessage 
message) 
{

if (message is IGPSReport) 
 NewGPSReport(message); 
}

The NewMessage method is an abstract method 
defined in the MessagePort base class. The 

OnNewMessage event handler calls the NewMessage 
operation for each incoming event. This way the 
component developer is forced to override the 
NewMessage method in his/her MessagePort derived 
class and handle the events appropriately. 

The next piece of code illustrates how the 
MessagePort “derived” object translates the incoming 
message to a method call into the component logic.  
protected override void NewMessage(IMessage 
message) 
{

if (message is LLAPositionFix) 
 { 

theComponentLogic.InLLAPositionPacket
(message as LLAPositionFix); 

 } 
…

}

If in case of a specific component the same object is 
the target of all incoming events it is possible to free 
up the programmer from writing any dispatching 
code. The name of the method to be called can be 
derived from the name of the type of the message 
object parameter according to a certain naming 
convention. First the existence of the method should 
be checked. If the method exists then it can be called 
with the message as a parameter. The next code 
fragment realizes this simple algorithm: 
protected override void NewMessage(IMessage 
message) 
{

string methodName = "On" +   
 message.GetType().Name; 
 MethodInfo minfo=   
 theCompLogic.GetType().GetMethod(met
 hodName); 
 if (minfo!=null)   
 minfo.Invoke(theCompLogic, 
 new object[] {message}); 
}

Mainly the receiving aspect of communication has 
been discussed so far. With respect to sending events 
to other components the developer of a component 
can call the dispatchMessage(IMessage message) 
method of the MessagePort class to send events to 
other components. 

5. COMPONENT WIRING 
The communication model of the framework 
supporting the publisher-subscriber pattern does not 
provide by itself a comprehensive solution.  If the 
definition of component wiring - connecting 
subscribers to publishers - is awkward, then building 
specific target applications remains difficult.  

Therefore, the configuration of components with the 
wiring information can be defined in an XML 
configuration file. Each component has a section 
within this file with a unique name, the assembly 



name containing the code of the component, the class 
name of the Configuration Port object of the 
component, the enabled/disabled state, the 
configuration data specific to the component, and a 
ComponentConnections section with the list of the 
names of the components whose messages the 
component subscribes to. The next section shows a 
fraction of a sample configuration file. 
... 
<Component> 
 <UniqueName>Route Processor</UniqueName> 
 <Assembly>RouteProcessor</Assembly> 
 <Class>RouteProcessor.RouteProcConfPort</
 Class> 
 <Enabled>True</Enabled> 
 <ComponentConnections> 

 <ComponentConnection>Positioning 
 Component</ComponentConnection> 

<ComponentConnection>Main 
 UI</ComponentConnection> 

 </ComponentConnections> 
 <AutomaticPathStart>True   
 </AutomaticPathStart> 
</Component> 
<Component> 
 <UniqueName>Positioning   
 Component</UniqueName> 
 <Assembly>PositioningComponent</Assembly> 
 <Class>PositioningComponent.PositioningCo
 mponent ConfPort</Class> 
 <Enabled>True</Enabled> 
 <ComponentConnections> 
 <ComponentConnection>GPS Device</ 
 ComponentConnection> 
 </ComponentConnections> 
</Component> 
... 
The framework processes the configuration file at 
startup. The next code sample shows how simple 
.NET reflection makes the dynamic loading of 
assemblies and the creation of objects, given only the 
name of the class as a string: 

…
ComponentListElement cle; 
Assembly assembly = Assembly.LoadFrom( 
cle.assemblyName + ".dll"); 
 

Type type = assembly.GetType( 
 cle.className);  
 

cle.componentRef = 
(ComponentConfManager)Activator.CreateInsta
 nce(type); 
 
cle.isLoaded = true; 
 

The ComponentListElement is a simple class holding 
the name of the class to be instantiated, the name of 
the source assembly and a reference to the created 
object. 

6. SYSTEM STARTUP  
The navigation framework instantiates a singleton 
Component Manager object at application startup, 
which takes care of most of the component loading, 
instantiation, configuration and cleanup tasks.  

The Component Manager processes the system 
configuration file, instantiates the Configuration Port 
object of the enabled components based on their 
assembly and class name, and stores a reference to 
them in a running component list. Having the 
Configuration Port object instantiated its 
CreateSubcomponents method is called. This method 
has to be overridden by the component developer to 
instantiate the objects internal to the component. In 
the next step the Component Manager calls the 
Configure method on the Configuration Port object of 
the component (passing the XML path to the section 
of the configuration file belonging to the component) 
so that the component can configure itself. The same 
steps are performed for each component in turn. At 
this point the Component Manager registers the 
OnNewMessage event handler method of the 
subscriber Message Port objects at the event source 
Message Port objects according to the component 
wiring schema defined in the configuration file. Now 
the runtime configuration has been set up and the 
communication between components is enabled. The 
framework calls the Start method of the 
Configuration Port objects, which can be overridden 
by the component developer giving a chance to 
perform startup tasks specific to components. 

7. THREADING 
Most components perform tasks that do not take a 
long processing time and therefore can run in the 
main thread of the application without involving a 
thread context switch. Most port type components 
(e.g. serial ports) however have to perform long 
running blocking operations, for example reading 
data from a device. These operations can not be 
performed in the main thread as it would halt all other 
components running here. Consequently, port type 
components inherently have to utilize multithreading. 
However, most application and component 
developers do not have experience in handling 
multithreading issues (applying mutual exclusion 
locks properly and avoiding dead locks). For these 
reasons the framework has built in threading support 
for port type components. Each port type component 
starts a separate thread to perform blocking 
operations and hides it from the component 
developer.  

The key issue is how to dispatch events to 
components connected to the port from within the 
main thread (for instance when new data is received). 
If the events originated from the external thread of 
the port can be routed by the port to itself in a way 
that they are triggered to other components from 
within the main thread, then from this point the intra-
thread event dispatching mechanism (discussed in 
section 4) can be used. The key question is how to 



"inject" the call into the main thread for the specific 
port object. .NET delegates form the bases of the 
solution as they encapsulate both the target objects 
and the method to be called. 

Each thread (including the main thread) creates a 
synchronized message queue in its TLS (Thread 
Local Storage) memory area to hold references to 
messages sent by other threads. Figure 6 outlines the 
solution. 

 

Figure 6.  Threads and message queues 
 When new data is received by the port, an object of 
class QueueItem is created (abbreviated as QItem in 
Figure 6) by the external thread. This class 
encapsulates the delegate to be fired with its 
parameter, which is always of the type IMessage. 
public class QueueItem 
{

public NewMessageEvent messageDelegate; 
 public IMessage message; 
}; 
The messageDelegate member is set up by the 
component, so that when the delegate is fired a 
specific method (dispatchMessageHandler) of the 
sender component is called. The message member is 
set to the message object parameter, for instance to 
and object of class IncomingData in case of a serial 
port component that has just received new data.  The 
newly created QueueItem object is put into the 
message queue of the main thread. The main thread 
taking out the QueueItem object from its queue fires 
its messageDelegate member, passing the message 
member as a parameter: 
queueItem.messageDelegate(queueItem.message) 
This results in calling the dispatchMessageHandler 
event handler method of the same Message Port 
object from within the main thread. The 
dispatchMessageHandler dispatches the event to all 
registered components exactly the same way as 
sending events to components residing in the same 

thread, making threading fully transparent for the 
receiving component. Sending messages across 
thread boundaries is also made transparent for the 
sender component. The developer of a port type 
component calls the dispatchMessage(message) 
method in the MessagePort derived object to send 
messages to other components. This method is 
inherited from the MessagePort base class and is 
implemented differently for port type components, 
which use a message queue, and the regular 
components, which use direct invocation for message 
dispatching.  

The scenario is very similar with respect to the flow 
of events in the opposite direction. If data is sent by a 
higher level component to a port type component, the 
event with the message parameter is transparently 
dispatched from the main thread to the message 
queue of the port, and from the queue to the 
appropriate handler function. 

A different approach would be using .NET 
asynchronous delegates. Calling a delegate 
asynchronously results in executing the method 
encapsulated by the delegate by a thread pulled from 
a thread pool. This solution however would require 
the called method to take care of the synchronization 
by using appropriate locks when accessing shared 
data, and threading issues could be not hidden by the 
framework.  

It should be mentioned that the .NET Framework has 
built in support for message queuing based on the 
COM+ MSMQ facility, made available under the 
Messaging namespace. The MSMQ targets enterprise 
applications, and is less suitable for performance 
sensitive embedded systems.  The message queue 
implementation of the navigation framework uses the 
System.Collections.Queue class and the 
synchronization for the queue is provided by the 
System.Threading.Monitor class, together yielding a 
simple and efficient implementation. 

8. SIMULATION 
One of the most appealing benefits of message based 
inter-component communication is that messages can 
be serialized to a log file during in the field operation. 
This log file can be played back later on in simulation 
mode enabling the full reconstruction of system 
behavior. This feature can be really useful for 
instance in the fine tuning phase of developing dead 
reckoning algorithms, or when an accident occurs and 
the exact scenario has to be played back with an 
enhanced user interface representation (e.g. with the 
vehicle symbol animated on a digital map). Only 
messages created by port type component are logged 
as these are the components that communicate with 
the outside world. Each message is logged with the 



name of the component that just generated the 
message. During simulation the simulation manager 
object reads the log file, extracts the messages and 
forwards them to that particular component which 
originally generated the message. According to this 
fundamental design concept applications can be 
started either in normal or in simulation mode. Most 
components are unaware of the actual mode, only 
port type components have to able to be switched to 
normal or simulation mode. In simulation mode the 
port type components are supposed to disable their 
hardware connections and dispatch data sent by the 
simulation manager. 

9. SAMPLE APPLICATION 
The infrastructure services of the framework have 
been implemented in the .NET Framework. Besides, 
the following components, which can be used as 
building blocks for developing applications have 
been developed so far: Serial Port, GPS Processor 
(handling Trimble TSIP protocol), Positioning and 
Route Processing. The Route Processing component 
encapsulates relatively complex component logic: it 
is fully capable to determine the relative position of 
the vehicle according to the route number set by the 
driver, can trigger next stop announcements and 
similar events. A map framework using an 
appropriate digital map database has also been 
developed within the ESRI MapObjects map 
component framework, which was built into the user 
interface component to visualize vehicle location, 
vehicle status and the current route with all the stops 
along that route. To demonstrate system capabilities 
an application has been composed using these 
components. Figure 7 illustrates the application: 

Figure 7. An application built utilizing the 
framework 

10. CONCLUSION 
A framework effectively supporting the development 
of complex, highly integrated, easily extendible 
applications in event-driven environments has been 
presented in this paper. As a primary application field 

navigation on-board computer systems have been 
discussed. When creating application building blocks 
developers can easily encapsulate system logic into 
components. Once the components have been 
developed, creating specific target applications from 
these components is straightforward. A 
communication mechanism has been elaborated 
following the push model: events are dispatched by 
the framework from the source component to each 
component connected to the source according to the 
component wiring schema. The wiring itself is 
defined in a configuration file, along with the 
individual settings specifically required by the given 
component. Future work will include hiding objects 
common to all components (Message Ports and 
Configuration Ports) from the component developers 
and enable them to provide these as .NET attributes. 
This will further simplify the component 
development process. 
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ABSTRACT
This paper presents the compilation of the Scheme

programming language to .NET platform. .NET pro-

vides a virtual machine, the Common Language Run-

time (CLR), that executes bytecode: the Common In-

termediate Language (CIL). Since CIL was designed

with language agnosticism in mind, it provides a rich

set of language constructs and functionalities. There-

fore, the CLR is the first execution environment that

offers type safety, managed memory, tail recursion

support and several flavors of pointers to functions.

As such, the CLR presents an interesting ground for

functional language implementations.

We discuss how to map Scheme constructs to CIL. We

present performance analyses on a large set of real-life

and standard Scheme benchmarks. In particular, we

compare the performances of these programs when

compiled to C, JVM and .NET. We show that .NET

still lags behind C and JVM.

1. INTRODUCTION
Introduced by Microsoft in 2001, the .NET Frame-

work has many similarities with the SunMicrosystems

Java Platform [9]. The execution engine, the Com-

mon Language Runtime (CLR), is a stack-based Vir-

tual Machine (VM) which executes a portable byte-

code: the Common Intermediate Language (CIL) [8].

The CLR enforces type safety through its bytecode

verifier (BCV), it supports polymorphism, the mem-

ory is garbage collected and the bytecode is Just-In-

Time [1,17] compiled to native code.

Beyond these similarities, Microsoft has designed the
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CLR with language agnosticism in mind. Indeed,

the CLR supports more language constructs than the

JVM: the CLR supports enumerated types, structures

and value types, contiguous multidimensional arrays,

etc. The CLR supports tail calls, i.e. calls that do

not consume stack space. The CLR supports closures

through delegates. Finally, pointers to functions can

be used although this leads to unverifiable bytecode.

The .NET framework has 4 publicly available imple-

mentations:

• From Microsoft, one commercial version and one

whose sources are published under a shared source

License (Rotor [16]). Rotor was released for re-

search and educational purposes. As such, Rotor

JIT and GC are simplified and stripped-down ver-

sions of the commercial CLR, which lead to poorer

performances.
• Ximian/Novell’s Mono Open Source project offers

a quite complete runtime and good performances

but has only a few compilation tools.
• From DotGNU, the Portable.Net GPL project pro-

vides a quite complete runtime and many compi-

lation tools. Unfortunately, it does not provide

a full-fledged JIT [20]. Hence, its speed cannot

compete with other implementations so we will

not show performance figures for this platform.

1.1 Bigloo
Bigloo is an optimizing compiler for the Scheme (R5rs

[7]) programming language. It targets C code, JVM

bytecode and now .NET CIL. In the rest of this pre-

sentation, we will use BiglooC, BiglooJvm, and Bigloo-

.NET to refer to the specific Bigloo backends. Bench-

marks show that BiglooC generates C code whose per-

formance is close to human-written C code. When

targeting the JVM, programs run, in general, less

than 2 times slower than C code on the best JDK

implementations [12].

Bigloo offers several extensions to Scheme [7] such as:

modules for separate compilation, object extensions

à la Clos [3] + extensible classes [14], optional type

annotations for compile-time type verification and op-

timization.



Bigloo is itself written in Bigloo and the compiler is

bootstrapped on all of its three backends. The run-

time is made of 90% of Bigloo code and 10% of C,

Java, or C# for each backend.

1.2 Motivations
As for the JVM, the .NET Framework is appealing for

language implementors. The runtime offers a large set

of libraries, the execution engine provides a lot of ser-

vices and the produced binaries are expected to run on

a wide range of platforms. Moreover, we wanted to

explore what the “more language-agnostic” promise

can really bring to functional language implementa-

tions as well as the possibilities for language interop-

erability.

1.3 Outline of this paper
Section 2 presents the main techniques used to com-

pile Bigloo programs to CIL. Section 3 enumerates

the new functionalities of the .NET Framework that

could be used to improve the performances of pro-

duced code. Section 4 compares the run times of sev-

eral benchmark and real life Bigloo programs on the

three C, JVM and .NET backends.

2. COMPILATION OUTLINE
This section presents the general compilation scheme

of Bigloo programs to .NET CIL. Since CLR and JVM

are built upon similar concepts, the techniques de-

ployed for these two platforms are close. The compi-

lation to JVM being thoroughly presented in a pre-

vious paper [12], only a shallow presentation is given

here.

2.1 Data Representation
Scheme polymorphism implies that, in the general

case, all data types (numerals, characters, strings,

pairs, etc.) have a uniform representation. This may

lead to boxing values such as numerals and characters,

i.e., allocating heap cells pointing to numbers and

characters. Since boxing reduces performances (be-

cause of additional indirections) and increase memory

usage, we aim at avoiding boxing as much as possi-

ble. Thanks to the Storage Use Analysis [15] or user-

provided type annotations, numerals or characters are

usually passed as values and not boxed, i.e. not allo-

cated in the heap any more. Note that in the C back-

end, boxing of integers is always avoided using usual

tagging techniques [6]. In order to save memory and

avoid frequent allocations, integers in the range [-100

... 2048] and all 256 characters (objects that embed a

single byte) are preallocated. Integers are represented

using the int32 type. Reals are represented using

float64. Strings are represented by arrays of bytes,

as Scheme strings are mutable sequences of 1 byte

characters while the .NET built-in System.Strings

are non-mutable sequences of wide characters. Clo-

sures are instances of bigloo.procedure, as we will

see in Section 2.3.3.

2.2 Separate Compilation
A Bigloo program is made of several modules. Each

module is compiled into a CIL class that aggregates

the module definitions as static variables and func-

tions. Modules can define several classes. Such classes

are compiled as regular CIL classes (see §2.3.4). Since
we do not have a built-in CIL assembler yet, we print

out each module class as a file and use the Portable.Net

assembler to produce an object file. Once all modules

have been separately compiled, they are linked using

the Portable.NET linker.

2.3 Compilation of functions
Functions can be separated in several categories:

• Local tail-recursive functions that are not used as

first-class values are compiled as loops.

• Non tail-recursive functions that are not used as

first-class values are compiled as static methods.

• Functions used as first-class values are compiled

as real closures. A function is used as a first-class

value when it is used in a non-functional position,

i.e., used as an argument of another function call

or used as a return value of another function.

• Generic functions are compiled as static methods

and use an ad hoc framework for resolving late

binding.

2.3.1 Compiling tail-recursive functions
In order to avoid the overhead of function calls, local

functions that are not used as values and always called

tail-recursively are compiled into CIL loops. Here is

an example of two mutually recursive functions:
(define (odd x)

(define (even? n)

(if (= n 0) #t (odd? (- n 1))))

(define (odd? n)

(if (= n 0) #f (even? (- n 1))))

(odd? x))

These functions are compiled as:
.method static bool odd(int32) cil managed {

.locals(int32)

ldarg.0 // load arg

odd?: stloc.0 // store in local var #0

ldloc.0 // load local var #0

ldc.i4.0 // load constant 0

brne.s loop1 // if not equal go to loop1

ldc.i4.0 // load constant 0 (false)

br.s end // go to end

loop1: ldloc.0 // load local var #0

ldc.i4.1 // load constant 1

sub // subtract

even?: stloc.0 // store in local var #0

ldloc.0 // load local var #0

ldc.i4.0 // load constant 0

brne.s loop2 // if not equal go to loop2

ldc.i4.1 // load constant 1 (true)

br.s end // go to end



loop2: ldloc.0 // load local var #0

ldc.i4.1 // load constant 1

sub // subtract

br.s odd? // go to odd?

end: ret // return

}

2.3.2 Compiling regular functions
As a more general case, functions that cannot be com-

piled to loops are compiled as CIL static methods.

Consider the following Fibonacci function:
(define (fib n::int)

(if (< n 2) 1 (+ (fib (- n 1)) (fib (- n 2)))))

It is compiled as:
.method static int32 fib(int32) cil managed {

ldarg.0 // load arg

ldc.i4.2 // load constant 2

bne.s loop // if not equal go to loop

ldc.i4.1 // load constant 1

br.s end // go to end

loop: ldarg.0 // load arg

ldc.i4.1 // load constant 1

sub // subtract

call int32 fib::fib(int32)

ldarg.0 // load arg

ldc.i4.2 // load constant 2

sub // subtract

call int32 fib::fib(int32)

add // add

end: ret // return

}

Note also that if their body is sufficiently small, these

functions might get inlined (see [13]).

2.3.3 Compiling closures
Functions that are used as first-class values (passed

as argument, returned as value or stored in a data

structure) are compiled to closures.

The current closure compilation scheme for the JVM

and .NET backends comes from two de facto limi-

tations imposed by the JVM. First, the JVM does

not support pointers to functions. Second, as to each

class corresponds a file, we could not afford to declare

a different type for each closure. We estimated that

the overload on the class loader would raise a perfor-

mance issue for programs that use closures intensively.

As an example of real-life program, the Bigloo com-

piler itself is made of 289 modules and 175 classes,

which produce 464 class files. Since we estimate that

the number of real closures is greater than 4000, com-

piling each closure to a class file would multiply the

number of files by more than 10.

In JVM and .NET classes corresponding to Bigloo

modules extend bigloo.procedure. This class de-

clares the arity of the closure, an array of captured

variables, two kind of methods (one for functions with

fixed arity and one for functions with variable arity),

and the index of the closure within the module that

defines it. In order to have a single type to represent

closures, all the closures of a single module share the

same entry-point function. This function uses the in-

dex of the closure to call the body of the closure, using

a switch. Closure bodies are implemented as static

methods of the class associated to the module and

they receive as first argument the bigloo.procedure

instance.

The declaration of bigloo.procedure is similar to:
class procedure {

int index, arity;

Object[] env;

virtual Object funcall0();

virtual Object funcall1(Object a1);

virtual Object funcall2(Object a1, Object a2);

...

virtual Object apply(Object as);

}

Let’s see that in practice with the following program:
(module klist)

(define (make-klist n) (lambda (x) (cons x n)))

(map (make-adder 10) (list 1 2 3 4 5))

The compiler generates a class similar to:
class klist: procedure {

static procedure closure0

= new make-klist(0, 1, new Object[] {10});
make-klist(int index, int arity, Object[] env) {
super(index, arity, env);

}
...

override Object funcall1(Object arg) {
switch (index) {

case 0: return anon0(this, arg);

...

}
}
...

static Object anon0(procedure fun, Object arg) {
return make-pair(arg, fun.env[0]);

}
static void Main() {
map(closure0, list(1, 2, 3, 4, 5));

}
}

2.3.4 Compiling Generic Functions
The Bigloo object model [14] is inspired from Clos

[3]: classes only encapsulate data, there is no concept

of visibility. Behavior is implemented through generic

functions, called generics, which are overloaded global

methods whose dispatch is based on the dynamic type

of their arguments. Contrarily to Clos, Bigloo only

supports single inheritance, single dispatch. Bigloo

does not support the Clos Meta Object Protocol.

In both JVM and CLR, the object model is derived

from Smalltalk and C++: classes encapsulate data

and behaviour, implemented in methods which can

have different visibility levels. Method dispatch is

based on the dynamic type of objects on which they

are applied. Classes can be derived and extended

with new data slots, methods can be redefined and



new methods can be added. Only single inheritance

is supported for method implementation and instance

variables, while multiple inheritance is supported for

method declarations (interfaces).

Bigloo classes are first assigned a unique integer at

run-time. Then, for each generic a dispatch table is

built which associates class indexes to generic imple-

mentations, when defined. Note that class indexes

and dispatch tables cannot be built at compile-time

for separate compilation purposes. When a generic

is invoked, the class index of the first argument is

used as a lookup value in the dispatch table associ-

ated with the generic. Since these dispatch tables are

usually quite sparse, we introduce another indirection

level in order to save memory.

Whereas C does not provide direct support for any

evolved object model, JVM or CLR do and we could

have used the built-in virtual dispatch facilities. How-

ever, this would have lead to serious drawbacks. First,

as generics are declared for all objects, they would

have to be declared in the superclass of all Bigloo

classes. As a consequence, separate compilation would

not be possible any more. Moreover, this would lead

to huge virtual function tables for all the Bigloo classes,

with the corresponding memory overhead. Finally,

the framework we chose has two main advantages: it

is portable and it simplifies the maintenance of the

system. For these reasons, the generic dispatch mech-

anism is similar in the C, JVM and .NET backends.

2.4 Continuations
Scheme allows to capture the continuation of a com-

putation which can be used to escape pending com-

putations, but it can also be used to suspend, resume,

or even restart them! If in the C backend, continua-

tions are fully supported using setjmp, longjmp and

memcpy, in JVM and CLR, the stack is read-only and

thus cannot be restored. Continuation support is im-

plemented using structured exceptions. As such, con-

tinuations are first-class citizens but they can only be

used within the dynamic extent of their capture.

One way to implement full continuation support in

JVM and CLR would be to manage our own call

stack. However, this would impose to implement a

complex protocol to allow Bigloo programs to call ex-

ternal functions, while this is currently trivial. More-

over, we could expect JITs to be far less efficient on

code that manages its own stack. Doing so would

thus reduce performances of Bigloo programs, which

seems unacceptable for us. Therefore, we chose not

to be fully R5rs compliant on this topic.

3. .NET NEW FUNCTIONALITIES
In this section we explore the compilation of Scheme

with CIL constructs that have no counterpart in the

JVM.

3.1 Closures
If we consider the C implementation of closures as

a performance reference, the current JVM and .NET

implementations have several overheads:

• The cost of body dispatching depending on closure

index (in the C backend pointers to functions are

directly available).

• An additional indirection when accessing a cap-

tured variable in the array (in the C backend, the

array is inlined in the C structures representing

the closures).

• The array boundaries verification (which are not

verified at run-time in the C compiled code).

The CLR provides several constructs that can be used

to improve the closure compilation scheme: delegates,

declaring a new class per closure, and pointers to func-

tions [18]. We have not explored this last possibility

because it leads to unverifiable code.

3.1.1 Declaring a new type for each closure
Declaring a new type for each closure, as presented in

§2.3.3, would get rid of the indexed function call and

enables inlining of captured variables within the class

instead of storing them in an array. However, as we

have seen, each JVM class is stored in its own file and

there are more than 4000 closures in the compiler.

Hence, we could not afford to declare a new class for

each closure in the JVM backend: loading the closures

would be too much of a load for the class loader.

This constraint does not hold in the .NET Frame-

work as types are linked at compile-time within a

single binary file. However, loading a new type in

the system is a costly operation: metadata have to

be loaded, their integrity verified, etc. Moreover we

noted that each closure would add slightly more than

100 bytes of metadata in the final binary file, that is

about more than 400Kb for a binary which currently

weights about 3.8MB, i.e. a size increase of more than

10%.

Compiling closures with classes (Windows XP)
0 2

Mono 0.23

Rotor 1.0.2 2.1

MS 1.1 3.0

Fig. 1: Declaring a class per closure. This test
compares the performance of two techniques for
invoking closures: declaring a type per closure and
indexed functions. Lower is better.

We have written a small benchmark program that de-

clares 100 modules containing 50 closures each. For



each module, the program calls 10 times each 50 clo-

sures in a row. All closure functions are the identity,

so this program focuses on the cost of closure invo-

cations. Figure 1 shows that such a program always

runs at least twice slower when we define a new type

for each closure (Mono crashes on this test). Note

that if the closures were invoked more than 10 times,

these figures would decrease as the time wasted when

loading the new types would be compensated by the

acceleration of closure invocations. However, declar-

ing a new type for each closure does not seem to really

be a good choice for performances.

3.1.2 Using Delegates
The CLR provides a direct support for the Listener

Design Pattern through Delegates which are linked

lists of couples <object reference, pointer to method>.

Delegates are a restricted form of pointers to func-

tions that can be used in verifiable code while real

pointer to functions lead to unverifiable code. Declar-

ing delegates involves two steps. First, a delegate is

declared. Second, methods whose signature match its

declaration are registered. This is illustrated by the

following example:
delegate void SimpleDelegate( int arg );

void MyFunction( int arg ) {...}
SimpleDelegate d;

d = new SimpleDelegate( MyFunction );

Compiling closures to delegates (Windows XP)
0 2

Mono 0.23 1.4

Rotor 1.0.2 1.2

MS 1.1 1.9

Fig. 2: Compiling closures to delegates. This test
compares the performance of two techniques for
invoking closures: delegates and indexed functions.

Figure 2 shows that our closure simulation program

also runs slower when using delegates as surrogate

pointers to functions instead of the indexed call. Such

a result is probably due to the fact that delegates are

linked lists of pointers to methods where we would be

satisfied by single pointers to methods.

3.2 Tail Calls
The R5rs requires that functions that are invoked

tail-recursively must not allocate stack frames. In C

and Java, tail recursion is not directly feasible because

these two languages does not support it. The tram-

poline technique [2,19,5,11] allows tail-recursive calls.

Since it imposes a performance penalty, we have cho-

sen not to use it for Bigloo. As such, the Bigloo C

and JVM backends are only partially compliant with

the R5rs on this topic.

In the CIL, function calls that precede a return in-

struction can be flagged as tail-recursive. In this case,

Impact of tail recursion (Linux/x86)
0 2

Traverse 1.0
Sieve 1.0
Rgc 1.1
Qsort 1.2
Queens 1.2
Puzzle 1.0
Peval
Nucleic 1.0
Mbrot 1.9
Maze 1.1
Leval 1.0
Fft 0.9
Fib 1.0
Earley 1.0
Conform 1.0
Cgc 1.2
Boyer 1.0
Bigloo
Beval 1.5
Bague 5.1
Almabench 1.4

Fig. 3: This test measures the impact of tail re-
cursion on .NET executions. Scores are relative
to Bigloo.NET, which is the 1.0 mark. Lower is
better.

the current stack frame is discarded before jumping

to the tail-called function. The CLR is the first ar-

chitecture considered by Bigloo that enables correct

support of tail-recursive calls. For the .NET code

generator, we have added a flag that enables or dis-

ables the CIL .tail call annotation. Hence, we have

been able to measure, as reported Figure 3, the im-

pact of tail calls on the overall performance of Bigloo

programs (see §6 for a brief description of the bench-

marks used). As demonstrated by this experiment,

the slowdown imposed by flagging tail calls is gen-

erally small. However, some programs are severely

impacted by tail recursion. In particular, the Bague

program runs 5 times slower when tail recursion is en-

abled! This toy benchmark essentially measures func-

tion calls. It spends its whole execution time in a re-

cursion made of 14 different call sites amongst which

6 are tail calls. This explains why this program is so

much impacted by tail recursion.

The tail-call support of the .NET platform is extremely

interesting for porting languages such as Scheme. How-

ever, since tail calls may slow down performance, we

have decided not to flag tail calls by default. Instead

we have provide the compiler with three options. One

enabling tail-calls inside modules, one enabling them

across modules, and a last one enabling them for all

functions, including closures.

3.3 Precompiling binaries
With some .NET platforms, assemblies (executables

and dynamic libraries) can be precompiled once for

all. This removes the need for just-in-time compil-

ing assemblies at each program launch and enables



heavier and more expensive program optimizations.

Precompiled binaries are specifically optimized for the

local platform and tuned for special features provided

by the processor. Note that the original portable as-

semblies are not replaced by optimized binary ver-

sions. Instead, binary versions of assemblies are main-

tained in a cache. Since .NET assemblies are ver-

sioned, the correspondance between original portable

assemblies and precompiled ones is straightforward.

When an assembly is looked up by the CLR, prefer-

ence is then given to a precompiled one of compatible

version, when available.

Even if precompiling binaries is a promising idea for

realistic programs such as Bigloo and Cgc (a simple

C-like compiler), we have unfortunately measured no

improvement using it. Even worse, we have even no-

ticed that when precompiled these programs actually

run slower!

4. PERFORMANCE EVALUATIONS
We have used a large set of benchmarks for estimating

the performance of the .NET CLR platform. They are

described in Figure §6, which also describes the plat-

form we have used for these experiments. For measur-

ing performance, we have used Mono .NET because

it is the only implementation that is available on all

main operating systems and because it delivers per-

formance comparable to that of Microsoft CLR (when

ran on Windows).

4.1 Bigloo vs C#
Bigloo.NET and C# vs BiglooC (Linux/x86)

Bigloo.NET C#

0 2 4

Sieve 4.2
4.4

Qsort 2.3
1.9

Queens 6.3
4.4

Mbrot 4.1
2.6

Fft 2.4
4.0

Fib 2.0
1.6

Bague 2.1
2.4

Almabench 1.6
2.3

Fig. 4: This test compares the performance of
Bigloo.NET vs C#. Scores are relative to BiglooC,
which is the 1.0 mark. Lower is better.

To assess the quality of the CIL code produced by

the Bigloo.NET compiler, we have compared the run-

ning times of the Bigloo generated code vs. regular

human-written code in C# on a subset of our pro-

grams made of micro benchmarks that were possible

to translate. For this experiment we use managed CIL

code. That is, bytecode that complies the byte code

verification rules of the CLR. Figure 4 shows that

most Bigloo compiled programs have performances

that are quite on par with their C# counterparts, but

for Almabench and Fft. Actually the Bigloo version

of these two benchmarks suffer from the same prob-

lem. Both benchmarks are floating point intensive.

The Bigloo type inference is not powerful enough to

get rid of polymorphism for these programs. Hence,

many allocations of floating point numbers take place

at run-time, which obviously slows down the overall

execution time.

4.2 Platform and backend benchmarks
BiglooJvm and Bigloo.NET vs BiglooC (Linux/x86)

BiglooJvm Bigloo.NET
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Rgc 4.5
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Peval 4.0
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Nucleic 4.0
1.7

Maze 6.0
4.2

Leval 5.3
2.5

Earley 4.4
4.9

Conform 5.3
2.4

Cgc 6.3
3.5

Boyer 4.9
3.7

Bigloo 3.8
2.4

Beval 2.9
1.5

Fig. 5: This test compares BiglooJVM and
Bigloo.NET. Scores are relative to BiglooC, which
is the 1.0 mark. Lower is better.

Figure 5 shows the running times of several real-life

and standard Scheme benchmarks for all three Bigloo

backends. Since we are comparing to native code

where no verification takes place, we have decided to

measure the performance of unmanaged CIL bytecode

and JVM bytecode that is not conform to the JVM

bytecode verifier. (Figure 7 presents figures for un-

managed and managed CIL bytecode.)

In general, Bigloo.NET programs run from 1.5 to 2

times slower than their BiglooJvm counterpart. The

only exceptions are Earley and Rgc for which Bigloo-

.NET is faster. These two programs are also the only

ones for which the ratio BiglooJvm/BiglooC is greater

than 4. Actually these two programs contain patterns

that cause trouble to Sun’s JDK1.4.2 JIT used for this

experiment. When another JVM is used, such as the

one from IBM, these two programs run only twice

slower than their BiglooC counterpart.

The benchmarks test memory allocation, fixnum and

flonum arithmetics, function calls, etc. For all these

topics, the figures show that the ratio between Bigloo-



Jvm and Bigloo.NET is stable. This uniformity shows

that BiglooJVM avoids traps introduced by JITted

architectures [12]. The current gap between Jvm and

.NET performance is most likely due to the youth of

.NET implementations. After all, JVM benefits from

10 years of improvements and optimizations. We also

remember the time where each new JVM was improv-

ing performance by a factor of two!

4.2.1 Impact of the memory management
Bigloo.NET and BiglooC/MT vs BiglooC (Linux)

BiglooC/MT Bigloo.NET
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Rgc 4.5
1.0

Nucleic 4.0
1.1

Maze 6.0
1.1

Cgc 6.3
1.1

Bigloo 3.8
1.1

Beval 2.9
1.0

Fig. 6: This test measures the impact of multi-
threading.

Both BiglooC (native) runtime system and Mono VM

use the garbage collector developed by H-J Boehm

[4]. However, as reported in Section 2.1, BiglooC uses

traditional C techniques for minimizing the memory

space of frequently used objects such as pairs or inte-

gers. In addition, BiglooC tunes the Boehm’s collec-

tor for single threaded applications while Mono tunes

it for multi-threading. In order to measure the im-

pact of the memory management on performance, we

have compiled a special BiglooC native version, called

BiglooC/MT that used the very same collector as the

mono one. As reported on Figure 6 BiglooC/MT

is no more than 10% slower than BiglooC on real

benchmarks. Therefore, we can conclude that mem-

ory management is not the culprit for the weaker per-

formance of Bigloo.NET.

4.3 Related Work
Besides Bigloo, several projects have been started to

provide support for Scheme in the .NET Framework.

(i) Dot-Scheme [10] is an extension of PLT Scheme

that gives PLT Scheme programs access to the Mi-

crosoft .NET Framework. (ii) Scheme.NET , from

the Indiana University. (iii) Scheme.NET , from the

Indiana University. (iv) Hotdog, from Northwestern

University. Unfortunately we have failed to install

these systems under Linux thus we do not present

performance comparison in this paper. However, from

the experiments we have conducted under Windows

it appears that none of these systems has been de-

signed and tuned for performance. Hence, they have

a different goal from Bigloo.NET.

Beside Scheme, there are two main active projects

for functional language support in .NET: (i) From

Microsoft Research, F# is an implementation of the

core of the CAML programming language.(ii) From

Microsoft Research and the University of Cambridge,

SML.NET is a compiler for Standard ML that targets

the .NET CLR and which supports language interop-

erability features for easy access to .NET libraries.

Unfortunately, as for the Scheme systems described

above, we have failed in installing these two systems

on Linux. Hence, we cannot report performance com-

parison in this paper.

5. CONCLUSIONS
We have presented the new .NET backend of Bigloo,

an optimizing compiler for a Scheme dialect. This

backend is fully operational. The whole runtime sys-

tem has been ported to .NET and the compiler boot-

straps on this platform. With the exception of con-

tinuations, the .NET backend is compliant to Scheme

R5rs. In particular, it is the first Bigloo backend

that handles tail-recursive calls correctly. Bigloo.NET

is available at: http://www.inria.fr/mimosa/fp/-

Bigloo.

In conclusion, most of the new functionalities of the

.NET Framework are still disappointing if we only

consider performances as the ultimate objective. On

the other hand, the support for tail calls in the CLR

is very appealing for implementing languages that re-

quire proper tail-recursion. Currently .NET perfor-

mance has not reached the one of Jvm implementa-

tion: Bigloo.NET programs run significantly slower

than BiglooC and BiglooJvm programs. However there

seems to be strong activity in the community of .NET

implementors. Future will tell if next versions of .NET

will bridge the gap with JVM implementations.

Bibliography
[1] Adl-Tabatabai, A. and Cierniak, M. and Lueh, G-Y.

and Parikh, V. and Stichnoth, J. – Fast, Effective
Code Generation in a Just-In-Time Java Com-
piler – Conference on Programming Language Design
and Implementation, Jun, 1998, pp. 280–190.

[2] Baker, H. – CONS Should Not CONS Its Argu-
ments, Part II: Cheney on the M.T.A <1> –
Sigplan Notices, 30(9), Sep, 1995, pp. 17-20.

[3] Bobrow, D. and DeMichiel, L. and Gabriel, R. and
Keene, S. and Kiczales, G. and Moon, D. – Common
lisp object system specification – special issue,
Sigplan Notices, (23), Sep, 1988.

[4] Boehm, H.J. – Space Efficient Conservative
Garbage Collection – Conference on Programming
Language Design and Implementation, Sigplan No-
tices, 28(6), 1993, pp. 197–206.

[5] Feeley, M. and Miller, J. and Rozas, G. and Wil-
son, J. – Compiling Higher-Order Languages
into Fully Tail-Recursive Portable C – Rapport
technique 1078, Université de Montréal, Département
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Wall clock time in seconds
Bench Bigloo BiglooJvm BiglooJvm (vrf) Bigloo.NET Bigloo.NET (mgd) Bigloo.NET (tailc)
Almabench 5.54 (1.0 δ) 10.29 (1.85 δ) 20.96 (3.78 δ) 8.72 (1.57 δ) 12.99 (2.34 δ) 12.01 (2.16 δ)
Bague 4.71 (1.0 δ) 7.51 (1.59 δ) 7.61 (1.61 δ) 11.52 (2.44 δ) 11.42 (2.42 δ) 58.81 (12.48 δ)
Beval 5.98 (1.0 δ) 8.88 (1.48 δ) 9.17 (1.53 δ) 17.2 (2.87 δ) 24.16 (4.04 δ) 25.2 (4.21 δ)
Bigloo 19.2 (1.0 δ) 45.91 (2.39 δ) 46.34 (2.41 δ) 73.48 (3.82 δ) 84.59 (4.40 δ) error
Boyer 8.43 (1.0 δ) 31.14 (3.69 δ) 30.61 (3.63 δ) 41.03 (4.86 δ) 57.07 (6.76 δ) 41.9 (4.97 δ)
Cgc 1.97 (1.0 δ) 6.82 (3.46 δ) 6.91 (3.50 δ) 12.4 (6.29 δ) 19.26 (9.77 δ) 15.15 (7.69 δ)
Conform 7.41 (1.0 δ) 17.82 (2.40 δ) 18.97 (2.56 δ) 39.4 (5.31 δ) 48.44 (6.53 δ) 40.0 (5.39 δ)
Earley 8.31 (1.0 δ) 40.86 (4.91 δ) 41.91 (5.04 δ) 36.27 (4.36 δ) 40.61 (4.88 δ) 36.7 (4.41 δ)
Fib 4.54 (1.0 δ) 7.32 (1.61 δ) 7.34 (1.61 δ) 7.27 (1.60 δ) 7.22 (1.59 δ) 7.43 (1.63 δ)
Fft 4.29 (1.0 δ) 7.8 (1.81 δ) 8.11 (1.89 δ) 15.26 (3.55 δ) 17.1 (3.98 δ) 13.71 (3.19 δ)
Leval 5.6 (1.0 δ) 13.8 (2.46 δ) 13.81 (2.46 δ) 29.91 (5.34 δ) 35.11 (6.26 δ) 30.0 (5.35 δ)
Maze 10.36 (1.0 δ) 43.5 (4.19 δ) 43.69 (4.21 δ) 62.18 (6.00 δ) 64.2 (6.19 δ) 66.41 (6.41 δ)
Mbrot 79.26 (1.0 δ) 199.26 (2.51 δ) 198.51 (2.50 δ) 205.9 (2.59 δ) 204.14 (2.57 δ) 403.51 (5.09 δ)
Nucleic 8.28 (1.0 δ) 14.1 (1.70 δ) 14.29 (1.72 δ) 33.53 (4.04 δ) 37.85 (4.57 δ) 33.3 (4.02 δ)
Peval 7.57 (1.0 δ) 11.28 (1.49 δ) 11.87 (1.56 δ) 30.01 (3.96 δ) 32.47 (4.28 δ) error
Puzzle 7.59 (1.0 δ) 12.96 (1.70 δ) 13.03 (1.71 δ) 20.96 (2.76 δ) 29.26 (3.85 δ) 21.0 (2.76 δ)
Queens 10.47 (1.0 δ) 36.97 (3.53 δ) 37.75 (3.60 δ) 42.76 (4.08 δ) 46.37 (4.42 δ) 53.33 (5.09 δ)
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6. APPENDIX: THE BENCHMARKS
Figure 7 presents all the numerical values on Linux

2.4.21/Athlon Tbird 1.4Ghz-512MB. Native code is

compiled with Gcc 3.2.3. The JVM is Sun’s JDK1.4.2.

The .NET CLR is Mono 0.30. The JVM and CLR are

multithreaded. Even single-threaded applications use

several threads. In order to take into account the con-

text switches implied by this technique we have pre-

ferred actual durations (wall clock) to CPU durations

(user + system time). It has been paid attention to

run the benchmarks on an unloaded computer. That

is, the wall clock duration and the CPU duration of

singled threaded C programs were the same.

Almabench (300 lines) floating point arithtmetic. Bague

(105 l) function calls, fixnum arithtmetic, and vectors. Beval

(582 l) the regular Bigloo Scheme evaluator. Bigloo (99,376

l) the bootstrap of the Bigloo compiler. Boyer (626 l) sym-

bols and conditional expressions. Cgc (8,128 l) A simple C-

to-mips compiler. Conform (596 l) lists, vectors and small

inner functions. Earley (672 l) Earley parser. Fft (120 l)

Fast Fourier transform. Fib (18 l) Fibonacci numbers. Leval

(555 l) A Scheme evaluator using λ-expressions. Maze (809

l) arrays, fixnum operations and iterators. Mbrot (47 l) The

Mandelbrot curve. Nucleic (3,507 l) floating point intensive

compuations. Peval (639 l) A partial evaluator. Puzzle (208

l) A Gabriel’s benchmark. Queens (131 l) tests list alloca-

tions. Qsort (124 l) arrays and fixnum arithmetic. Rgc (348

l) The Bigloo reader. Sieve (53 l) fixnum arithmetic and list

allocations. Slatex (2,827 l) A LaTeX preprocessor. Tra-

verse (136 l) allocates and modifies lists.
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1. INTRODUCTION 
Compiler development is one of the oldest and 
the best researched topics in software engineering. It 
is a fundamental part of the universities computer 
science curricula. However, it is also one of the most 
difficult topics to teach. Students often find courses 
on compilers hard, because they have complex 
theoretical foundation and exercises  require tedious 
coding. In most cases, the size of compilers that 
students have to write during the course exceeds 
anything they produced earlier. For these reasons, 
development of a course in compilers merits special 
consideration. The goal is to support early interest 
and understanding of the subject, and retain students’ 
motivation throughout the course. 
 
In 2001 we started rewriting an existing academic 
course on compiler development which ran in St. 
Petersburg State University since early 1970s. This 
course is offered to the students in the 3rd year of 
education and lasts for one academic semester (four 

calendar months). The course has been regularly 
updated every 5 to 10 years. At the beginning of our 
project it was based on the architecture of Intel 
microprocessors. At that time we have already had an 
experience of working with early releases of Visual 
Studio .NET and came to a conclusion that .NET  
represents a future-proof platform that could be used 
as a basis for the course on compiler development.  
 
In March 2002 Microsoft announced its Shared 
Source Initiative (see http://sharedsourcecli.sscli.net), 
an open-source implementation of .NET that was 
informally code-named Rotor, and we launched a 
brief investigation on whether Rotor would be a 
better fit for the purposes of our course. It turned out 
that Rotor provides students with an excellent 
opportunity to become acquainted with a real-life 
compiler, as well as to get experience of working 
with the large (3.5+ million lines of code!) software 
code base while still at the university.  
 
Simultaneously with Rotor’s announcement, 
Microsoft Research issued a Request For Proposals 
aimed at supporting Rotor-based research and 
education projects. Our group was awarded one of 
the grants under this initiative. We have created a 
complete set of presentations and lecture notes for 
one-semester academic course on "Compiler 
Development for .NET Platform" in Russian and 
English languages, which is available at the Web-site 
of St. Petersburg State University (see 
http://www.iti.spbu.ru/eng/grants/Cflat.asp). 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 
.NET Technologies’2004 workshop proceedings,  
ISBN 80-903100-4-4 
Copyright UNION Agency – Science Press, Plzen, Czech Republic 

http://sharedsourcecli.sscli.net/
http://www.iti.spbu.ru/eng/grants/Cflat.asp


 
In this article we present the experience gained 
during preparation and delivery of this academic 
course. The article is organized as follows. In Section 
2 we briefly discuss advantages and disadvantages of 
.NET platform from the point of view of supporting 
various programming languages. Section 3 presents 
typical problems of teaching compiler development 
and our approach to handling them. Section 4 
contains a general overview of the course and a 
description of the deliverables that we have created 
during this project. In Section 5 we illustrate our 
approach to teaching compiler development using 
excerpts of the lectures. Finally, Section 6 
summarizes our experiences so far and outlines some 
directions for further research. 

2. WHY .NET? 
One of the more popular directions of the last decade 
is virtual machines – a powerful concept, which 
abstracts away the differences between hardware 
platforms and thus enables portability of programs 
written in a particular programming language.  
 
At the moment .NET is arguably the most promising 
of those virtual machines, because it was designed 
from the very beginning to support most of the 
existing programming languages, unlike previous 
efforts that were aimed at a single language. Thus 
.NET is a convenient platform for compiler 
development, which is more powerful than its 
predecessors, such as Java: 
 
• In .NET there exists a special API for code 

generation (Reflection.Emit), while Java 
provides only file generation methods 

• In .NET it is possible to pass a reference as a 
parameter and as an output value (in C# this 
options are represented by keywords ref and 
out). To emulate such behavior in Java one has 
to create a wrapper class that would be placed in 
a heap. 

• .NET platform provides support for important 
encapsulation and abstraction mechanisms, such 
as properties and indexers. In Java this cannot be 
implemented directly, so one has to settle for the 
use of naming conventions, which the compiler 
does not verify.  

• In .NET it is possible to generate unsafe (i.e., 
unverifiable) code. This could be useful, for 
instance, for the purposes of achieving runtime 
efficiency or integration of legacy systems. In 
Java this is possible only by calling programs 
written in other languages, such as C. 

 

Naturally, .NET is not the perfect solution, and some 
of its advantages are based on subtle design trade-
offs, which are especially visible during 
implementation of languages that do not correspond 
directly to the .NET model. Here are some features 
typical for various programming languages, but 
difficult to implement in a compiler to .NET 
platform: 
 
• Multiple inheritance (Eiffel, C++) 
• Nested procedures (Pascal, Algol 68) 
• Parametric polymorphism (ML, Haskell) 
• Constructors with user-defined names other than 

the name of the class (Pascal) 
• Non-standard data types (for instance, consider 

the problems of supporting PICTURE data type 
used in Cobol and PL/I) 

 
Finally, writing a compiler from almost any 
functional languages to .NET is somewhat 
problematic, because .NET is heavily biased towards 
traditional imperative languages. Such a compiler 
would lead to inefficiency of the generated code or 
would require generating unverifiable code. 
 
Nevertheless, practice has shown that these problems 
are not crucial – there already exist dozens of 
compilers from various languages to .NET, and new 
compilers keep appearing. Writing a compiler for 
.NET platform as an exercise is relevant for the 
students ..NET continues to evolve – some of the 
above mentioned problems are already obsolete and 
others will probably get resolved in the upcoming 
releases of .NET (see .NET version 1.2, and research 
projects such as Gyro, see 
http://research.microsoft.com/projects/clrgen and 
ILX, see http://research.microsoft.com/projects/ilx). 

3. ISSUES OF TEACHING COMPILER 
DEVELOPMENT 
The following technical and psycholiogical issues 
need to be considered in preparation and delivery of 
a compiler development course [Chanon75, 
Appelbe79].  
 
First of all, compiler courses deal with the 
complexity of the problem domain, especially with 
the abundance of mathematical theory. This presents 
more difficulty for students majoring in software 
engineering, since their curriculum is usually more 
practical than theoretical. In some cases, this problem 
leads to over-emphasis on theory at the expense of 
practical usefulness of the course; in other cases the 
course becomes all-embracing and overly time-

http://research.microsoft.com/projects/clrgen/
http://research.microsoft.com/projects/ilx


consuming for students. As a result, there exists a 
gap between compilers "as taught in the universities" 
and compilers "as written in the industry". 
 
In order to overcome this problem, we tried to 
minimize the amount of theory by describing only 
those formalisms and theorems that are directly 
required for understanding the material of the course. 
Nevertheless, our course includes introduction to 
language and grammar theory, automata theory, data 
and control flow analyses, so purely theoretical 
material constitutes about one third of our course.  
 
We also found it useful to separate the text of the 
lecture notes into "main text" and "digressions"., 
Main text contains theoretical explanations and 
description of universally accepted practices of 
compiler construction, while digressions are the 
advanced topics, such as practical tricks that are 
useful only under certain conditions or could be 
employed to overcome various limitations of the 
straightforward approaches1. This is useful for 
structuring the theoretical material of the course and 
presents the student with two different perspectives 
on compiler writing, from the computer science and 
software engineering points of view. Experienced 
students may also take advantage of this separation 
by concentrating only on those parts that are less 
well-known for them. 
 
Secondly, for most students the size of compiler that 
they have to produce is much greater than all their 
previous projects at the university. In order to be 
successful, courses on compilers should run in the 
interactive mode and contain many possibilities for 
the student to get clarifications. One of the main 
methods to achieve this is to complement the lectures 
with the self-paced independent work by students, 
which, in our opinion, should be organized at regular 
hours in the university computer labs and should be 
supervised by either lecturer or assistant.  
 
This course tries to teach not only the basics of  
compiler writing (so called "programming-in-the-
small"), but also issues that are important for 
working with large code base (so called 
"programming-in-the-large"). We try to achieve both 
of these goals by first demonstrating the concepts of 

                                                           
1 The idea of separating material into "main text" and 

"digressions" was traditional for mathematical textbooks 
of the Soviet era. Typically, digressions represented 
reading that was not required for the students and were 
typeset in fine print. 

compiler writing using examples taken from a demo 
compiler of a simple language C-flat, which is a 
subset of C#, and then by illustrating advanced topics 
using examples taken from a full-blown compiler of 
C# that is available in Rotor. This approach shows 
the student the whole set of "under-the-hood" details 
of compilers that are usually too complicated for 
implementation in "toy languages" and are quite 
often omitted in academic courses on compilers: 
 
• Possibility to illustrate various platform-

dependent aspects, such as run-time support and 
generation of debugging information  

• Demonstration of garbage collection, JIT-
compilation and other system mechanisms 

• System and auxiliary tools (assembler, 
disassembler, debugger etc.)  

• Implementation of Foundation Class Library 
classes 

 
Note that one cannot guarantee that the algorithms 
used in Rotor are equivalent to those used in Visual 
Studio .NET, since their goals are different – Rotor is 
designed to be as clear and understandable as 
possible, while .NET is striving to achieve maximum 
efficiency of the generated code. This makes Rotor 
good for teaching, but creates a risk that students will 
mechanically imply that the same algorithms work in 
industrial implementation and will rely on that false 
assumption in their work, so the lecturer should 
explicitly draw students' attention on this difference. 
 
Finally, for some of the students understanding the 
target platform may be difficult, especially, at the 
code generation phase. The knowledge of .NET 
platform is not yet widespread, so it was a real 
problem of our course. We recommend starting the 
course with a two-lecture overview of .NET platform 
presented from the programming point of view. 
However, it might be a better idea to consider 
knowledge of .NET as a pre-requisite for this course. 
We have already started transition to this model, 
because now there is a separate course on .NET 
available  for the students on elective basis earlier in 
their studies in St. Petersburg State University. This 
course was devised by one of the authors, Andrey 
Terekhov, and based on a well-known book 
[Richter02]. We believe that in the foreseeable future 
.NET will gain more popularity both in industry and 
academia and thus more universities will view this 
approach as a better alternative. 

4. OVERVIEW OF THE COURSE 
As a result of preliminary research and planning we 
came up with the following requirements to our 



course – the course should unite both theory and 
practice, complimenting both the theory-oriented text 
books, such as [Aho86, Muchnick97], and practice-
oriented books, such as [Gough02]. The course 
should be based on .NET and particularly on 
examples taken from its open implementation, Rotor.  
 
We wrote lecture notes and slides for this course 
based on the above requirements. The phase of active 
development lasted for about a year. As a result of 
this activity, we created the following 15 lectures: 
 
1. Overview of .NET and Rotor 
2. Overview of C# 
3. Compiler Basics 
4. Language Theory 
5. Lexical Analysis 
6. Syntax Analysis – Recursive Descent 
7. LR(k) and LALR Grammars 
8. Grammars and YACC 
9. Semantic Analysis. Internal Representation 
10. Memory Management 
11. Optimization 
12. Control Flow Analysis 
13. Data Flow Analysis 
14. Generation of CIL 
15. Instruction Selection during Code Generation 
 
Note that some of the lectures require more time for 
delivery than the usual one and a half hours that are 
typically allotted in Russian academic system, so this 
list represents logical division of the course into 
related topics rather than the recommended duration. 
We assume also that during the semester the students 
will additionally spend a comparable amount of time 
on review of source codes of C-flat and Rotor, and 
will independently implement a sample compiler 
according to the individual tasks set out by the 
lecturer. 
 
The course material includes a sources and binaies of 
ademo compiler of a "toy language" called C-flat. 
The grammar of this language is intentionally simple 
– BNF grammar of C-flat takes less than 30 lines. 
Anton Moscal, one of the authors of the course, has 
produced the C-flat compiler.The course refers often 
to the compiler sources. We are currently trying to 
bootstrap C-flat compiler, i.e. we are trying to rewrite 
C-flat compiler in C-flat. This is a dual process, 
which requires both changing the compiler (i.e., 
using less powerful language constructions) and 
changing the language (i.e., expanding the set of 
allowed constructions). 
 

In 2002-03 we made a pilot delivery of some of our 
lectures to the students of St. Petersburg State 
University. The lectures were well-received by the 
audience and generated a lot of feedback that we 
used to improve the contents of the course.  
 
We also proposed topics for term work on the basis 
of the course to the students. One of the goals of 
these term assignments was to assess validity of our 
assumptions about students' knowledge prior to the 
course and the difficulty of course material. For 
instance, a 3rd year student was given a task to 
implement a C-flat compiler in C# in order to make 
sure that it is possible for a student to develop such a 
compiler during one semester. In another term 
project, a team of 4th year students was asked to 
develop a compiler from subset of Pascal to .NET 
that would be written in SML.NET using 
MLLex/MLYacc. Both of these projects were 
successfully completed, which suggests a strong 
evidence of importance of this course and relevance 
of its content.  
 
At the moment we are considering several ideas on 
further development of the course. One of the ways 
to improve the course is to enlarge the scope  by 
adding material on Mono project (see http://www.go-
mono.com). Mono is another open-source 
implementation of .NET, which is interesting due to 
the fact that it uses different approaches to 
implementation of various aspects of .NET than 
Rotor, for instance: 
 
• Mono C# compiler is written in C# and thus 

capable of bootstrapping itself. It might be 
argued that it is also more readable from the 
student's point of view than Rotor's compiler 
written in C++ 

• Garbage collection is implemented using 
Boehm's conservative garbage collector for C 
[Boehm88, Boehm93], which is a radically 
different approach to solving memory 
management issues  

• Unlike Rotor C# compiler, Mono uses BURG 
[Pelegrì-Llopart88, Aho89, Fraser92] approach 
for instruction selection. This topic is briefly 
mentioned in the last lecture of our course, and 
thus Mono presents a good opportunity to 
illustrate this theory with a real-life example 

 

http://www.go-mono.com/
http://www.go-mono.com/


5. AN EXAMPLE OF LECTURE 
MATERIAL 
To demonstrate some of the ideas behind this course, 
we will briefly walk through the material of the 
lecture on memory management and garbage 
collection. This lecture relies heavily on examples 
from Rotor source code that are mostly adopted from 
the book [Stutz03], which we recommend as a 
supplementary reading to students. 
 
We start the lecture with asserting that memory 
management is an extremely important and resource-
consuming problem in programming. According to a 
classical textbook [McConnell93] in typical C 
projects memory management consumes up to 50% 
of the time dedicated to coding and debugging. As an 
example we consider Rotor's C# compiler that is 
written in C++ and thus is based on manual memory 
tracking and disposal by the programmer. In order to 
perform this task correctly, developers of C# 
compiler had to come up with a number of auxiliary 
structures, for instance, below we enumerated all the 
places where Rotor stores information about an 
object instance: 
 
• Memory for object instances is stored in a 

garbage-collected heap (excluding SyncBlock, 
which is stored inside the execution engine 
itself) 

• Method table of the object is placed in the 
“frequently used” heap of its application 
domain; in the meantime EEClass, FieldDescs 
and MethodDescs of the object are placed in 
“rarely used” heap 

• Native code, generated by JIT-compiler, is 
placed in the code heap and is shared by all 
application domains 

• All other stuff related to object (for instance, 
stubs generated for this object) are stored in a 
separate memory region of the execution engine 

 
Clearly, manual tracking of all these elements is a 
tedious task and thus modern programming 
languages and platforms tend to rely on automatic 
memory management instead.  
 
Then we provide an overview of existing methods of 
memory management. The students should already 
have this knowledge from the course on 
fundamentals of programming languages, but we 
believe that it is always helpful to provide a brief 
refresher on this topic. 
 

We proceed to a detailed discussion of garbage 
collection scheme that is used in Rotor. This is 
important for students because it enables them to 
connect theoretical description from the previous part 
of lecture with the concrete implementation. The 
main focus is on practical consequences of the theory 
that we have just discussed and on the fact that 
programmers always have to deal with tricks and 
heuristics in order to increase efficiency of the 
implementation. 
 
First, we emphasize the general approach to garbage 
collection in Rotor and explain the reasoning behind 
choosing particular garbage collection methods. We 
mention that Rotor uses hybrid scheme of garbage 
collection with two generations: 
 
• Generation 0 is compacted by copying — this 

pays off since the majority of the objects goe 
away before the first GC, so not a great deal of 
copying takes place 

• Generation 1 is collected by mark & sweep — 
copying would not be advantageous here, since 
few objects are dying in this generation 

 
There are many interesting details: 
 
• Copying is always performed to a new heap (to 

be more precise, to a new segment of the heap, 
see below); this process is not overly expensive 
because it takes place separately in different 
generations 

• Large objects are collected in a separate heap 
without copying (see below) 

• Completely different scheme exists in Rotor for 
garbage collection of remote objects (see 
sscli/clr/src/bcl/system/runtime/remoting) 

 
Note that the issue of GC for remote objects could be 
also discussed in a separate lecture “Remoting in 
.NET”, which should be a part of a separate 
academic course on .NET platform (this is the case 
for St. Petersburg State University, where these 
courses run in parallel). 
 
Then we illustrate the implementation details by 
going from the top. We point to the main entry point 
of garbage collection – 
GCHeap::GarbageCollect(). We explain that 
it is called whenever a garbage collection is needed 
and enumerate possible scenarios for that to happen – 
for instance, if memory runs out, or an application 
domain is being unloaded, or finalizers have just 



completed, or if there was an explicit call by the 
programmer, during exit from the process and during 
debugging from the profiler. After the call to this 
function, all threads are suspended except the thread 
that performs the GC – this is achieved by call to the 
following function:   
 
SuspendEE(GCHeap::SUSPEND_FOR_GC); 

 
Note that prior to that all threads should reach their 
"GC safe" state (this is a good place to explain what 
are the characteristics of this state). Then the control 
is passed to the main function, gc_heap::gc1(). It 
works as follows – an attempt of copying garbage 
collection in the zero generation is made (as a result, 

all live objects are moved to the first generation). If 
garbage collection is required for the first generation 
as well (this is almost always the case), then mark-
and-sweep is performed in it. 
After these high-level explanations, we walk the 
students through the actual Rotor code that performs 
these tasks and explain the implementation details. 
This is quite easy to do, because the code itself is 
properly commented and readable, not even to 
mention the detailed explanations provided in the 
book [Stutz03]. For instance, below is the code that 
we use to illustrate the first stage of GC, 
gc_heap::copy_phase(): 
 

 
• Live objects are found by recursive search and copied into the elder generation: 
 
// Promote objects referred to by cross-generational pointers 

    copy_through_cards_for_segments (copy_object_simple_const); 

    copy_through_cards_for_large_objects (copy_object_simple_const); 

// Promote objects found on the stack or in the handle table 

    CNameSpace::GcScanRoots(GCHeap::Promote, condemned_gen_number, 
max_generation, &sc, 0); 

    CNameSpace::GcScanHandles(GCHeap::Promote, condemned_gen_number, 
max_generation, &sc); 

// Promote any object referred to from the finalization queue 

    finalize_queue->GcScanRoots(GCHeap::Promote, heap_number, 0); 
 
• References to these objects are updated: 
 
// Relocating cross generation pointers 

    copy_through_cards_for_segments (get_copied_object); 

    copy_through_cards_for_large_objects (get_copied_object); 

// Relocating objects on the stack or in the handle table 

    CNameSpace::GcScanRoots (GCHeap::Relocate, condemned_gen_number,  
max_generation, &sc); 

   CNameSpace::GcScanHandles(GCHeap::Relocate, condemned_gen_number,  
max_generation, &sc); 

// Relocating finalization data 

    finalize_queue->RelocateFinalizationData (condemned_gen_number, __this); 

Table 1. Rotor code used to illustrate the copying stage of garbage collection 
 
 

After discussion of garbage collection we also briefly 
mention code pitching. This is just one of the 
examples of the topics that are difficult for the 
students to grasp (it does not come easily to the 
students that not only program data, but also the 
generated code could be treated as garbage) and yet 
is easily demonstrated using the Rotor source code. 

As this is more or less an aside detail, we illustrate 
only the general idea of code pitching and leave the 
implementation details for students' independent 
study. The scheme of this part goes as follows: 

 



• When the size of the heap for the compiled code 
exceeds some predefined maximum, the whole 
contents of the buffer is thrown away and all 
return addresses on the stack are replaced with 
address of thunk that causes re-compilation of 
methods 

• To make a decision on throwing the code away, 
this process takes into account a lot of 
parameters (size of native code, ratio of native 
code to IL, time of JIT-compilation of the 
method etc.) 

• See sscli/clr/src/vm/ejitmgr.cpp 
 
We believe that it is important to make the students 
study the source code of real-life compilers, because 
it provides a much better way to learn how to write 
the code and acquaints the students with all the 
intricate details before they encounter them in their 
professional work after graduation.  
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7. CONCLUSIONS 
We presented an academic course on compiler 
development that is based on .NET and Rotor. In this 
course we tried to bridge the gap between compilers 
"as taught in the universities" and "real-world 
compilers" by demonstrating both theoretical and 
practical perspectives on compiler development. 
From our point of view, .NET can be successfully 
used as a platform for education and research in 
various areas of computer science and software 
engineering, such as compilers, programming 
languages and component architectures. We also 
found out that Rotor is an especially interesting 
platform for education because it enables students to 
get acquainted with typical problems of working with 
industrial large-scale software projects. 
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ABSTRACT
Microsoft’s Rotor is a shared-source CLI implemen-
tation intended for use as a research platform. It is
particularly attractive for research because of its com-
plete implementation and extensive libraries, and be-
cause its modular design allows different implementa-
tions of certain components (e.g., just-in-time compil-
ers). Our group has independently developed a high-
performance just-in-time (JIT) compiler and garbage
collector, and wanted to take advantage of Rotor as
a platform for experimenting with these components.
In this paper, we describe our experiences integrating
these components into Rotor, and evaluate the flex-
ibility of Rotor’s modular design toward this goal.

We found the just-in-time (JIT) compiler easier to
integrate than the garbage collector because Rotor
has a well defined interface for the former but not the
latter. However, the JIT integration required changes
to Rotor to support multiple JITs, which included
implementing a new code manager and supporting a
second JIT manager. We detail the changes to our
just-in-time compiler to support Rotor’s calling con-
ventions, helper functions, and exception model. The
garbage collector integration was complicated by the
many places in Rotor where components make as-
sumptions about the garbage collector’s implementa-
tion. It was also necessary to reconcile the different
assumptions made by our garbage collector and Ro-
tor about object layout, virtual-method table layout,
and thread structures.
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CLI, Java, virtual machine, just-in-time compilation,
dynamic compilation, garbage collection, calling con-
ventions, software interfaces
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1. INTRODUCTION
Rotor, Microsoft’s Shared Source Common Lan-

guage Infrastructure [7, 9], is an implementation of
CLI (the Common Language Infrastructure [6]) and
C# [5]. It includes a CLI execution engine, a C# com-
piler, various tools, and a set of libraries suitable for
research purposes (it omits a few security and other
commercially important libraries). As such, it pro-
vides a basis for doing research in CLI implementa-
tion, and Microsoft is encouraging this use of Rotor.

Our group has been doing research for a number of
years on the implementation of managed runtime envi-
ronments for Java and CLI on Intel platforms. As part
of this effort, we developed a high-performance just-
in-time compiler (JIT), called StarJit [1], that can
compile both Java and CLI applications, and a high-
performance garbage collector (GC), called GcV4. Be-
cause Rotor provides a complete platform for CLI
experimentation, we set out to integrate StarJit and
GcV4 with Rotor on the IA-32 architecture. This
paper describes our experience and presents our ob-
servations on the suitability of Rotor as a research
platform.

StarJit and GcV4 were originally developed for
use with our virtual machine, ORP (the Open Run-
time Platform [3]). ORP was originally designed for
Java and later adapted to support CLI as well. One of
ORP’s key characteristics is its modularity: ORP in-
teracts with JITs and GCs almost exclusively through
well-defined interfaces.1 We hoped the use of these
interfaces by StarJit and GcV4 would simplify our
integration. Rotor also has a well-defined JIT inter-
face, but not one for GCs. Some of Rotor’s inter-
faces are defined directly in terms of internal details
of the VM, but others are more abstract, using struc-
tures like handles and separating the VM cleanly from
other components. Using these abstract interfaces,
JITs such as StarJit can be built independently of
Rotor itself, and loaded as DLLs (dynamically-linked
libraries) at runtime.

Our ultimate goal is to see how well StarJit’s and
GcV4’s optimizations apply to CLI and what further

1The only exceptions to ORP’s well-defined interfaces
are its assumptions about the layouts of performance-
critical data structures including object headers, vta-
bles (virtual-method tables), and some GC informa-
tion stored in vtables.



optimizations for CLI can be developed. StarJit in-
cludes advanced optimizations such as guarded devir-
tualization, synchronization optimization, Class Hier-
archy Analysis (CHA [4]), runtime-check elimination
(null pointer, array index, and array-store checks), and
dynamic profile-guided optimization (DPGO). GcV4
performs parallel sliding compaction to maximize ap-
plication throughput. StarJit and GcV4 can collab-
orate to insert prefetching based on dynamic profiles
of cache misses [2]. All these optimizations are impor-
tant to managed languages like Java and C#.

Overall, we found the JIT integration more straight-
forward because the Rotor JIT interface is well de-
fined. In contrast, integrating the collector required
many intricate changes, and these are interspersed
throughout the Rotor source code. In both cases,
however, we found our work complicated by missing
functionality. We begin with some background about
the integration effort, then describe in detail what was
required for the JIT and the GC.

2. INTEGRATION OVERVIEW
A key goal of our JIT and GC integration efforts

was to minimize changes to Rotor’s code base. We
also wanted to avoid making extensive changes to our
own StarJit and GcV4 code bases.

2.1 JIT-Related Modifications
Rotor divides the compilation and management of

compiled code into three components: JITs, JIT man-
agers, and code managers. JITs compile CLI byte-
codes into native code. JIT managers allocate and
manage space for compiled code, data, exception-hand-
ler information, and garbage-collection information.
Code managers are responsible for stack operations
involving the frames of compiled code that they man-
age. The Rotor design is general, and there is no
reason why it cannot support multiple JITs, multi-
ple JIT managers, multiple code managers, JITs that
share JIT and code managers, et cetera. Currently,
Rotor has one JIT, two JIT managers, and one code
manager.

To implement a JIT, JIT manager, or code manager,
one writes a class that implements the appropriate in-
terface. The JIT interface is designed for implemen-
tation in DLLs. It also hides the details of Rotor’s
types for classes, methods, fields, et cetera, with the
use of handles such as CORINFO CLASS HANDLE, COR-

INFO METHOD HANDLE, and CORINFO FIELD HANDLE. On
the other hand, Rotor’s JIT manager and code man-
ager interfaces use Rotor’s internal data structures
directly and so are difficult to place in DLLs.

We found that most of the StarJit integration ef-
fort centered around the JIT interface, which is de-
fined in corjit.h and corinfo.h. These files define a
number of interface classes, all of whose names begin
with the letter I (e.g., ICorClassInfo). The JIT must
implement the interface class in corjit.h and can
communicate with the VM using the interface classes
in corinfo.h. To date, we have succeeded in using
only these interface functions for method compilation,
and Rotor modifications have not yet been necessary.

However, certain StarJit optimizations will require
extensions to this interface. For example, CHA re-

quires the JIT to examine the currently loaded class
hierarchy to detect whether a particular method in a
class has been overridden by a subclass. While Ro-
tor’s JIT interface allows exploration up the class hi-
erarchy, it currently does not allow exploration down
the class hierarchy, precluding CHA.

Because of our past experience building new JITs,
we implemented support for multiple JITs in Rotor.
This approach allows several different JITs to be pres-
ent in the system at the same time. For each new
method, the VM calls the first JIT to compile the
method. If the JIT is unsuccessful the VM calls the
next JIT and so on until one JIT reports success. In
our implementation, we give StarJit the first oppor-
tunity to compile a method. StarJit has “method ta-
ble” code that allows the user to specify which meth-
ods StarJit should compile; other methods are re-
jected, and compiled by FJIT. As a result, if a bug is
encountered, we can gradually reduce the set of meth-
ods compiled by StarJit until we locate the single
method that caused the problem. This technique of
debugging a new JIT with the use of a robust backup
JIT proved invaluable in our integration effort.

2.2 GC-Related Modifications
Unlike for JITs, there is no clean interface in Rotor

for a garbage collector to communicate with the rest
of the system. The Rotor GC is responsible for both
object allocation and garbage collection, and also in-
teracts with the threading subsystem. As such, more
extensive modifications of Rotor were required for
integrating GcV4.

Garbage collection problems can be notoriously dif-
ficult to debug, since a problem introduced during a
collection may not manifest itself until much later. For
debugging such problems, we found it useful to use
built-in Rotor functionality for forcing collections at
more regular intervals. Rotor has a GCStress param-
eter that can be given various settings. One setting we
found especially useful forces a collection every time an
object is allocated. This setting often causes garbage
collection problems to show up soon after they occur,
when the information needed to debug them is still
available.

3. JIT COMPILE-TIME INTERFACE
As previously mentioned, a major part of the Star-

Jit integration is adapting StarJit to Rotor’s JIT
interface. This adaptation includes providing the func-
tion to compile a method for Rotor and adapting
StarJit to use the set of functions that Rotor pro-
vides for querying classes, fields, methods, et cetera.

While the StarJit integration is still under devel-
opment, we have successfully compiled and run enough
programs that we believe the integration is nearly com-
plete. Despite some initial difficulty understanding
the semantics of a few of Rotor’s JIT interface func-
tions, our experience has been predominantly positive.
This section discusses our experience and notes the few
problems we found.



3.1 Supporting the JIT Compile-Time In-
terface

StarJit already includes an internal interface, VM-
Interface, that it uses to isolate itself from any par-
ticular VM. The ORP version of StarJit, for ex-
ample, is built with an ORP-specific implementation
of this interface. The main part of our effort was
spent implementing a Rotor-specific implementation
of VMInterface.
VMInterface includes about 160 methods. The ma-

jority of these methods resolve classes and get infor-
mation about methods, fields, and other items dur-
ing compilation. One VMInterface method returns
the address of the different runtime helpers, and is
described in detail in the next section. Various Star-
Jit optimizations are supported by other VMInterface
methods that, for instance, return a method’s “heat”
(an indication of the amount of execution time spent
in the method) for profile-based recompilation.

Most of the VMInterface implementation for Ro-
tor was straightforward. However, the VMInterface

implementation is not yet complete—we have not im-
plemented specialized support for optimizations that
are not presently enabled.

To support StarJit’s requirements, we found two
cases where it was necessary to define new data struc-
tures in the VMInterface implementation to augment
the corresponding Rotor information. In the first
case, Rotor does not provide a way for JITs to get
a handle (CorInfoHandle) for a primitive class. Since
StarJit preloads the primitive classes at startup, we
defined a new RotorTypeInfo data structure to rep-
resent types that include enough information to de-
scribe primitive types. When, for example, StarJit
passes a RotorTypeInfo to the VMInterface method
typeHandleIsUnboxed, the latter can recognize if the
RotorTypeInfo represents a primitive class, and in
that case return true. In the second case, StarJit
needs the type of the this argument for many meth-
ods. In Rotor, this type is not derivable from the sig-
nature information (CORINFO SIG INFO) for a method.
Our solution is to represent a method’s signature us-
ing a structure that contains both a CORINFO SIG INFO

and a CORINFO METHOD HANDLE. This technique is sim-
ilar to the OpType tuple class used in Rotor’s built-in
FJIT.

3.2 Experience
In summary, we found Rotor’s compile-time JIT

interface (ICorJitInfo) generally well-designed. How-
ever, some information needed for optimizations is
missing. It was also necessary to work around some
limitations such as the inability of a JIT to get han-
dles for primitive classes. We have the impression that
ICorJitInfo is narrowly defined to provide just the
functionality needed for FJIT. While this makes the
interface simple, it complicates adding new, more op-
timizing JITs to Rotor.

The ICorJitInfo class inherits from a number of
abstract superclasses that each define functions in var-
ious areas of compile-time information (e.g., meth-
ods, modules, fields) and areas of runtime information
(e.g., helper functions and profiling data). We expect
to add support for our optimizations by adding a new

superclass. This will contain, for example, methods
to get class hierarchy and profile-based recompilation
information.

The lack of documentation about Rotor’s internals
was another obstacle. While the book, Shared Source
CLI Essentials [9], is a great help, too often we resorted
to experimentation to discover what Rotor functions
to use. To be more widely successful as a VM intended
for research, Rotor needs better documentation.

4. JIT RUNTIME INTERFACE
This section describes the runtime support needed

to integrate StarJit into Rotor. Besides the compile-
time cooperation described earlier, StarJit and Ro-
tor must also cooperate at runtime. For example,
although StarJit generates code for managed meth-
ods, StarJit relies on Rotor for such VM-specific
issues as object allocation. Similarly, the Rotor VM
handles stack unwinding and root-set enumeration but
it relies on the JIT to interpret a given stack frame.

4.1 Helper Calls
The JIT-compiled code of StarJit and Rotor’s

FJIT both rely on helper calls to perform VM-specific
operations (e.g., to allocate objects, throw exceptions,
do castclass or isinst operations, and acquire or
release locks) and, in some cases, to perform common
complex operations (e.g., 64-bit operations on a 32-
bit architecture). Rotor provides a mechanism to
query for helpers in its ICorInfo interface. StarJit’s
Rotor-specific VMInterface, in turn, maps StarJit
helpers to Rotor ones. During our integration work,
we encountered several issues specific to helper calls.
In most cases, we were able to solve these issues within
the Rotor-specific VMInterface layer.

The first issue we encountered involved the different
calling conventions used by ORP and Rotor. Star-
Jit had been hardwired to use the ORP conventions
when calling VM helper functions as well as other
managed code. To modify StarJit to use Rotor’s
calling conventions, an #ifdef was used to control the
conventions it employs.

A second issue we discovered involved differences in
both the required parameters and their order for dif-
ferent helpers. For example, ORP’s rethrow helper
requires the exception as a parameter but Rotor’s
does not. In addition, ORP and Rotor’s castclass

helpers have the object and type descriptor in differ-
ent orders. We considered the use of wrapper stubs to
convert between one set of conventions and the others.
However, these wrappers complicate stack unwinding
and incur additional performance overheads. We in-
stead modified StarJit to use Rotor’s conventions.

There are a couple of differences between Rotor
and StarJit related to type-specific helpers. A num-
ber of helpers, including the ones for object alloca-
tion, type checks, and interface table lookups, involve
types that are known at compile time. In these cases,
Rotor returns different helpers for different types,
based on a type passed in at compile time. Accord-
ingly, we modified the helper function lookup in Star-
Jit’s VMInterface to require a type for all type-related
helpers. For any VM (e.g., ORP) where the type is
not required, that VM’s StarJitVMInterface imple-



mentation ignores the type. There are also differences
in exactly which of several type-related data struc-
tures are passed at compile time or runtime to these
helpers. We abstracted this detail into VMInterface

so that the VM-specific code can give StarJit the
correct data structure to pass.

Another challenge involved helpers that StarJit
expected that were not provided by Rotor. In most
cases, these were helpers for 64-bit integer operations
(e.g., shifts) not provided by Rotor. In these cases,
the helper could easily be implemented within the
Rotor-specific VMInterface. Some other cases reflect
a more serious mismatch between StarJit and Ro-
tor. For example, Rotor provides an unbox helper
that performs the necessary type check on a reference
and then unboxes it. In StarJit, however, the type
check and the actual unbox are broken into separate
operations at an early point with the hope of statically
removing the type check via optimization. StarJit
expects a helper to perform the unbox-specific type
check but generates a simple address calculation to do
the actual unboxing. Rotor, on the other hand, only
provides a helper to perform the entire unbox. For
now, we use the castclass helper instead to perform
the unbox type check. However, this approach fails
when the unboxed reference is a boxed enumeration
type and will have to be corrected.

Finally, there are a number of helpers that Ro-
tor provides that are not currently invoked by Star-
Jit. Some of these additional helpers are provided
only to simplify portability (without them, Rotor’s
FJIT would need IA-32-specific and PowerPC-specific
assembly sequences). Other helpers assist in debug-
ging, while still more support additional functionality
such as remoting. Up to this point, none of the ap-
plications that we have tried to execute with StarJit
have needed the additional functionality provided by
these helpers. However, in the future, we plan to ex-
tend ORP’s VMInterface to enable StarJit to query
the VM and discover which of these additional helper
functions must be called.

4.2 Code and JIT Managers
As part of our implementation of multiple JIT sup-

port, we found we needed to use the other JIT man-
ager in Rotor. We could not use a second instance
of FJIT’s JIT manager because its implementation
uses global variables to, for example, map program
counters to methods and to manage memory. Two in-
stances would have conflicting uses of these variables.

Another part of the runtime interface concerns stack
walking activities such as root-set enumeration, excep-
tion propagation, and stack inspection. The Rotor
design, like many other VMs, divides this task into
one part that loops over the stack as a whole and
another part that deals with individual stack frames.
The loop part is in the VM proper and rightly so. Con-
versely, processing an individual stack frame depends
upon the JIT’s stack conventions (e.g., the location of
callee saves registers and where local and temporary
variables of reference type are located) and therefore
requires the JIT’s cooperation. In Rotor, all pro-
cessing of individual stack frames is done by the code
manager.

The code manager that comes with Rotor makes
many assumptions about JIT-compiled code:

• The code for each method is expected to consist
of a prologue, followed by the body, followed by
an epilogue.

• Multiple epilogues and epilogues interspersed in
the body are not allowed.

• The prologue and epilogue are precisely defined
code sequences, no deviations are allowed.

• Only ebp and esi are saved and available for
use; ebp is used as a frame pointer, while esi

is always a valid object reference (but possibly
NULL). Registers ebx and edi may not be used.

• The security object is at address ebp-8.

• JITs give root-set information to the JIT man-
ager in the form of an info block, which the JIT
manager then passes to the code manager dur-
ing root-set enumeration. This information is
expected to match the particular structure of
Rotor’s JIT.

These assumptions of Rotor’s code manager funda-
mentally conflict with those of StarJit. We therefore
decided to write our own code manager. This code
manager has to be part of the VM, but we decided
to try emulating Rotor’s interaction with the JIT by
having this new code manager simply convert all its
calls into calls to a runtime manager placed in the
same DLL as the matching JIT. We defined an in-
terface along the lines of corjit.h, and allow a DLL
to export a runtime manager as well as a JIT. This
approach was mostly straightforward.

However, the parameters passed to different code
manager methods are inconsistent. For example, the
method UnwindStackFrame gets an ICodeInfo object,
which can be used to identify the method and some of
its attributes, but FixContext does not. Also, these
methods need to know the current values of registers
for the frame that they are unwinding, fixing up, or
enumerating the roots of, and there are different types
of contexts for FixContext versus UnwindStackFrame

and most of the other methods. We decided to reflect
these inconsistencies in the external interface. Since
StarJit’s runtime interface is more uniform and re-
quires the method handle for the method of the frame,
we used the info block to pass the missing information
from compile time to run time.

Another minor point is that UnwindStackFrame is
sometimes called with the context esp equal to the
address just above the arguments of the out-going call
and sometimes equal to the lowest address of the out-
going arguments. In general, there is no way to tell
which of the two cases holds. This situation is fine if
frame pointers are used; the context ebp can be used
to find everything in the frame. However, requiring
frame pointers on IA-32 reduces the number of us-
able registers from 7 to 6. For now, we have modified
StarJit to use frame pointers.



4.3 Exception Handling
Another significant difference between Rotor and

StarJit concerns the details of exception propaga-
tion. Here, the differences stem directly from the char-
acteristics of CLI and Java. In CLI, there are excep-
tion handlers, filters, finally blocks, and fault blocks.
Each of these is a separate block of bytecode from the
region being protected, and control cannot enter these
blocks except through the exception mechanism. Con-
versely, in Java, there are only exception handlers and
these protect a region of bytecode. When an excep-
tion is caught in Java, control is transfered to a han-
dler address which can be anywhere in the method’s
bytecode.

Since StarJit was developed against the interfaces
of ORP, which originally supported Java and was later
adapted to also support CLI, StarJit’s design reflects
the Java exception mechanism. First, StarJit imple-
ments finally and fault blocks by catching all excep-
tions and then rethrowing them. This behavior is close
to but not exactly that required by the CLI specifi-
cation, although it is correct for code compiled from
C#. Second, there is a particular bytecode for leav-
ing an exception handler and returning to the “main”
code (a leave). Rotor requires the JIT at such a
bytecode to call the runtime helper EndCatch. This
helper cleans up stack state generated by the VM for
exception handling and ensures that finally blocks are
called. We modified StarJit to call this helper since
ORP does not have a corresponding helper. Finally,
Rotor needs an exception handler to be compiled to a
contiguous region of native code and it needs to know
the start and end addresses of that region. StarJit
knows the start address, but not the end address, and
might rearrange blocks so that a handler is no longer
contiguous. We do not have a solution for this prob-
lem yet. For now, we give a zero end address—this
causes Rotor to compute incorrect handler nesting
depths, but otherwise seems to have no ill effect.

4.4 Experience
Rotor should include better support for multiple

JITs. We had to modify Rotor to try more than one
JIT. We also had to add a second JIT manager, and to
write our own code manager. Rotor would be better
if JIT managers and code managers could be packaged
with JITs in a separate DLL, and if these could inter-
act with the VM through an abstract interface such
as those in corjit.h and corinfo.h. Furthermore,
the code manager functions should have a more con-
sistent set of parameters to make for a more uniform
interface.

Our experience integrating StarJit with Rotor
also led to changes in StarJit. For example, Star-
Jit’s VMInterface had to be generalized to better sup-
port requests for type-specific helpers. We also found
that StarJit should allow calling conventions to be
specified by the VM. Currently, we use #ifdefs in
StarJit’s source code to control calling conventions,
but this makes the code hard to maintain and the re-
sulting code less flexible. If StarJit queried the VM
about the calling conventions to use, it could adapt
itself dynamically to the needs of the VM. Also, the
design of a clean and flexible runtime helper interface

is an interesting problem, and one we would like to
address.

5. GC INTEGRATION
Rotor does not have an explicit, cleanly-defined

GC interface that resembles its JIT interface. Rotor
also does not support the dynamic loading of garbage
collectors from DLLs. As a result, to integrate our
GcV4 garbage collector into Rotor, we added GcV4
directly to the Rotor VM code base. Much of our
effort involved adapting GcV4 to run in Rotor and
reconciling the different assumptions made by Rotor
and GcV4. This section discusses our experience inte-
grating this collector, including the issues we encoun-
tered and our solutions.

Probably the most significant issue we found was
that Rotor exposes the implementation of its collec-
tor to other components in the system. For example,
Rotor’s GCHeap class reveals that Rotor uses a gen-
erational collector that treats large objects differently
than small ones, and allows clients to query whether
an object is part of the ephemeral generation. Much
of this is likely to change if Rotor’s GC is replaced
with another GC. As another example, the Rotor
VM uses knowledge about the collector’s implementa-
tion to allow JITs to emit optimized code. The VM’s
function JIT TrialAlloc::EmitCore can be called by
JITs to emit code for the allocation fast path for many
types of objects. That code assumes intimate knowl-
edge of the GC’s data structures and object-allocation
strategies.

The Rotor VM requires that the garbage collector
export a number of functions. We modified Rotor to
invoke GcV4’s functions instead of the corresponding
Rotor ones. The Rotor VM now calls the GcV4 ini-
tialization function and object allocator instead of the
Rotor equivalents. We also modified Rotor’s thread
constructors and destructors to keep GcV4 up-to-date
with respect to thread existence. Finally, we modi-
fied JIT TrialAlloc::EmitCore to no longer make as-
sumptions about the collector’s data structures. The
code it generates currently directly invokes the “slow”
allocation function, which we modified to call GcV4’s
allocator. We intend to add fastpath allocation back
into the generated code, but we hope to develop an
interface that will allow this to happen in a generic
way to support other collectors in the future.

Similarly, GcV4 expects the VM to supply a num-
ber of functions. One especially important function,
used at the start of a garbage collection, requests that
the VM stop all threads and enumerate all roots. Since
stopping (and restarting) threads in Rotor requires
a very specific sequence of events, we reused much
of the existing Rotor code for this purpose. We also
reused the two CNameSpace methods GcScanRoots and
GcScanHandles to do root-set enumeration by passing
them our own GcV4 callback function instead of Ro-
tor’s one.2

2In fact, CNameSpace::GcScanHandles ignores its call-
back parameter, but we modified the two functions it
calls to invoke our callback function instead.



5.1 Integration Issues and Solutions
In the course of our integration, we found a number

of conflicts between the assumptions made by GcV4
and Rotor about the layout of several key data struc-
tures. These are listed below along with our solutions.

• Object Layout. Since GcV4 was originally de-
veloped for ORP, GcV4 expected objects to use
ORP’s memory layout. Moreover, GcV4 as-
sumed that each object began with a pointer
to the vtable, followed immediately by ORP’s
multi-use obj info field. This field holds syn-
chronization, hash code, and garbage collection
state, and so resembles Rotor’s “sync block in-
dex.” However, Rotor places other object data
at a four byte offset while Rotor expects the
sync block index to be at a four byte negative
offset from the start of an object. Realistically,
too many parts of Rotor depend on this lay-
out to change it. Also too many parts of Rotor
use the sync block index in ways incompatible
with GcV4’s use of the obj info field, so map-
ping obj info to the sync block index is not a
solution.

Our solution was to place the ORP obj info

field before each object, at a negative eight off-
set from the object’s vtable pointer. This offset
does not conflict with any part of Rotor’s ob-
ject layout. As a result, no Rotor component
is aware of the extra field.

• Vtable Layout. GcV4 assumed that the first
4 bytes of each vtable is a pointer to a struc-
ture containing GC-related information that in-
dicates, for example, whether the object contains
pointers and if so, the offset of each pointer. The
start of Rotor’s MethodTable structure contains
the component size (for array objects and value
classes), the base size of each instance of this
class, and a pointer to the corresponding class
structure (EEClass). There are many places in
Rotor that assume specific offsets to these fields,
so changing the field layout would raise many
problems.

We also could not store the pointer at a neg-
ative offset from the start of the vtable. That
would interfere with Rotor’s CGCDesc and CGC-

DescSeries structures, which are stored before
the vtable if the class contains pointers. These
structures are used by FJIT as well as Rotor’s
collector, so we could not use that space for our
pointer.

We solved this by reserving space in Rotor’s
MethodTable class at a sufficiently high offset to
avoid conflicts with Rotor’s fields.

• Thread Layout. GcV4 assumed that a portion of
each thread’s data structure is storage reserved
for its use, which is is an essential part of ORP’s
object allocation and garbage collection strate-
gies. However, Rotor does not have an analo-
gous field in its thread data structure. Our solu-
tion was to add the extra storage at the end of
the thread objects.

5.2 Experience
Rotor should include a GC interface that resembles

its JIT interface. That is, Rotor should use functions
to abstract the interactions between the collector and
other Rotor components. These functions would hide
details about the collector’s implementation and help
to make explicit the assumptions it makes. Such an
interface would make it easier to modify the collector
and to experiment with new implementations without
affecting other components. For example, Rotor’s
GC interface could include a function that returns the
offset of its sync block index. This would avoid other
components assuming a fixed constant for that value.
Our experience with ORP’s GC interface has been
strongly positive, and it has allowed us to use several
different collector implementations without changing
its VM or JITs.

To enable easier GC experimentation, it would help
if Rotor’s GC could be dynamically loaded like its
JITs. New collectors could be plugged in to Rotor
including ones tailored for particular needs, such as
when an application needs high throughput more than
short GC pause times. Changing Rotor to dynami-
cally load its GC would also help to minimize assump-
tions made by the VM or other components.

6. STATUS AND FUTURE WORK
When we started our integration work, we wondered

how suitable Rotor would be as a research platform,
that is, how difficult would it be to add our optimiza-
tions and what changes to Rotor would be needed
to support them. Our plans were initially to add
StarJit and GcV4, then later implement in Rotor a
number of optimizations such as our synchronization
techniques, prefetching, and DPGO. This paper de-
scribed the approaches we took to integrate StarJit
and GcV4, and our experience with that effort.

The StarJit integration was straightforward except
for a few issues. While most of the needed changes
were within StarJit, we found that we had to modify
Rotor to add support for multiple JITs and to add
a new code manager for StarJit. We also needed
to support another JIT manager in Rotor. This
is because we could not create another instance of
FJIT’s JIT manager since its implementation depends
on global variables. Although Rotor allows JITs to
be loaded dynamically, and communicates with those
JITs using its abstract JIT interface, Rotor does not
allow JIT or code managers to be loaded dynamically.
Adding new code or JIT managers requires modifying
Rotor itself, although abstract interfaces for these
managers could be added to Rotor without much
trouble. Later, we expect to add support for some
of the more sophisticated StarJit optimizations such
as DPGO by augmenting Rotor’s JIT interface with
a new abstract superclass that defines the required
functions.

We found that adding a new garbage collector to
Rotor was much more difficult than integrating a new
JIT. Rotor does not have a clean interface for GCs
that resembles its JIT interface. Its GCHeap class, for
example, exposes details about the GC’s implementa-
tion that are used by several other parts of the system



including FJIT, so adding a different implementation
required changing those parts. We tried to minimize
the changes to Rotor, but a number of changes were
needed, for example, to have Rotor call functions in
the GC interface that GcV4 exports. Both Rotor
and GcV4 make assumptions about the layout of ob-
jects and virtual-method tables, so it was necessary to
modify our GcV4 implementation to place the fields
that GcV4 needs (such as one used to hold a forward-
ing pointer during collections) in locations that do not
conflict with fields required by Rotor.

Our work integrating StarJit and GcV4 with Ro-
tor is ongoing. We can run a number of test programs
and are currently getting our modified Rotor to work
with the C# version of the SPEC JBB2000 [8] bench-
mark. Our plans for StarJit include adding support
for pinned objects and full support for CLI excep-
tions (such as filters), as well as support for our opti-
mization technologies such as DPGO and prefetching.
Similarly, we will add support to GcV4 for managed
pointers. We are optimistic about being able to com-
plete this work and look forward to exploring other
opportunities for improving Rotor’s performance.
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ABSTRACT 

Active C# is a variant of Microsoft’s C# that enhances the basic language with a direct support for concurrency 
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1. BACKGROUND 
The roots of Active C# can be found in a ROTOR 
project partially funded by Microsoft Research [Gu]. 
The concept of active objects and their 
synchronization comes from Active Oberon [Gk], a 
successor of the Oberon Language and from the 
Active Object System [Mu], an internally developed 
operating system microkernel. This paper presents a 
consolidation and enhancement of an experimental 
language concept introduced in the aforementioned 
ROTOR project. 

2. OVERVIEW 
From a historical perspective, we can  easily 
recognize an evolution of the object concept from 
purely passive data records to re-active, functional 
entities. In our language experiment, we evolve the 
object concept another step further by adding 
encapsulated behavior and communication 
capabilities. 

Active C# is an extension of C# which mainly 
includes two new technologies: active objects and 
formal dialogs. 

Both technologies support the seamless integration of 
threading into the programming model, with the aim 
of increased acceptance and use of concurrency in 
programs. The idea is that programmers do not need 
to call the underlying threading framework directly 
anymore but can still add concurrency to their 
programs simply by making appropriate use of the 
programming model. 

Active Objects 
An active object is an instance of a class with 
encapsulated behavior, running one or more separate 
threads. 

In Active C#, this idea is supported by activities. a 
new kind of class members. An activity is a method  
with an empty parameter list and void result, run as a 
separate thread. Any number of activities are allowed 
in a class. 

Two kinds of activities exist: unnamed and named. 
An unnamed activity automatically starts after object 
instantiation and is executed only once per instance, 
where a named activity must be started explicitly and 
can be executed any number of times. The static 
modifier is also allowed for both kinds of activities 
and, if chosen, the activity is bound to the type of the 
object rather than to its instance. This implies that a 
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static unnamed activity is started when the class is 
loaded and that these activities run in the static 
context of the class. 

Formal Dialogs 
Formal dialogs are a vehicle that allows advanced, 
syntax-controlled communication between objects, 
notably between remote objects. Thus, a formal 
dialog serves as a communication interface from the 
outer world to an object. 

Assuming that some object b provides a syntactic 
specification of dialog D and that object a wants to 
communicate with b, this is how it works: 

• a instantiates dialog D with b 

• b creates a separate thread of control, acting 
as a symbolic channel of communication 
between a and b 

• a and b communicate over a symbolic 
channel according to the syntactical 
specification of D 

In Active C#, dialog interfaces and implementations 
are represented by keyword enumerations and parser 
activities respectively. For example: 

dialog D { u, v, w } 
// keywords 

class B { 
  … 
  activity d: D { … } 
  // parser 
} 

3. ACTIVITIES 
An activity is defined inside a class and follows this 
syntax: 

[“static”] ”activity” [ name ] ”{” statements ”}”. 

We recall that unnamed activities are launched 
automatically at instance creation time. In contrast, 
named activities must be started explicitly by calling 
an overloading of the new operator: 

”new” QualIdent. 

By concept, activities always run to their end, and 
there is no explicit option of aborting an activity. Of 
course, each activity can still decide to finish its 
work early depending on some state condition. 

Activities are inherited from base classes and run in 
parallel with activities defined in the derived class. 
Inherited anonymous activities are therefore started 
automatically at each instance creation of a derived 
class. 

The automatic starting of threads belonging to 
anonymous activities is handled by our modified 

compiler at the end of either the instance constructor 
or the type constructor. 

Synchronization 
Normally, object activities run in full concurrency. 
However, sometimes a certain precondition is needed 
for continuation. In line with our goal of simplifying 
concurrent programming and avoiding explicit calls 
to the threading framework, we use a direct 

await (condition) 

statement instead of signals for the reactivation of 
waiting activities. condition is an arbitrary 
Boolean expression representing the condition to be 
waited for. 
To ensure proper synchronization, the await 
statement must occur in a context that is locked with 
respect to the enclosing object and it must refer to a 
purely object-local condition. In Active C#, we use 
an overloading of the lock statement for this 
purpose: 

lock { } 

whose semantics is given in Figure 1, where context 
refers either to the current object (this) or its type  
descriptor (typeof(Class)) and Monitor refers 
to the corresponding type of the .NET Framework’s 
threading library. 

The lock statement simplifies both the specification 
of context-locking actions and the implementation of 
the Active C# compiler. Assuming that object state-
changes occur within context-locked sections only, it 
is reasonable to 

• map await (condition) to 
while (!condition) 
  Monitor.Wait() 

• generate a 
Monitor.PulseAll (context) 
at the end of each lock block 

However, interestingly, this is not sufficient. Another 
PulseAll (context) is necessary right before 

Monitor.Enter(context); 
try { 

// statements 
} 
finally { 
 Monitor.PulseAll(context); 
 Monitor.Exit(context); 
} 

Figure 1. The lock construct decomposed 



an unsatisfied await statement suspends its thread for 
the first time1 
In summary, all this leads to the decomposition of the 
await statement shown in Figure 2. 
 
In principle, time-oriented conditions could be 
handled by await statements of the form 

await (t >= T) 

within some Timer object. However, for 
convenience, a special passivate statement is 
provided for this purpose. This is its form and 
semantics: 
 passivate (duration); 

where the duration parameter specifies the 
number of milliseconds the current thread is to be 
suspended. The passivate statement can occur at any 
places in the code and takes any integer expression as 
argument. 
 

4. DIALOGS 
Our dialog model is based on formal grammars that 
constitute some kind of contract between caller and 
callee. An element of such a grammar is called a 
token. Each token basically specifies a data type and 
a direction. Our implementation of formal dialogs 
associates two buffers with each communication. 
Tokens sent by the caller are stored in the input 
buffer to be processed by the callee. Conversely, 
tokens sent by the callee are stored in the output 
buffer to be processed by the caller. Technically, 
both buffers are instances of 
System.Dialog.DialogBuffer and 
implemented as self-expanding ring-buffers. 

Encoding and decoding 
Because dialogs are designed to be used in remote 
environments as well, an encoding must be specified 
and agreed upon for each token type, and a codec  
must be plugged into the sender and receiver 
program respectively. This system works because the 
token buffers act as FIFO-queues and therefore allow 
their contents to be treated as a byte stream. 

The current codec supports the C# built-in types 
int, long, float, double, bool, char, 
string, byte, byte[], the new Active C# type 
keyword and an escape type used in some 
formal grammars. 
 

                                                           
1 Before suspending a thread after checking the condition 

of its await statement at all later times, no signal is 
necessary, because this thread had no possibility to 
change any condition in the meantime.  

Dialog specification and implementation 
A dialog specification is an element of a namespace 
(on the same level as classes and interfaces) and has 
the following syntax: 
 

[accmod] ”dialog” DialogTypeName keywords. 
accmod = private | internal | protected | public. 
keywords = ”{” [ { keyword ”,” } keyword ] ”}”. 

This declaration defines the dialog type,  including 
the list of keywords of the underlying grammar. User 
defined dialog types are always implicitly derived 
from System.Dialog.Dialog, a predefined 
type that specifies the dialog accessors (see next 
section) and some references to internal ingredients 
of a running dialog, such as its buffers. 
All keywords are of the new built-in type keyword, 
mapped to the enumeration type 
System.Dialog.Keyword. Their values are 
used by the sender and receiver, which guarantees an 
efficient transfer of keyword tokens. 
Note that dialog types have a comprehensive 
character and provide the following infrastructure: 

• An enumeration type for keywords 
• An interface for a dialog implementation 
• The data structure to control a running 

dialog 

A dialog implementation is a named activity that 
implements the corresponding dialog specification.  
The syntax is familiar from interface implementation: 
 

[“static”] “activity” ActivityName 
“:” DialogType “{“ statements “}”. 

 
Note that, in the case of activities, a formal syntax 
consistently replaces the argument list occurring in 
method declarations. We will use the C# attribute 
concept to bind a formal syntax to a dialog 
declaration. An automatic parser generator, which we 
are implementing in a related project, may read this 
syntax to produce an appropriate parser. 

bool waitingAlready = false; 

while(!condition) 

{ 

if(!waitingAlready) 

 { 

  Monitor.PulseAll(ref); 

  waitingAlready = true; 

 } 

 Monitor.Wait(ref); 

} 

Figure 2. Decomposition of the await statement 



Dialog operators 
In Active C#, four dialog-related operators exist: 
new, ~, !, ? and ??. In turn, their meaning is 
create a new dialog instance, close a dialog instance, 
send a token and receive a token in blocking and 
unblocking mode respectively. 
Not surprisingly, the Active C# compiler and runtime 
depend on powerful library support for the 
implementation of dialogs, especially for remote 
dialogs (see the corresponding section below). We 
already mentioned the types 
System.Dialog.Dialog and 
System.Dialog.DialogBuffer. 
These are the library methods that correspond to the 
Active C# operators: 

• constructor instantiates a dialog and 
returns a reference to the instance 

• close explicitly discards a dialog and 
stops its associated thread 

• send takes an object, encodes it and passes 
the encoded data to the input buffer 

• receive tries to decode the output buffer 
and returns an object 

The receive accessor can be called in two modes. 
In blocking mode, control is given back to the caller 
only after a complete object has been received, where 
in the non-blocking mode the accessor immediately 
returns control, however with a possible null  
return value if not enough bytes were available to 
decode a complete object at the time of invocation. 
Two variants put and get of send and receive 
are used within the callee class. They take the dialog 
reference directly from the thread context and are in-
lined by the compiler directly into the parser code. 
While the accessor methods work with the general 
object type, the compiler automatically casts the 
received object to the type of the target variable. 

Dialog lifecycle control 
Activities are launched in Active C# simply by 
calling their name, qualified by a reference to the  
object instance or class name (in the case of static 
activities). In the special case of dialog activities, a 
reference to the launched activity is needed in 
sending and receiving operations. For this reason, an 
overloading of the new operator is provided: 
 

ref = ”new” TypeOrRef ”.” ActivityName. 
 
where TypeOrRef is the name of the type for a 
static dialog or a reference to the callee respectively. 
Note that the reference returned by new refers to one 
specific instance of a dialog and is necessary to 
specify the context of the communication. Internally 
(that is, on the callee side) it is registered relative to 

the activity thread descriptor and loaded in a local 
variable at the beginning of each method which 
might potentially make use of it2, thus the 
programmer does not have to refer to it explicitly. In 
this way, the reference to the current dialog instance 
is available even across method calls. The caller can 
discard the current instance of a dialog explicitly by 
calling its destructor: 
 

”˜” ref. 
 
Any further access to this dialog would raise an 
exception. 
When the dialog activity terminates regularly, the 
corresponding thread is discarded and no further 
communication is possible, although the reference to 
the dialog instance remains valid. 
 

Communication 
The send and receive operators are designed to take 
generic arguments of type object. Received 
objects are type-checked and cast back to their actual 
type. Table 1 shows the communication syntax. d 
denotes a reference to the current dialog and obj is 
the token to be exchanged. On the callee side, the 
reference to the dialog is implicit. 
The use of separate buffers for input and output 
allows a full-duplex data-flow. The buffer size is 
increased automatically on demand but can be 
limited on desire. If the input buffer is full, the next 
send operation blocks. 
 

Action By client In parser 
context 

Send d!obj; !obj; 
Receive 

(blocking) d?obj; ?obj; 

Receive 
(non-

blocking) 
d??obj; ??obj; 

Table 1: Active C# communication syntax 

An example 
The communication mechanism supported by Active 
C# really shines when it comes to “stateful” dialogs 
such as, for example, negotiations. An upgraded 
version of John Trono’s Santa Claus concurrency 
exercise [Tr] may illustrate this. 

The original version goes like this: Santa Claus 
sleeps at the North Pole until awakened by either all 
of the nine reindeer, or by a group of three out of ten 
                                                           
2 Each method which contains at least one send or receive 

statement is marked appropriately 



elves. He performs one of two indivisible actions: If 
awakened by the group of reindeer, Santa harnesses 
them to a sleigh, delivers toys, and finally 
unharnesses the reindeer who then go on vacation. If 
awakened by a group of elves, Santa shows them into 
his office, consults with them on toy R&D, and 
finally shows them out so they can return to work 
constructing toys. A waiting group of reindeer must 
be served by Santa before a waiting group of elves. 
Since Santa's time is extremely valuable, marshalling 
the reindeer or elves into a group must not be done 
by Santa. 
The following complication now adds an element of 
negotiation: If complete groups are waiting for Santa 
when an elf desires to join, she should be given the 
option of withdrawing and walking away. Also, if 
one and the same elf desires to join excessively 
often, the coordinator should reject her. 
While the translation of the original Santa scenario 
into an elegant C# program is easy, the negotiation 
added provides a bigger challenge, mainly because 
no appropriate language construct is readily 
available. However, using the dialog construct of 
Active C#, the following solution of uncompromised 
elegance is straightforward.  

Figure 3 shows the behaviour of an elf while Figure 
4 depicts the coordinator activity which is the dialog 
partner of the elf. Note the negotiation which takes 
place between the two participants. 

It is perhaps interesting to compare our full C# 
program in the Appendix with Ben-Ari’s carefully 
crafted solution [Be] in Ada95 [Ad], albeit without 
the complication of negotiation. 

Remote dialogs 
Up to this point, we have concentrated our discussion 
on dialogs in local contexts, which allows us to refer 
to callee objects and dialog instances directly via 
memory references. However, the communication 
concept is by no means limited to local 
environments. The two basic upgrades needed to 
enable remote dialogs are: 

• Use GUIDs instead of memory references 
for the identification of both the callee 
object and the current dialog 

• Adjust the supporting dialog libraries to 
make them work on top of some suitable 
transport layer 

See [Gu] for more details. 

Summary 
We have presented an enhanced variant of C# called 
Active C#, featuring a new kind of class members 
called activity. Activities provide a uniform tool for 
two different purposes: specification of active 
behavior of objects and implementation of dialogs. 
The rationale behind is a new object model centered 
around interoperating active objects, in contrast to 
passive objects that are remote-controlled by threads. 
Important advantages of the new model are 
integrated threading and compatibility with remote 
object scenarios. 
While our first experiments with active objects were 
based on our proprietary language Active Oberon 
(one activity per object, no dialogs), the ROTOR 
Shared Source initiative and the availability of the 
C# compiler in source form (written in C++) allowed 
us to go a significant step further. The resulting 
Active C# compiler is fully functional and available 
[Ac]. 
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while (true) { 
?msg; 
if (eBuild <= groupNo + 2) 
  !CoordElvesDialog.reject; 
else { 
  if (eGo < eBuild) {   
  !CoordElvesDialog.wait; 
  ?msg; } 
  if (msg == 
  CoordElvesDialog.join) { 
  lock { groupNo = eBuild; 
   eSize++; 
   if (eSize == 
    Christmas.reqElves) 
       {  eSize = 0; eBuild++;} 
   await (eGo > groupNo); 
   } 
    !CoordElvesDialog.release; 
  } 
} 

} 

c = new Coordinator.CoordElves; 
while (true) { 
  passivate(Christmas.Rnd()); 
  c!CoordElvesDialog.join; 
 c?msg; 
   if (msg == CoordElvesDialog.wait) 
      if ((Christmas.Rnd() % 3) == 0) 
      c!CoordElvesDialog.release; 
      else c!CoordElvesDialog.join; 
   } 
 } 

Figure 3. Behavior of an elf 

Figure 4. Behavior of the elf coordinator 
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Appendix 

Sample Active C# Program: Santa Claus++ (Original by John Trono [Tr]) 
Santa Claus sleeps at the North Pole until awakened by either all of the nine reindeer, or by a group of three out 
of ten elves. He performs one of two indivisible actions: If awakened by the group of reindeer, Santa harnesses 
them to a sleigh, delivers toys, and finally unharnesses the reindeer who then go on vacation. If awakened by a 
group of elves, Santa shows them into his office, consults with them on toy R&D, and finally shows them out so 
they can return to work constructing toys. A waiting group of reindeer must be served by Santa before a waiting 
group of elves. Since Santa's time is extremely valuable, marshalling the reindeer or elves into a group must not 
be done by Santa. 
Complications: If complete groups are waiting for Santa when an elf desires to join, she should be given the 
option of withdrawing and walking away. Also, if one and the same elf desires to join excessively often, the 
coordinator should reject her. 

using System; 
using System.Dialog; 
 
namespace SantaClaus 
{ 

    // dialog declarations 
    dialog CoordReindeerDialog { join, release } 
    dialog CoordElvesDialog { join, reject, wait, release } 
    dialog ActivSantaDialog { deliver, consult, done } 
     
    class Reindeer { 
        // an unnamed instance activity -> starts when object is instantiated 
        activity { 
           object msg; 
           // create a new dialog instance 
           CoordReindeerDialog c = new Coordinator.CoordReindeer; 
           while (true) { 
               passivate(Christmas.Rnd()); // wait for a random time 
               c!CoordReindeerDialog.join; // send the keyword ‘join’ 
               c?msg; // receive whatever is sent 
           } 
        } 
    } 
 
    class Elf { 
        activity { 
            keyword msg; // a variable of the special type ‘keyword’ 
            CoordElvesDialog c = new Coordinator.CoordElves; 
            while (true) { 



                passivate(Christmas.Rnd()); 
                c!CoordElvesDialog.join; 
                c?msg; 
                // Note: automatic casting to the target type is done 
                // by the compiler 
                if (msg == CoordElvesDialog.wait) 
                  // the elf has to decide by her own what she wants to do now… 
                  if ((Christmas.Rnd() % 3) == 0) c!CoordElvesDialog.release; 
                  else c!CoordElvesDialog.join; 
            } 
        } 
    } 
 
    class Santa { 
        const int consultTime = 10, deliverTime = 20; 
 
        static activity ActivSanta : ActivSantaDialog { 
            keyword msg; 
            while (true) { 
                ?msg; 
                if (msg == ActivSantaDialog.deliver) { 
                   Console.WriteLine("Santa delivering toys"); 
                   passivate(deliverTime); 
                } 
                else { 
                   // if it is not ‘deliver’ it must be ‘consult’ 
                   Console.WriteLine("Santa consulting"); 
                   passivate(consultTime); 
                } 
                !ActivSantaDialog.done;  // send the keyword ‘done’ 
            } 
        } 
    } 
 
   class Coordinator { 
        static int rGo = 0, rBuild = 0, rSize = 0; 
        static int eGo = 0, eBuild = 0, eSize = 0; 
 
        static activity CoordReindeer : CoordReindeerDialog { 
            object msg; 
            int groupNo; 
            while (true) 
            { 
                ?msg; 
                // sections with state changes and await statements must be locked 
                lock { 
                    groupNo = rBuild; rSize++; 
                    if (rSize == Christmas.reqReindeer) { 
                        // this group is full, prepare to build a new one 
                        rSize = 0; rBuild++; } 
                    // wait until this group of reindeers comes back 
                    // from delivering 
                    await (rGo > groupNo); 
                } 
                !CoordReindeerDialog.release; 
            } 
        } 
 
        static activity CoordElves : CoordElvesDialog { 
            keyword msg; 
            int groupNo = -9999; 
            while (true) 
            { 
                ?msg; 
                // an elf is not allowed to join too often 



                if (eBuild <= groupNo + 2) !CoordElvesDialog.reject; 
                else { 
                    if (eGo < eBuild) { 
                        // complete groups are already waiting for santa 
                        // let the elf decide to join or to leave 
                        !CoordElvesDialog.wait; ?msg; 
                    } 
                    if (msg == CoordElvesDialog.join) { 
                        lock { 
                            groupNo = eBuild; eSize++; 
                            if (eSize == Christmas.reqElves) { 
                                // this group is full, prepare to build a new one 
                                eSize = 0; eBuild++; } 
                            await (eGo > groupNo); 
                        } 
                        !CoordElvesDialog.release; 
                    } 
                } 
            } 
        } 
 
 
        static activity { 
            object msg; 
            ActivSantaDialog c = new Santa.ActivSanta; 
            while (true) 
            { 
                lock { 
                    await ((rBuild > rGo) || (eBuild > eGo)); 
                } 
                if (rBuild > rGo) { 
                    c!ActivSantaDialog.deliver; 
                    c?msg; 
                    // the state change of this variable has to appear in a locked 
                    // section in order to be recognized by an await statement 
                    lock { rGo++; } 
                } 
                else { 
                    c!ActivSantaDialog.consult; 
                    c?msg; 
                    lock {eGo++; } 
                } 
            } 
        } 
    } 
 
    public class Christmas { 
        public const int nofReindeer = 9, reqReindeer = 9; 
        public const int nofElves = 10, reqElves = 3; 
        static Random rnd = new Random(); 
 
        public static int Rnd () { return rnd.Next(1000); } 
 
        static void Main() { 
           for (int i = 0; i < nofReindeer; i++) new Reindeer (); 
           for (int i = 0; i < nofElves; i++) new Elf (); 
           new Santa (); 
        } 
    } 
} 
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ABSTRACT 
Protection (access control) is a crucial issue in modern software systems. There are many different protection 
mechanisms, including Access Control Lists and the Code Access Security included in .NET. Capabilities are 
other well-known protection mechanism that has many merits. This paper describes a form of capability-based 
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exponential degradation of performance imposed by the security stack walking mechanism of .NET. 
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1. INTRODUCTION 
A protection mechanism (access control mechanism) 
is a security measure in computer systems that 
restricts access from a piece of code (subject) to a 
resource (object). An example is the well-known 
Access Control List protection mechanism: its 
variants are used in operating systems such as Unix. 

Object-Oriented environments based on OO Virtual 
Machines (Java and .NET being prominent 
examples) need a protection mechanism, too. 
Subjects are here objects (instances of a class), and 
the resource to protect is also an object (calls to a 
method of an instance of other class). .NET is 
shipped with a protection mechanism called Code 
Access Security [Wat02], part of a more 

comprehensive security system. The mechanism is 
based on a form of stack introspection [Wal97] 
(stack walking of the internal VM stack holding 
security information). 

But there are other protection mechanism, such as 
capabilities. Our research focus on the application of  
capability-based protection to object-oriented 
environments. We have implanted capability-based 
protection into the SSCLI-Rotor (the RotorCapa 
system1). SSCLI-Rotor [Stu03] is Microsoft’s Shared 
Source implementation of the Common Language 
Infrastructure (.NET). 

This paper describes briefly our model of capability-
based protection and its advantages (in general and 
compared to the .NET CAS mechanism). Then, the 
implementation of this model into the SSCLI-Rotor 
is presented with more detail, involving 
modifications to the core of the Rotor VM (Just in 
Time Compiler, object layout, addition and 

                                                           
1 RotorCapa development was supported by Microsoft 
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modification of instructions, etc.). Some early and 
encouraging performance results are presented in the 
next section. Another section draws some 
conclusions about the SSCLI-Rotor as a research 
platform gained while developing the 
implementation. The paper ends with a comparison 
with related work, and the conclusions and future 
work section. 

2. CAPABILITY-BASED 
PROTECTION 
Pure Capabilities [Den66] are a well-known 
protection mechanism that can be used to implement 
a comprehensive set of flexible security policies. A 
capability is basically a ticket which names an object 
(resource) and a set of permitted operations on that 
object (permissions) (Figure 1). The only 
requirement for an object (subject or client) in order 
to use another object (object or server) is to hold a 
capability pointing to the server object with adequate 
permission to use the intended operation. 
Consequently, an object will hold just the minimum 
protection information relevant to it: the rights to just 
the objects it will use. 

Capabilities for OO Environments based 
on OO Virtual Machines 
A big advantage of capabilities over other protection 
mechanisms such as the before mentioned access 
control lists, stack introspection, etc. [Wal97] is that 
they can be smoothly and easily integrated with the 
object model. 

In our version of capabilities [Dia99], the protection 
information (permissions) can be integrated with 
object references in the machine, and the mechanism 

for testing the permissions can be integrated with the 
method call process (Figure 2. If the reference does 
not hold a permission for the method called in the 
destination object, the call fails, and an exception is 
raised). 

Modifications to instructions (and structures) 
dealing with references must be also done 
accordingly. Just a new instruction to restrict the 
permissions a given capability is holding (to follow 
the principle of least privilege) is needed.  

In fact, there are no conceptual changes to the Object 
Model, and the protection can be (and should be) 
seen as another property of the Object Model 
(encapsulation, inheritance, ...and protection). 

We have previously worked with this model with our 
own OO environment with OO VM [Alv98] and 
have found advantages [Dia99] such as: 

• Flexibility and adaptability 

• High performance 

• Integration with the object model 

• Fine granularity of protection 

• Reduced Trusted Computing Base, as a 
simple mechanism is implemented with a 
small code. 

• More Hardened Systems, as the principle of 
least privilege can be followed with no 
restrictions. 

• Compatibility with existing applications, as 
capabilities are used as normal references in 
applications. 

• Scalability. Managing capabilities for 
thousands of objects is not a problem, as 
they are managed and stored as normal 
references in the objects themselves. 

Capabilities have some drawbacks, most notably 
revocation problems, although there are solutions 
such as facades and reference monitors in case they 
were needed. 

1 0 0 1
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Figure 2. Checking permissions in a capability. 
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3. WHY CAPABILITIES FOR .NET? 
The .NET security model is very complete and has 
many advantages. It includes a Code Access Security 
mechanism. So, why using other protection 
mechanism? 

Capabilities in general have its own merits. They are 
clearly superior to Access Control Lists in terms of 
confinement [Har02]. Besides, there are some points 
in .NET security for some applications where our 
model of capabilities is a best fit: 

• Complexity. The .NET security system is 
comprehensive and thus complex: evidence, 
policies,  permission sets, stack walking 
mechanisms... For many applications that just 
need the base form of protection (such as the one 
provided by capabilities) this is overkill: 

• Footprint and overhead. The code, data, 
and runtime overhead needed by the .NET 
security system is present, although just a 
fraction of its power is used. 

• Big Trusted Computing Base. For the 
same reason, the trusted computing base of 
the system is big, and the probability of 
security bugs increases. 

• Access to source code needed. To add 
protection to a given class, access to the source 
code of the class (to demand permissions) is 
needed, and the code to represent the 
permissions has to be created, too. With 
capabilities, any binary object can be protected 
anytime without effort (it just requires setting 
permission bits in the references). 

• Protection at the level of the class, not at the 
level of individual instances. Since permissions 
are assigned based (roughly speaking) on the 
class of a client instance, not on an instance-by-
instance basis. With capabilities, permissions are 
assigned on a reference-by-reference basis. Two 
objects of the same class can hold different 
permissions when calling a third object. 

And finally, another reason is that .NET can be used 
just as a platform to research on other protection 
mechanism. 

4. SSCLI-ROTOR 
IMPLEMENTATION OF 
CAPABILITIES: STRUCTURAL 
CHANGES 
Since we had previous experience implementing 
capabilities in a VM, we expected to follow a similar 
path to implement capabilities into the SSCLI-Rotor 
1.0. However, due to the constraints and the 
architecture of SSCLI-Rotor, we had to resort to a 
different approach, which is described in this and the 
following section. 

Representation of capabilities in objects 
Each (reference) attribute in an object can have a 

set of access permissions attached. A capabilities 
table holding these permissions is attached to every 
object (in the OBJECT structure), with an entry for 
each reference held in the object (Figure 3). A lazy-
creation strategy is used so that objects that do not 
use protection (i.e. do not apply the operation to 
restrict permissions to a reference) do not have this 
necessary protection overhead. 

The same is done for array references. 

Figure 3. Representating capabilities in objects 
and arrays. 
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Support in behavioural structures 
Implementing capabilities also needs support in 
structures used for behavioural purposes (execution): 
the execution stack (activation records) and the 
operation (evaluation) stack. 
An activation record (stack frame) for a method can 
have references to other objects in local variables and 
method attributes (parameters). These references can 
have an associated set of permissions. A scheme 
using capabilities tables similar to the one used with 
objects is applied. 
The permissions for these references are stored using 
one capabilities table for variables and one for 
attributes. These tables are organized into stacks that 
grow in parallel with the activation records (main 
stack). 
The operation stack also holds references that can 
have permissions (for example, a reference to an 
object and references to object parameters are 
stacked prior to a method call to the first object. 
These references have associated permissions. A 
capabilities stack that mimics this operation stack 
holds the permissions for the references. 

5. SSCLI-ROTOR 
IMPLEMENTATION OF 
CAPABILITIES: BEHAVIOURAL 
CHANGES 

New instruction: Restrict <method> 
This new instruction acts upon a reference (top of the 
stack), and denies access to the method specified, 
restricting the set of methods that can be called using 
the reference. 

This is the primitive operation for security. Initially, 
the creator of an object holds a reference with all the 
permissions. The creator object can duplicate this 
reference, restrict some methods, and then pass the 
reference to others for secure computation (the set of 
available operations for these objects is restricted). 

Call and callvirt now check permissions 
The other pillar of capability-based protection is that 
method calls to an object should only be allowed if 
the reference (capability) used for making the call 
has the permission (bit) for the method set active. 

Thus, call and callvirt instructions are modified 
accordingly. The instruction check that the reference 
to the object called (top of stack) has an asserted 
permission for the method being called (the bit for 
the method is “1” in the implementation). If the 
reference does not hold a permission (bit “0”) a 
protection exception is raised. 

Modifications to many other instructions 
Although capabilities only affect the semantics 

of the “call” instruction (now a security exception 
might be thrown), MANY other instructions are 
indirectly affected. With capability-based protection, 
ALL references, including local variables, references 
in the stack, etc., have an attached set of permissions 
(conceptually, that is the philosophy of capability-
based protection). The behaviour of the instructions 
that deal with references must take this into account, 
“manually” copying, deleting, etc. the set of 
permissions when dealing with references, as 
represented in structural and behavioural structures 
as shown before. 

Figure 4. Representing capabilities in 
behavioural structures. 
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Some of the instructions that had to be modified are: 

• Creation of new objects: newobj (when a 
new object is created a reference is returned. 
This reference has an associated set of 
permissions, initially set to “1” for the 
creator). 

• Storing from the stack: starg, stlocs, stfld, 
stsfld (when storing a reference from the 
stack, the permissions associated to the 
reference must also be copied to the 
destination reference) 

• Loading: ldarg, ldloc, ldnull, ldelem.x, 
ldelem.ref, ldfld, ldsfld, ldsflda, ldstr 
(symmetrically, permissions associated to a 
reference must be copied when the reference 
is pushed in the operation stack) 

• Various: dup, isinst, box, unbox 

Example of CLI code with capabilities 
The following is a small example of the use of 
capabilities in the SSCLI (the restrict instruction): 
... 

// An object is created and a reference 
// (capability) is left on the stack 

newobj instance 

void Test::.ctor() 

// A method is restricted in the 
// capability in the top of the stack 

restrict instance 

void Test::Message() 

// Now the method is invoked using the 
// reference in the top of the stack 

// The reference can be stored, cloned, 
// passed as an argument to other 
// objects, etc. 

callvirt instance 

void Test::Message() 

// The call will not succeed and an 
// exception is raised at this point, 
// as the reference used has not the 
// permission to call “Message” set 

... 

6. PERFORMANCE 
Preliminary tests were made, comparing the SSCLI-
Rotor capabilities system (RotorCapa) with a 
“normal” SSCLI-Rotor with the security system 
active. Access control to a method was checked by a 
very simple test program. 

The test program involved a class with a given 
method. An instance of the class was created and 
then the method was repeatedly called using the 
reference  

to the object created. To protect the call in SSCLI-
Rotor, a .NET permission protecting the method was 
created and granted to the original class. In 
RotorCapa, the permission for the method in the 
reference remained set to achieve the same effect. 

The same test program was run with different stack 
depths before calling the method. 

As the .NET security mechanism relies on stack 
walking, it was expected that the time taken by 
SSCLI-Rotor to execute the same program would 
increase with the stack size, as and domain 
intersections and stack walks are getting longer. The 
exponential degradation of performance shown in 
figure 5 confirms this. 

RotorCapa, on the other hand, does not rely on stack 
walks. The mechanism always checks that a given 
permission is set on a reference or not, and this, 
ideally, is independent of stack size, and the number 
of permissions needed in the system. Thus, ideally, 
the time taken by RotorCapa should be constant. 
Actually, the figures show a linear increase of the 
time (much better than exponential).  This can be 
related to the way method calls are handled and a 
non-optimal implementation of capabilities in this 
first version. 

With modest stack sizes, RotorCapa performance is 
very similar to SSCLI-Rotor performance. 

These performance results are very encouraging. On 
the one hand performance is equal or better than 
SSCLI-Rotor, and our implementation is barely 
optimized in this version. The test program was very 
simple. In fact, there is only one domain and one 
custom permission used. With more domains, and 
more custom permissions (as would be the case with 
real applications), the burden of stack walks, domain 
intersections and searches of permissions should be 
more apparent, and the performance of the 
capabilities system would become even more 
obvious. 

Figure 5. Performance of RotorCapa and 
SSCLI-Rotor (simple test). 
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7. PROS AND CONS OF  THE SSCLI-
ROTOR AS A RESEARCH PLATFORM 
A very important bonus of working with SSCLI-
Rotor is that we can now make further research on 
capabilities without having to resort build a complete 
VM to test the mechanism. 
.NET is a system that has many “real” applications 
already done, and these applications can be directly 
used in SSCLI-Rotor (and therefore in RotorCapa). 
Thus, we can use real applications to research the 
cost of capability-based protection. To build similar 
applications in number and complexity for a custom 
system is something that is out of the picture. 
Obviously, the code to use capabilities must be added 
to the applications, but this is an incremental and 
relatively small process. 
However, the implementation of capabilities in the 
SSCLI-Rotor source code was not as easy as we 
would have liked. Base Rotor security structures and 
code are deeply intermingled with the core of the 
Rotor VM. We did not try (yet) to delete them and 
avoid its overload. The nature of our project and the 
architecture of Rotor obliged us to “touch” almost 
every part of the Rotor VM:  JIT, dozens of helpers 
for the JIT (assembly generation), memory layout, 
stack, threads, metadata, etc. 

8. RELATED WORK 
Capabilities as a protection mechanism are almost as 
old as computers, and many projects have used this 
protection mechanism, especially in the OS area. 
With the recent spread of security breaches in 
commercial Access Control List-based Operating 
Systems, there is a renewed interest in them, as 
shown in the EROS operating system [Har02], or the 
JX [Gol02] Operating System. 
Capabilities were also used in object-oriented 
systems, for example in the Hidden Capabilities 
model [Hag96]. They were also used in OO systems 
based in Virtual Machines, such as the J-Kernel 
[Haw98] project for the Java platform. 
All these projects use the basic philosophy of 
capabilities for protection. However, the specific 
variants differ in many aspects with our approach, 
mainly in how protection is smoothly integrated with 
the object model and the virtual machine structures 
and mechanisms in our system. 
With respect to .NET and the SSCLI-Rotor, there are 
some projects that use the SSCLI to test or 
implement different protection mechanisms, such as  

the implementation of the Delegent authorisation 
system for SSCLI-Rotor [Ris03], but none (as far as 
we now) related to capabilities. 

9. CONCLUSIONS AND FUTURE 
WORK 
Protection (access control) is a crucial issue in 
modern software systems. There are many different 
protection mechanisms, including Access Control 
Lists and the Code Access Security included in 
.NET. 

Capabilities are other well-known protection 
mechanism that has many merits. We have developed 
a form of capability-based protection specially suited 
for Object-Oriented environments based on OO 
Virtual Machines. Our system compares favorably 
with the .NET CAS mechanism in many contexts, as 
it is much simpler, with a smaller overhead, 
footprint, and trusted computing base, does not 
require access to the source code of a class (or 
additional coding) in order to protect it, and grants 
protection at the level of individual instances instead 
of at the level of classes. 

We have successfully implanted this capability-based 
protection mechanism into the Microsoft SSCLI-
Rotor implementation of the CLI (.NET) standard 
(the RotorCapa system). This involved modifications 
to structural and behavioural structures of  the VM to 
represent the permissions associated to the 
capabilities, as well as modifications to the 
implementation of instructions that deal with 
references. 

As expected, one advantage of capability-based 
protection is visible in the early performance results 
of the RotorCapa system. The performance is at least 
as good or much better than the .NET CAS figures, 
that show an exponential degradation of performance 
with stack size. Since the test program was very 
simple and the RotorCapa version in not much 
optimized, it is expected that the results would be 
better with test conditions similar to the ones had 
with real applications. 

SSCLI-Rotor has proved to be a good platform for 
research, as we did not have to build a complete 
commercial-like VM to test our protection 
mechanism. Besides, we had a direct access to the 
vast array of existing applications created for the 
.NET platform. However, the nature of our work, and 
because of the Rotor architecture, involved 
modifying the source code of the many of the parts 
of the core Rotor system (and that was not as easy as 
expected). 



Future work will be precisely in the area of 
performance testing. In a first phase, we will develop 
a more comprehensive benchmark of test programs, 
to exercise different elements of the system, and to 
represent conditions more similar to actual 
applications. In a second phase, we will instrument 
real .NET applications that are readily ported to 
Rotor, to measure the performance of the capability-
based protection mechanism in real production 
conditions. 
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1. INTRODUCTION
The emerging capabilities of modern mobile devices
with respect to CPU power, wireless communication
facilities, and battery capacity are the foundation of
future multihop ad-hoc networks. The frequent as
well as unreliable and anonymous communication
between accidental neighbors observed in these
mobile networks makes their successful deployment a
challenging task. With the absence of any reliable
backbone network, all mobile devices have to partici-
pate altruistically in a distributed execution environ-
ment with some kind of epidemic message delivery.
Self-organization is the most promising design princi-
ple in order to manage these networks successfully
and efficiently. As a consequence, any decision of a
mobile device must be based on local as well as on
current neighborhood knowledge and common goals
must be achieved by means of synergy.

Any fundamental communication pattern in such a
network exhibits an en passant characteristic. Two
devices are within communication range for a short

period of time and while they pass each other, they
might cooperate and exchange certain data. In most
cases, being within communication range with a
given device is purely accidental and the probability
to meet this device again in the near future is fairly
low. During this en passant communication, applica-
tions and middleware must agree fast on which enti-
ties should change the hosting device in order to get
closer to their final destination. The required deci-
sions depend on a number of factors, among others
the importance of the moving entity, the size of the
entity compared to an estimation of the remaining
interaction period, and the future direction of the
neighbor with respect to the final destination.

These stringent conditions for distributed applications
in multihop ad-hoc networks aggravate the need for
the continuous adaption to a dynamically changing
environment. As a consequence, this requires a very
tight coupling between the mobile applications and
the middleware. Many high-level mechanisms that
are common in traditional system software and mid-
dleware that trade transparency vs. performance are
therefore inadequate. The goal of the GecGo middle-
ware (Geographic Gizmos) is to offer this tight inter-
action with application components and to provide all
the necessary services required by self-organizing
systems running on multihop ad-hoc networks. The
first prototype of this middleware has been imple-
mented on Microsoft Windows CE 4.2 .NET using
the .NET Compact Framework.

In the next section, the fundamental concepts and the
basic functionality of the GecGo middleware are
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introduced. The functionality of the GecGo middle-
ware is discussed in section 3. The architecture and
implementation issues of the .NET prototype are dis-
cussed in section 4. The paper ends with an overview
on related work and a conclusion.

2. GECGO CONCEPTS
The conceptional structure of the middleware and its
four basic abstractions are depicted in figure 1. Any
mobile or stationary device participating in the
GecGo runtime environment is represented by a
DeviceGizmo and the code of GecGo applications is
derived from the base class CodeGizmo. Every code
has its residence in form of a device. Depending on
the distributed execution model, this residence
remains fixed or it might change over time (mobile
agents). For application code with a fixed residence,
GecGo provides the abstraction of mobile state
(StateGizmo) that might change the hosting device
instead of the code. Since end-to-end messages
between devices may remain on a device for a longer
period of time in case no suitable neighbor is found,
they also exhibit a more state-like nature. As a conse-
quence, messages are represented in GecGo as special
cases of a StateGizmo.

The fourth abstraction is defined by the VenueGizmo
which ties a logical place or an event to a well-
defined set of geographic coordinates and time slots,
e.g. a several week long lecture on distributed sys-
tems with changing rooms and time slots. Venue-
Gizmos are virtual in the sense, that they bear no
computational resources per se. Instead they rely on
the devices that are within a given distance from the
venue center. Entities with a venue as their destination
will first try to reach a device at the venue. As long as
they have no other destination, they will try to remain
at the venue possibly by changing the hosting device.

GeoTraces
All major abstractions in GecGo are derived from a
fundamental data type TraceableGizmo (see figure
2). Any subtype of this class is traceable in time and
space by means of a GeoTrace. These traces keep
accounts on events in the past, they reflect the present
situation, and they store estimates about future events.
The actual information stored in the trace of a gizmo
is defined by its type and consists of a set of so-called

Gepots (pieces of time and geographic data). Also
the depth and the level of detail of the GeoTrace
depends on resource considerations and the actual
type of gizmo. For example, DeviceGizmos keep
track about where they have been in the past, at what
time as well as why and they may also store informa-
tion about previous neighbor devices. The present
informs about the current position of the device and
the actual neighborhood. The future trace might con-
tain estimates where the device will be in the future,
e.g. students will be in certain future lectures with a
high probability.

Traces of StateGizmos will be more resource-lim-
ited. They will store at least the final destination as
part of the future trace. VenueGizmos are even more
restricted, since they represent only virtual entities
within the GecGo environment. As such, the trace of
the venue is identical to the time schedule of the event
associated with this venue. Additional data that might
be important to run the venue must be stored by the
hosting devices that are currently within the vicinity
of the venue center.

All devices are required to update their traces contin-
uously over time. With the goal to keep the number of
Gepots in the past to a reasonable minimum, the
information stored in the present of the trace will be
shifted into the past, e.g. when a mobile device starts
moving again. The traces of devices are also the pri-
mary source for changes in the traces of other cur-
rently hosted state and code gizmos.

From a conceptual point of view, the main function of
the GecGo middleware enables traceable gizmos to
move towards new destinations. The most common
type of movement allows for mobile state to reach a
given mobile device or to get into the vicinity of a
certain venue, e.g. to implement the marketplace
communication pattern for multihop ad-hoc networks
as presented in [2]. In this context, a marketplace is a
application-defined geographic area with an expected

Figure 1: Main GecGo Abstractions
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high density of mobile devices (e.g. a lecture hall).
Entities of a mobile application move between mobile
devices of the users and the marketplace using a geo-
graphic routing protocol. By concentrating applica-
tions on specific geographic areas, marketplaces
increase the probability that corresponding entities of
the application get in contact with each other.

Covered by the concepts of GecGo are also the move-
ment of mobile devices to reach a given venue (the
special case of a navigation system, of course with the
physical help of the human device owner) and move-
ment of mobile code between devices as a means to
implement mobile agent systems.

3. GECGO ARCHITECTURE

The basic architecture of the GecGo middleware con-
sists of two gizmo management domains (see also fig-
ure 3):

• the Lobby for all the gizmos that are in transit
and haven‘t reached their final destination yet

• the Residence, with gizmos that are intended
to stay at this device for a longer period of
time

Movement of gizmos from the lobby to the residence
and vice versa will be performed with the aid of the
porter service. Primarily, the porter is responsible for
securing the identity of incoming gizmos and for pro-
viding the resources requested.

The Directory Service
A central directory service keeps track on any
changes in both management domains. The directory
itself has a hierarchical structure with leaves at the
gizmo level (see figure 4). Applications may query
the directory with wildcards to locate the required
information. Most of the attributes of a gizmo entry
are application-specific. For this purpose, the direc-
tory allows the definition of arbitrary key/value pairs
as part of a gizmo leave. Additional attributes inside

the directory tree are defined by the GecGo middle-
ware and primarily serve infrastructure purposes such
as the number of gizmos actually stored in the lobby
or the list of neighbor devices moving in a southern
direction.

As depicted in figure 4, the directory tree consists of
three major branches. The branch named Gizmo con-
tains all the information and attributes about any
gizmo located on the given mobile device. Addition-
ally, entries about specific gizmo types that are known
by a mobile application but where no instance is
available on the device yet can be inserted by applica-
tion components. In conjunction with the asynchro-
nous notification mechanism described below,
applications can react appropriately on future events.

The remaining two branches below the root of the tree
keep track on the gizmos located in the residence or
the lobby. Primarily, these branches contain refer-
ences to specific gizmos that are part of these
domains. The residence branch holds references to
code gizmos that are installed on the mobile device or
that entered the device via the porter in case of a
mobile agent environment. The lobby has references
to the gizmos awaiting a device change in order to
reach their final destination. Most of these gizmos are
of type StateGizmo, although again in a mobile
agent environment, the lobby could also be occupied
by code gizmos that might change the host or enter
the residence through the porter. Also part of the
lobby branch are references to device gizmos that
represent the current neighborhood of the mobile
device. This information about the current neighbor-
hood is also available as part of the device’ present
GeoTrace.
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Gizmos in the lobby and the residence may query for
the existence of certain gizmos and they may register
a callback to be informed about specific events. For
this purpose, every gizmo has an application defined
unique name that serves as the key for the directory
service. Possible events supported by the middleware
are:

• arrival of a new gizmo with a specified type in
the lobby of a device

• departure of a gizmo from the lobby
• movement of gizmos between the lobby and

the residence
• instantiation and deletion of new gizmos by

means of code gizmos in the residence

Communication with direct Neighbors
Singlehop communication services for gizmos with
devices in the immediate neighborhood are provided
by the middleware kernel. Therefore the middleware
has to know all available devices within singlehop
communication range. Information about these
devices are periodically updated in the lobby branch
of the directory tree as references to device gizmos.
These entries store the following attributes:

• an unique device id, which is used to resolve
the current ip address of the device

• the port which is used for gizmo transmissions
• a flag indicating if the device currently accepts

incoming gizmos
• the future GeoTrace of the mobile device in

order to ease the decision which gizmos to
move during the en passant communication

The required information is exchanged among mobile
devices by broadcasting a beacon in regular time
intervals using an UDP based communication proto-
col. These beacons contain all the aforementioned
information to ease gizmo exchange. The protocol is
also being used to transmit other kinds of messages
such as termination signals or requesting a certain
gizmo. With the device information—containing ip
address and port of a potential communication
partner—the middleware is able to establish a TCP
connection to transfer a gizmo.

Mobile State vs. Mobile Code
A central decision in mobile ad-hoc networks
addresses the issues on mobile code vs. mobile state.
Mobile agents are an interesting technology for wire-
less and mobile networks with far reaching implica-
tions on system security and code integrity. The
GecGo middleware covers mobile agents in its model
by accepting a changing residence for mobile code.
This functionality is currently not part of the .NET
implementation of the GecGo middleware platform.
Besides technical reasons, this decision is primarily
driven by a number of unsolved problems with
respect to the limited resources on a mobile device,
the larger amount of data required to move mobile
code including its execution state transparently from

one device to another, and the need to authenticate
and secure code execution.

Instead of mobile code, the GecGo middleware actu-
ally offers so-called mobile state, which requires the
application components to cooperate non-transpar-
ently in packaging and unpacking execution state into
and from mobile state gizmos. The middleware offers
several functions and services to ease this task for the
application code. In contrast to mobile code, applica-
tions must be installed explicitly by the user of a
device, before state gizmos for a given application
can be received and processed on their final destina-
tion. Of course no application code must be installed
on devices that are only intermediate hosts for state
gizmos.

An Routing Gizmo Example
To illustrate the dynamics inside the GecGo middle-
ware, an example for a multihop routing service is
elaborated in more detail. In this scenario, a routing
gizmo—a subclass of a code gizmo—implementing a
version of a geographic routing protocol is available
as a pre-installed GecGo application. In this constella-
tion, the routing gizmo is responsible for the end-to-
end communication in the ad-hoc network on the
basis of exchanging state gizmos between neighbor-
ing devices as provided my the middleware.

The routing gizmo registers a callback with the event
that will be invoked in case a new neighbor device is
within communication range. The event causes the
routing gizmo to examine the beacon information of
this neighbor in order to decide which state gizmo to
transfer. As mentioned above, part of the beacon
information are geographical coordinates about future
positions of the neighbor device. This position infor-
mation is the primary source for the routing decision,
e.g. if a venue in the future trace of the neighbor
device is identical to the future venue of a candidate
state gizmo or if the trajectory of the neighbor device
is targeting towards the destination of the state gizmo.

In a first scenario we assume that a state gizmo g,
which is currently part of the lobby on a device d1,
wants to reach a venue gizmo v. Each time such a new
state gizmo with different destination enters the lobby
of a device, the enter-event triggers the execution of
specific callback in the routing gizmo in order to store
its destination venue. Suppose now that another
device d2 is passing by d1. In that case the routing
gizmo decides with respect to the used routing proto-
col (e.g. greedy routing) whether g moves from d1 to
d2 or not. This procedure is repeated on different
devices until g arrives on a device close to its destina-
tion venue. 

In another routing scenario, gizmos residing on two
different mobile devices want to exchange informa-
tion directly, for example a mobile application on
device d1 wants to send a state gizmo g to another
application on a specific device d2. Since a routing
path from d1 to d2 among multiple mobile devices



cannot be maintained because of the dynamics in
multihop ad-hoc networks, d1 must determine the
position of d2 in some other way. One solution to this
problem is, to hash the identification of d2 to a spe-
cific geographic position within a given area (e.g. the
university campus). This hash function is identical on
every participating device and consists of a classical
cryptographic hash to achieve a statistically unified
distribution and a subsequent mapping of this ran-
domized identifier to a geographic position. The cal-
culated geographic position will be the target for the
state gizmo in the same manner as in the example
above. In return the device d2 itself is able to compute
the same geographic position and it might issue addi-
tional requests to collect the information or to period-
ically send updates about its position to this venue. 

4. .NET IMPLEMENTATION
A first prototype version of GecGo has been imple-
mented using the Microsoft Windows CE 4.2 .NET
operation system and the .NET Compact Framework.
The middleware has been written in C#. At the time
of writing, the middleware has a size of approxi-
mately 3000 lines of C# source code. The GecGo exe-
cutable itself has a size of 84 KBytes at runtime
without any mobile applications installed. The target
mobile devices are Compaq IPAQs H5550 with 128
MByte main memory and integrated WLAN commu-
nication facilities. The middleware can also be exe-
cuted on ordinary notebooks supporting the full
version of the .NET framework. The porter service as
described in section 3 is not part of the current imple-
mentation. The main reason for this is the concentra-
tion on mobile state instead of mobile code. As a
consequence, all mobile applications are currently
installed explicitly on any participating mobile device
with no need for the porter services.

The GecGo middleware architecture consists of five
major classes:

• Middleware: This class serves as the main
access point for mobile applications. The class
also handles incoming state gizmos and
enables the execution of new applications.

• Beacon: The UDP beacon required for the
discovery of devices within communication
range is sent periodically by an instance of this
class.

• UDPListener: Primarily, this class handles
incoming beacons of other devices. It also acts
on the receipt of UDP-based requests by
neighbor devices to prepare for the transmis-
sion of another gizmo.

• TCPServer: This class is used on the receiv-
ing side to transmit complete gizmos from one
device to another. The device willing to send a
gizmo takes up the client role.

• GecGoDirectory: This class defines the
interface to all directory-related functions of
GecGo.

The single instance of class Middleware imple-
ments the graphical user interface of GecGo. The user
can browse the mobile applications installed on the
device and select individual applications to be exe-
cuted. For this purpose, the Middleware maintains a
hash table to derive the reference to the corresponding
assembly via its name. Each time an application is
started, the entry point of the assembly—a public
static method called run(IMiddleware mid)—
is executed. In this call, the argument mid of type
IMiddleware defines all the functions that are
available to mobile applications. In the prototype
version of GecGo, the following methods and
properties are provided:

• SendToAllNeighbors(Gizmo g)
• SendGizmo(Gizmo g, Device r)
• RegisterApplication(Assembly a)
• IGecGoDirectory gd

The property gd returns a reference to the directory
service of the middleware through the interface
IGecGoDirectory. This interface encapsulates all
the directory functions available to the mobile appli-
cation. Among others, the directory service currently
defines the following methods:

• InsertGizmo(Gizmo g)
• DeleteGizmo(Gizmo g)
• RegisterEvent

(Delegate f, string regExp)
• UnregisterEvent(Delegate f)
• GetGizmos(string regExp)

The delegate mechanism of C# is used to implement
the asynchronous callback mechanism of the GecGo
directory service. For example, if a gizmo inside the
residence wants to be notified upon the arrival of giz-
mos of a given type T in the lobby, it registers a dele-
gate with the event /Lobby/T/<Enter> and the
middleware will call back each time such a gizmo
enters the device. The .NET events may also be used
to implement asynchronous notifications between dif-
ferent gizmos.

The different communication tasks of the middleware
are handled by 3 dedicated threads, which are created
through instances of the classes Beacon, TCP-
Server, and UDPListener. Any device maintains
information about its current neighborhood through
the listening UDP thread which receives any beacon
messages issued by the Beacon thread of nearby
devices. The detailed information about the neighbor
will be continuously reflected by the structure of the
directory service and may—for example—trigger the
transmission of state gizmos in the lobby of a device.
In this case, an UDP request is sent to the potential
next host. If this device is willing to act as a host, a
TCP connection will be established and the selected
gizmo will be transmitted. The decision to rely on
TCP connections for the transmission of gizmos even
if the size of the gizmo would fit into a single WLAN
frame only holds for the prototype version of GecGo.



While implementing the thread-based communication
part of the middleware, several limitations of the
.NET compact framework became obvious. Several
management functions of the full .NET framework
such as asynchronous thread termination are missed
in the compact version of .NET. As a consequence,
more complex synchronization techniques must be
implemented to manage the active number of threads.
Also the interaction between beaconing and dealing
with the receipt of UDP messages would benefit from
additional functionality around UDP sockets, e.g. to
add a time-out value to a blocking receive on an UDP
socket.

Before sending, any gizmos are serialized. The binary
format of a serialized gizmo follows the TLV princi-
ple (Type, Length, Value). In the current version of
GecGo it is assumed that a gizmo is defined by the
values of the non-static class members, so that there
are no interface implementations needed to marshall
objects. Thus, the serialized form is a sequence of
these values. Each member is described by a type, a
name and a value triple. Non-primitive values are
marshalled recursively in the same way and arrays are
characterized by the enumeration of their values. By
using the reflection mechanisms of the .NET Com-
pact Framework the member informations and values
are queried independently from their visibility. The
reason for the explicit implementation of a gizmo
serialization is the missing support of the Binary-
Formatter and the SoapFormatter classes of
the .NET framework in the compact version. The
main reason for this were size and performance con-
siderations which might hold for today’s mobile
devices. But in anticipation of future heterogeneous
and mobile computing environments, there will be a
increasing need for a standardized serialization mech-
anism besides accessing web services.

Threads in GecGo
A first set of experiments was targeted towards the
Microsoft system software in order to determine the
costs induced in a multi-threaded implementation of
the middleware running on top of Windows. Observa-
tions at the beginning of the implementation phase
lead to the initial decision, to implement a first mid-
dleware version with a limited number of threads
only, because thread instantiations, deletions, and
context switches appeared to be to costly on the IPAQ
devices. In order to verify this observation, a simple
C# test program has been implemented which instan-
tiates a variable number of threads. Each of these
threads yields the CPU in a while loop for a given
period of time (2 minutes). The calculated time for a
single context switch is depicted in figure 5 for 2 to
256 threads in a single address space (application
domain). The same source code has been compiled
for 2 different release platforms: (1) a Windows con-
sole application with the full support of the .NET
foundation classes (Version 1.1) and (2) a smart
device application using the .NET compact frame-

work only. Both executables have been executed on a
1900 MHz mobile Intel Pentium 4. As the graphs in
figure 5 indicate, the time for a single context switch
increases slowly with the number of threads, starting
with 937 ns (.NET CF executable) and 915 ns (full
.NET executable) for two threads. The absolute num-
ber for 256 threads are 3361 ns (.NET CF executable)
and 3438 ns (full .NET executable).

The absolute times for the iPAQ .NET CF executable
running on a 400 MHz Intel Xscale processor are
16.28 microseconds for 2 threads and again 16.889
microseconds for 256 threads. A little surprising was
a significant minimum of 4.99 microseconds for 8
threads. Provided that the time of a single context
switch with no required change in address space is
determined primarily by the CPU speed, there is a
factor of 4.75 in CPU speed (1900 MHz to 400 MHz),
compared to a factor of 17.38 (worst case) and 5.17
(best case) in context switch time.

Measuring Gizmo Exchange
It is crucial for the successful execution of distributed
applications in multihop ad-hoc networks, that a suffi-
ciently large number of gizmos can be exchanged dur-
ing en passant communication. In another set of
experiments, this number of transferred gizmos
between mobile devices within communication range
is determined. The test programs for these experi-
ments are written in C# as mobile applications using
the functionality of the GecGo prototype. Varying
parameters are the size of state gizmos, the number of
participating devices, and the average mobility of spe-
cific devices.

The number of gizmos with increasing size trans-
ferred successfully between two iPAQs using the first
prototype version of GecGo are depicted in table 1.
As expected, the number of gizmos transmitted
decreases with increasing gizmo size. Obviously,
these numbers are still fairly low compared to the
available throughput of nominal 11 Mbps offered by
the WLAN adapters of the mobile devices. But since

Figure 5: Duration of context switches



the prototype version of GecGo has not yet been opti-
mized and performance tuned, hopefully there will be
space left for improvements. Especially, the fre-
quency of beacon messages, the impact on power
consumption, as well as the fine tuning of execution
paths during the exchange of gizmos has not been
investigated in more detail yet. In order to estimate
the possible increase in throughput, it is also intended
to measure the achievable number of bytes transmit-
ted over a plain TCP connection in an identical sce-
nario between several iPAQs in an accompanying
experiment.

Nevertheless, this version of the GecGo prototype can
already be used for first experiments with mobile
applications: assuming that two devices are within
communication distance for at least 50 seconds—pro-
vided that two mobile devices with a communication
range of 50 meters travel with a speed of about 1
meter per second—they can exchange e.g. about 100
gizmos of size 512 bytes.

The same experimental program can also be used for
more than two devices in order to determine the influ-
ence of neighboring devices on gizmo exchange. Due
to the spread spectrum modulation of wireless com-
munication, the interference between pairs of commu-
nicating devices appears to be fairly low. With 4
iPAQs, where gizmos are exchanged among pairs of
mobile devices, the number of successfully transmit-
ted gizmos is identical to the 2 iPAQ scenario (2.12
and 2.13 gizmos per second in case of 512 byte size).

First GecGo Applications
The GecGo middleware platform is currently used to
implement several example applications, to gain
experience with the abstractions provided by the mid-
dleware and to improve the platform architecture and
functionality. We started with the development of a

simple e-learning application: a peer-to-peer quiz for
students to assist in the preparation of examinations.
The basic idea is to enable participating students to
issue interesting examination questions. These ques-
tions are propagated by the GecGo middleware to the
corresponding venue that has been assigned to the
specific course. Participants interested in examination
questions for a given course will issue a request that
too will be propagated to the corresponding venue
where it remains for some period of time to collect
new items. This collection of new questions will be
realized by means of additions to the initial mobile
state gizmo. Eventually, the request will move back to
the sending owner and any results will be presented to
the user. Additionally, the application enables stu-
dents to rate and to order a set of questions from a
didactical point of view. Rates and orders are again
sent to the venue to be accessible to other participants.

The implementation of additional mobile applications
for ad-hoc networks using GecGo is planned for the
next 9 months: a mobile auction system and a self-
organizing electronic rideboard in an university envi-
ronment [1,5]. These applications have been investi-
gated already on a simulated basis [3,6] and as
prototypes running on a java-based middleware called
SELMA [4], the predecessor of GecGo.

5. RELATED WORK
Traditional middleware systems such as CORBA,
Microsoft DCOM or Java RMI are not suitable for
mobile ad-hoc networks because they rely on central
infrastructure like naming services and assume the
reachability of all network nodes. These assumptions
cannot be matched by mobile multihop ad-hoc net-
works. Additionally, traditional middleware
approaches are too heavyweight for mobile devices.
Many adaptions have been made to apply them in
mobile settings such as OpenCORBA [7] or Next-
GenerationMiddleware [8]. These extensions provide
mechanisms for context awareness, but cover mainly
infrastructure networks and one-hop mobile commu-
nications.

An increasing number of middleware systems is
developed specifically for mobile ad-hoc networks.
XMIDDLE [9] allows the sharing of XML documents
between mobile nodes. Lime [10] and L2imbo [11]
are based on the idea of tuple-spaces [12], which they
share between neighbored nodes. But due to the cou-
pling of nodes, these approaches are not well-suited
for highly mobile multihop ad-hoc networks. MESH-
Mdl [13] employs the idea of tuple-spaces as well, but
avoids coupling of nodes by using mobile agents,
which communicate with each other using the local
tuple-space of the agent platform. Proem [14] pro-
vides a peer-to-peer computing platform for mobile
ad-hoc networks. STEAM [15] limits the delivery of
events to geographic regions around the sender which
is similar to the geographically bound communication
at marketplaces. STEAM provides no long distance

Size of
state 

gizmo
(Bytes)

Transmitted
gizmos per

second

Throughput
(Bytes/s)

0 11.3 -

512 2.12 1083

1024 1.6 1638

2048 0.87 1774

4096 0.45 1843

8192 0.22 1775

16384 0.11 1757

Table 1: Transmitted gizmos between 2 devices



communication, it is only possible to receive events
over a distance of a few hops.

Mobile agent frameworks exist in numerous varia-
tions, Aglets [16] or MARS [17] may serve as exam-
ples. These frameworks were designed for fixed
networks and thus the above mentioned problems of
traditional middleware approaches apply to them as
well. The SWAT infrastructure [18] provides a secure
platform for mobile agents in mobile ad-hoc net-
works. This infrastructure requires a permanent link-
based routing connection between all hosts and thus
limits the ad-hoc network to a few hops and it is
therefore not applicable to en passant communication
pattern.

6. CONCLUSIONS
The specific nature of multihop ad-hoc networks
enforces a tight coupling between the middleware and
any mobile application. The sole dependence on
information local to the mobile device leads to new
programming and execution models, that favor self-
organization and adaption to a continuously changing
environment. The specific architecture of the GecGo
middleware as presented in this paper is trying to
address these issues by supporting mobile application
components and by providing flexible interaction
mechanisms between entities on a single device as
well as entities on mobile devices that are within
communication range for short period of times.

One of the major goals of this project is to verify that
the system software offered by Microsoft, which
addresses wireless infrastructures and mobile applica-
tions, also suits application needs in multihop ad-hoc
networks. At the time of writing, only preliminary
results are available. The successful implementation
of the GecGo middleware indicates, that in principle
no arguments prohibit the usage of the .NET Compact
Framework in such an environment. But in many situ-
ations, it was obvious that the current version of the
Compact Framework addresses issues in singlehop
networks only. In such an environment, the wireless
communication facilities are primarily substitutes for
a physical wire with the traditional protocol stack on
top of it. This is no disadvantage, since it is meant to
support exactly this environment. But questions to be
answered in the future of this project will address
issues on additional support for multihop ad-hoc net-
works and how to integrate these required functions
into existing system software such as the .NET Com-
pact Framework.
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ABSTRACT 

The traditional approach to information systems, accessed by users by means of powerful devices (such as 
desktops and laptops) with known features, will not be anymore significant in the future years. Indeed, the 
current trend suggests that it will be possible to offer continuous access to all information sources, from all 
locations and through various kinds of devices, mainly small and mobile (e.g., palmtops and PDAs, cellular 
phones). Therefore, the need emerges for the design of applications for smart devices, which are highly flexible, 
capable of exploiting in an optimal way the resources. This experience paper analyzes the opportunity to design, 
develop and deploy interactive applications running on smart cellular phones (commonly referred to as 
smartphones), based on a peer-to-peer communication model and GPRS technology. A case study is presented 
to verify whether current development tools and technologies for small devices require a radical different 
approach with respect to more traditional application development. As a development platform, Window Mobile 
for Smartphone 2003 with Compact .NET has been used, which is currently available, at least in Europe, only 
on prototype devices. 
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1. INTRODUCTION 
The traditional approach to information systems, 
accessed by users by means of powerful devices 
(such as desktops and laptops) with known features, 
will not be anymore significant in the next years. The 
current trend suggests that it will be possible to offer 
continuous access to all information sources, from all 
locations and through various kinds of devices, either 
powerful but mainly static (e.g., PCs, laptops) or 
small but mobile (e.g., palmtops and PDAs, cellular 
phones). Moreover, users are interested in a wider 
and wider variety of applications, beyond traditional 
vocal interaction access to data of any kind and 
complex interactive applications, also with 

transactional properties. 

Telecommunication networks, indeed, are 
continuously evolving and diversifying; each kind of 
network has its own features, in terms of capacity, 
reliability, quality of service security, availability, 
cost. Such features change significantly with the 
various applications that make use of the network 
services. However, the user is not interested in 
technical details: he/she wants to access the end 
services from the current location and with the best 
possible performances. Therefore, the need emerges 
for the design of applications which are highly 
flexible, capable of exploiting the resources in an 
optimal way. Finally, traditional client/server 
computing, based on the availability of centralized or 
clustered servers offering services and applications to 
clients, is leaving the place to more decentralized 
paradigms, such as peer-to-peer computing, in which 
loosely coupled devices (i.e., the peers) interact with 
each other without previously established mutual 
agreements and knowledge. The goal of the “MAIS”1 
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1 Multi-channel Adaptive Information Systems – 
MAIS – is an Italian research projects, jointly carried 



project is the development of models, methods and 
tools that allow the implementation of adaptive 
information systems able to provide services with 
respect to different types of networks and access 
devices.  

The work presented in this experience paper, with 
respect to the MAIS project sphere, is centered on 
mobility and small device application development, 
specifically on design and implementation issues 
related to the development of distributed applications 
running on cellular phones. 

This work aims at experimenting the opportunity to 
design, develop and deploy interactive applications 
running on smart cellular phones (commonly referred 
to as smartphones), based on a peer-to-peer 
communication model. Current services offered by 
telecommunication operators are mainly based on a 
centralized paradigm, in which cellular phones 
download simple applications from services available 
on the Web, and, if communication with other 
users/devices is needed, it is obtained through 
centralized services. Apart from vocal interaction and 
exchange of SMS/MMS2, no other end-user 
application is currently designed and deployed 
assuming a direct and peer-to-peer interaction 
between users/devices. Even if this can be due to 
commercial and exploitation considerations, we 
argue that peer-to-peer interactions between devices 
should be considered, as a possible alternative for the 
future, on which to base future commercial and 
exploitation strategies3. In depth, the work presents 
the development of a peer-to-peer application 
running on smartphones, in which all communication 
is based on GPRS technology: as development 
platform, Window Mobile for Smartphone 2003 with 
.NET Compact Framework has been used, which is 
currently available, at least in Europe, only on 
prototype devices. From a practical software 
                                                                                       
out by about 10 subjects, including Universities and 
enterprises. The interested reader can refer to 
http://black.elet.polimi.it/mais/index.php.
2 In this work, when we refer to interaction, we consider it 
at the application level, not at the network one. Of course 
also vocal interaction and SMS/MMS exchange run 
through centralized servers (e.g., the SMS dispatch center), 
but users perceive such communication as direct with the 
others. Conversely, current applications, such as the 
recently appeared distributed games, require that all 
application-level communication is collected through a 
centralized service, and users/devices do not communicate 
directly. 
 
3 New computing paradigms for cellular phones could 
foster GPRS and UMTS technologies in a similar way that 
Napster/Gnutella-based systems made the Internet popular 
among teenagers. 

engineering point of view, the aim was also to verify 
whether current development tools for small devices 
require a radically different approach with respect to 
more traditional application development. 

The paper is organized as follows. In Section 2 
relevant background is presented, focusing on the 
peer-to-peer computing model and on the 
technologies for application development on 
smartphones. In Sections 3 and 4, the application 
used as case study is presented, whereas in Section 5 
a discussion on the gained experience and some 
insights are presented. 

2. BACKGROUND 
In this section we give a brief overview and state of 
art on peer-to-peer (P2P) systems and architectures, 
as well as on technologies and tools commonly used 
to realize smart device applications. 

Peer-to-Peer Systems and Protocols 
The interest for peer-to-peer (P2P) systems has been 
considerably growing during the last years. Although 
it is considered a revolution in network based 
environments, it is actually only an evolution of the 
original Internet model, that enables packet 
exchanges among nodes with interchangeable roles. 
The P2P acronym refers to each distributed system in 
which nodes can be both clients and servers. In other 
words, all nodes provide access to some of the 
resources they own; in the context of this paper, the 
resources are services provided/accessed from the 
peers (i.e., mobile devices), enabling a basic form of 
cooperation among them. An interesting 
classification of P2P systems can be found in [1], in 
which the following three models are introduced: 
Decentralized Model, Centralized Model, and 
Hierarchical Model. With respect to such a 
classification, the application presented in Section 3 
has been developed according to the decentralized 
model. Example of P2P software architectures and 
systems are [2, 3, 4] and Gnutella [5], the first system 
implementing a fully distributed file search. All such 
systems and protocols have been thought for wired 
networks, that is, networks in which the connection 
between two peers remains established as long as 
peers dwell in the system (static connections). Works 
that take into account mobility scenarios (i.e., 
dynamic connections) can be found in [6] and [7], 
respectively. In the former, a mobile P2P architecture 
and platform is proposed; in the latter, instead, a 
special-purpose P2P file sharing tailored to Mobile 
Networks, denoted Optimized Routing Independent 
Overlay Network (ORION), is presented. 
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 Application Development 
 of the most promising technologies 
 and running applications on smart 
s are Java 2 Micro Edition (J2ME, 
Compact .net Framework (.net CF) 
E and .net CF are platforms that, 
 micro-browser technologies such as 

s Application Protocol), support rich 
 leverage device extensions (e.g., GPS 
oning System - and barcode scanners), 

and security protocols. Furthermore, compared with 
smartphone native platforms (e.g., eMbedded Visual 
C++, C++ SDKs for the Symbian OS), both those 
technologies have managed environments enabling 
component-based application development, thus 
improving developer productivity and application 
reliability.  Table 1 summarizes the differences 
among the .NET CF and J2ME (CLDC/CDC) 
platforms, with respect to the designer's/developer's 
point of view. 

.NET Compact Framework 

.NET Compact Framework (.net CF) [13] is a subset 
of the desktop .NET Framework. It has two main 
components, namely the Common Language 
Runtime (CLR) and the Base Class Library. The 
Common Language Runtime is responsible for 
managing code during execution: it provides core 
services such as memory and thread management, 
designed to enhance performance. Just-In-Time (JIT) 
compilers enable the generated code to run in the 
native machine language of the target platform. 

The Base Class Library is a collection of reusable 
classes that are used to develop applications; they 
provide common and reusable programming tasks 
such as string management, data collection, database 
connectivity, user interface, etc. The classes included 
in the .NET CF provide an identical interface to their 
counterparts in the workstation/server .NET 
Framework; some functionalities are not supported 
due to size constraints, performance issues, or 
limitations in the target operating system (e.g., 
printing, Multiple Document Interface forms, Drag-
and-Drop functionalities, etc). Class behaviors, 
properties, methods, and enumeration values are the 
same under both versions of the .net Framework. 

.NET CF  J2ME  

  
Devices with Windows Mobile (in Europe 
cellular phones not yet available)  

Java-enabled devices (for MIDP 2.0 only 
high-end phones)  

 C#, Visual Basic .net, C++  Only Java  

Unique CLR Virtual Machine  Different versions: CDC and CLDC Virtual 
Machines  

ibility  Standard .net CLR  No compatibility with J2SE, and between 
CDC and CLDC  

Between all platforms supporting .net CF 
(currently only Windows Mobile)  

Partial compatibility between CDC, CLCD, 
and J2SE  

  Visual Studio .net 2003  Several tools (by SUN and different 
vendors, not completely integrated)  

Emulators in Visual Studio .net 2003  Various emulators (provided by SUN and 
by device vendors)  

ActiveSync or through Internet Explorer 
download  

Device synchronization mechanisms and 
OTA (Over The Air) download  



  

 
 

same functionalities, is that the appointment 
management is carried out in a (semi-)automatic 
way, on the basis of the protocol described in Section 
3.3. Currently, a user willing to organize an 
appointment with several persons: (i) decides a 
candidate time slot (on the basis of its agenda); (ii) 
manually contacts all involved persons (by calling 
them, by sending them an SMS, by writing an e-mail, 
etc.) and waits for their reply; (iii) if all invited 
persons agree upon the time slot, he sends them a 
confirmation, else (iii ') he/she chooses a new time 
slot and begins the process again. All such activities 
are carried out manually by the proposing user, and 
they are a serious burden for very busy persons. 

The idea of our Interact-Agenda is to provide an 
application, running on user smartphones, that carries 
out all the negotiation automatically, and only at the 
end (i.e., after finding a suitable time slot) asks all 
involved users for confirmations4.  
 

ADO.NET is a set of libraries that allow
communication with various remote data stores from

Figure 1. Activity Diagram for the Appointment 
and Contact Management. 
Such libraries include classes for connecting to a 
remote data source, submitting queries, and 
processing results; frequently, they are used as a 
robust, hierarchical, disconnected data cache to off-
line (i.e., during disconnections) work with remote 
data. XML APIs, instead, are the same classes 
provided by the .NET Framework, and used to 
develop applications manipulating XML structures. 

3. THE INTERACT-AGENDA 
APPLICATION 
In this section we describe the design of our SMS- 
and GPRS-based application (called Interact-
Agenda), as well as the proposed peer-to-peer 
architecture and protocol on top of which the 
application is based. In next section implementation 
details are provided. 

Application Requirements 
The Interact-Agenda application is an interactive 
agenda for smartphone devices, which allows users 
to automatically organize appointments between 
several persons. The application offers to users the 
following functionalities: 

• visualization, to view details of one or more 
appointments, also in the mode “all of the 
week"; 

• appointment management, for inserting, 
deleting and modifying both personal and group 
appointments; 

• contact management, for inserting, deleting 
and modifying contacts in the personal book. 

The novelty of the application with respect to already 
existing ones (e.g., Pocket Outlook) providing the 

When a user creates a new personal appointment in 
his/her agenda, all the details are stored (as it 
normally happens when the user takes an 
appointment in Outlook): conversely, when the user 
creates a new group appointment, a negotiation 
procedure with all involved persons is required. 

In Figure 1 we report the complete Activity Diagram 
for the application. When a user selects the Interact-
Agenda menu, he/she can choose between the 
following options: to enter in the appointment 
management section; to enter in the contact 
management section; or to exit from the application. 
On the basis of the choice, the user can do several 
tasks; for example, if he/she has chosen the 
appointment management section, the user can view, 
modify, delete or create an appointment.  

In Figure 2 we report an example of the Sequence 
Diagram for the negotiation phase between three 
users (and their smartphone devices), carried out in 
order to establish a group appointment proposed by 
user_1. After the proposer (i.e., user_1) has entered 
all appointment information (through an appropriate 
sequence of windows), the peer instance of Interact-
Agenda running on its smartphone communicates 
with the peer instances of Interact-Agenda running 
on the smartphones of user_2 and user_3, in order to 
verify the availability near the proposed date, and if 
not possible, asking the user a new time slot and 
conducting a new negotiation round5. 

                                                           
4 As users, the authors would not like a smartphone taking 
appointment without at least letting them know !! 
 
5 The Interact-Agenda instance of the proposer asks the 
others for the availability of time slots near the initially 
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All this process happens silently and without (or 
minimal) intervention by the users. At the end, when 
a time slot has been “agreed upon” by the peer 
instances of the Interact-Agenda, a message is 
displayed to the respective users in order to gain 
confirmation. That negotiation process runs on top of 
SMS messages and GPRS network connections, as 
detailed in Section 3.3. 

Application Design 
The Interact-Agenda is developed and deployed as a 
peer-to-peer smartphone application: each device 
hosts an instance of the application. In Figure 3, the 
structure of (an instance/copy /peer of) the Interact-
Agenda application, is shown. The application 
consists of: 

• the User Interface package, in which all the 
user-interface functionalities are managed; 

                                                                                       
proposed one, in order to find a match; near means a given 
number N of time slot before or after the originally 
proposed one, and it can be configured. If a match cannot 
be found, the details of a new appointment are requested 
from the proposer; the number of repetition of the 
negotiation process is therefore directly driven by the 
proposing user. 

• the Application Logic package, in which all 
the negotiation logic is contained; 

• the Logical Data and Database are the 
packages managing the local database (storing 
appointment records and contact records). 
Logical Data is an abstraction of simple DBMS 
functionalities (table creation, tuple insertion, 
deletion, modification and selection, etc.), while 
Database is a concrete implementation of it (in 
our application it implements that operations on 
.txt files). 

• the Peer-to-Peer package, which implements 
the peer-to-peer protocol (see Section 3.3), and 
the Networking package that manages SMS-
based communications and GPRS connections. 

 

 
 

Communication Protocol 
The communications between the smartphone 
devices are conducted over GPRS and SMS. Indeed, 
each device (peer) may be both client and server at 
the same time, sending and receiving messages (by 
SMS sockets) to/from another peer and exchanging 
information by GPRS sockets. A device receives and 
replies to an appointment request incoming from 
another peer, which is the negotiation initiator; in 
turn, the device can initiate an appointment 
negotiation phase (its user wants to establish an 
appointment with other persons). 

In Figure 4 we illustrate the whole protocol. It may 
be split into two phases: in the first phase the initiator 
communicates to all members its IP address by a 
SMS with a particular header; each active 
destination, after receiving the message, replies with 
an “I-am-alive" message; if the initiator receives all 
the responses from all the clients, then it can proceed 
with the second phase, that is, the exchange of 
appointment information (month, day, hour, etc.) 

User Interface 
{Presentation Layer} 

Application  

Logic 

Networking Database 

{Application Logic Layer} 

Peer To 
Peer 

Logical Data

{Resource Management Layer} 

Figure 2. Sequence Diagram of the 
Appointment Negotiation. 

Figure 3. Structure of the Application. 



with all participants, through sockets on GPRS. 
Otherwise, i.e. if at least one device has not replied to 
the initial message, the initiator terminates the 
negotiation phase and closes all opened connections 
with the others clients. Then the initiator (which acts 
as a server of the different sockets) exchanges 
information with the other devices (acting as clients) 
until the agreement has been reached or the 
proposing user decides to abort the appointment. 
Therefore the second phase of the protocol is 
straightforwardly derived from Figure 2. During all 
the protocol, the initiator sets timeouts: if not all 
replies are collected before their expiry, the initiator 
aborts everything. Different timeouts are set for the 
first and second phase (longer for SMS-based 
communications, lasting hours, and shorter for 
socket-based communications, as in usual network 

programming practice). The choice of two different 
technologies (SMS during the first phase and GPRS 
connections in the following) is needed because of: 

• GPRS connections assign an IP address 
dynamically (i.e., each time the device 
connects), therefore it is not possible to statically 
store information such as < user, telephone number, IP 
address of its device >. Conversely, the initiator can 
discover its IP address (as described in Section 
4.2), then it can send such an IP address to all 
other devices (through SMS messages, as the 
couple < user, telephone number > is static), listening 
to a specific GPRS sockets, and finally all 
contacted devices can connect to such an 
initiator's socket through GPRS. 
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• Currently (at least in Italy), an SMS is more 
expensive than the GPRS transmission cost. The 
former is about 20 cent of Euro, the latter is 
about 0.6 cent of Euro per transmitted kilobyte. 
As the dimension of data exchanged between 
peers is low (few bytes), it is more convenient to 
use a GPRS transmission rather than a SMS 
communication. Indeed, the proposed protocol 
has been thought to reduce the number of 
exchanged SMS messages; to establish an 
appointment among N peers, it needs no more 
than N SMS: the peer that initiates the 
negotiation sends its IP to all participants (N - 1). 

4. IMPLEMENTATION FEATURES 
In the current section we provide some 
implementation insights of our Interact-Agenda 

application. We will concentrate only on those 
packages in which .NET CF has been heavily used, 
providing specific functionalities to be considered 
during the development of smartphone application, 
i.e., networking, data storage and data access, user 
interface logic (windows, forms, listbox, etc.) and 
device interactions (keypad, joypad, home button, 
record button, soft keys, etc.). The development of 
the other packages, being pure business logic, does 
not present peculiarities due to smartphone device 
and .net CF (it is “normal” C# code). We will stress 
the possibility and the simplicity for an programmer 
to implement powerful and graceful application 
running on smartphone devices, both in terms of 
used libraries and generated source code lines.  

User Interface Development 
The Base Class Library provides a sufficient subset 
of the components/widgets provided in the 
workstation/server .NET Framework; therefore no 
further training time is needed by a programmer in 
order to develop the user interface. In order to build 
graceful forms, we use the System.Windows.Forms 
and the System.EventHandler packages. The 
produced code is similar to that would have been 
produced for workstation applications. 

Figure 4. Communication Protocol. 

Networking 
The networking logic has been realized by 
combining the .NET CF library System.Net and the 
.NET CF mechanism for external procedure call, i.e., 
the method provided by the .NET CF technology 
(more in general by the .net Framework) to invoke 
procedures contained in external libraries (.dll). 
Indeed, in order to use both SMS and GPRS 
communication, we had to consider external native 
libraries, and embed calls to these .dll in the source 
code managing our peer-to-peer protocol. Then, in 
order to establish a connection between two peers 



over the GPRS protocol, we used the system library 
System.Net, that provides all functions needed to 
manage socket-oriented connections over TCP/IP 
networks. 

The code shown in the following is the one executed 
by the initiator for sending an SMS with its IP 
address and creating a specific socket; contacted 
device has to reply with an “I-am-alive” message on 
that socket (see class Receiver). Again, it is not very 
different from the one to be used in 
workstation/server scenarios for managing socket-
oriented communications. 
public class Initiator{   

 .............. 

 /* GPRS Connection Management */ 

   private System.Net.Sockets.Socket      

      getBindSocket() { 

      GPRS.DataCall();  

      /* Getting local device IP */ 

      IPHostEntry ipHostInfo =  

      Dns.Resolve(Dns.GetHostName()); 

      IPAddress ipAddress = 
ipHostInfo.AddressList[0]; 

     ...........   

      /* Opening TCP/IP socket */ 

      System.Net.Sockets.Socket sock = new 
System.Net.Sockets.Socket(System.Net.Sockets.Addres
sFamily.InterNetwork,System.Net.Sockets.SocketType.
Stream,System.Net.Sockets.ProtocolType.Tcp); 

      try { 

         sock.Bind(localEndPoint); 

         sock.Listen(10); 

      } 

      catch(Exception e) { 

         MessageBox.Show(e.ToString()); 

         throw(e); 

      } 

      return sock; 

   } 

   /* Message sending */ 

   private void contact() {          

      for(int i = 0; i < guest.Count; i++) { 

      try {   
SMS.SendMessage(guest[i].phoneNumber,this.myIP); 

      } 

      catch(Exception sendSms){} 

      } 

} 

   .......... 

} 

 

public class Peer 

{    ............... 

   private void sendMessage(Message msg) { 

      netStream = new  

System.Net.Sockets.NetworkStream(getConnec 

tSocket()); 

      writerClient = new StreamWriter(netStream); 

      ........... 

   } 

} 

Database 
In the Smartphone 2003 SDK, up to now, there are 
no libraries and tools to manage local relational 
database. Therefore the Database package has been 
realized on the basis of the FileSystem. 
Specifically, all the µ-databases used in the Interact-
Agenda consist of collections of text files stored on 
an external SD-CARD memory. Through the file 
management, the package provides a very simple 
relational-like interface, allowing upper layer to 
create tables, columns simple constraints and primary 
keys. Simple querying capabilities (specifically select 
but not join) have been provided. Specifically, the 
.NET CF libraries System.IO and System.Data 
have been used for writing and reading operations on 
files and for table and column manipulation, 
respectively. In the following code sample we report 
database management, in particular how tables are 
stored into text files. 
public class DataBase{ 

   ........... 

   /* Writing table to file.txt */ 

   public static bool WriteTable(DataTable tab) { 

      System.Data.DataTable table = tab; 

      System.String fileTable = table.TableName; 

      ForeignKeyConstraint key = null; 

      UniqueConstraint pKey = null; 

      /* openig table file.txt */ 

      System.IO.StreamWriter fileWriter =        

System.IO.File.CreateText("\\"+fileTable+"
.txt"); 

/*Writing Table information: Name, column number */ 

      fileWriter.WriteLine( 

      table.TableName.ToString());  

      fileWriter.WriteLine( 

      table.Columns.Count.ToString()); 

 

      /* Writing column's name and type */  

      for(int i = 0; i < table.Columns.Count; i++)         

fileWriter.WriteLine(table.Columns[i].Colu
mnName); 

fileWriter.WriteLine(table.Columns[i].Data
Type.ToString()); 

      } 



. . . . 

} 

Finally, Figure 5 shows the sequence of windows 
presented to the initiator user when establishing a 
group appointment. 
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ABSTRACT
In C# the compiler guarantees that each local variable is initialized before an access to its value occurs at runtime.
This prevents access to uninitialized memory and is a crucial ingredient for the type safety of C#. We formalize
the definite assignment analysis of the C# compiler with data flow equations and we prove the correctness of the
analysis.

Keywords
definite assignment, C#, type safety, static analysis

1 INTRODUCTION
Let us suppose that an attacker wants to fool the C#

type system. His idea is expressed by the next block:

{
int[] a;
try {a = (int[])(new object());}
catch(InvalidCastException)

{Console.WriteLine(a[7]);}
}

A pure object is type casted into an array of inte-
gers. The attacker thinks the following will work: after
the InvalidCastException which is thrown at
runtime is caught, theobject can be used in the han-
dler of thecatch clause, as an array to generate un-
predictable behavior. Some people might think that a
NullReferenceException is thrown at runtime
whena[7] is accessed and thus the attacker will not
succeed. Actually, his idea does not work since the
block is rejected already at compile time due to the
definite assignment analysis. Through this analysis,
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the C# compiler infers thata might not be assigned in
one execution path to the access ofa[7] . The anal-
ysis states thata is not definitely assigned at the be-
ginning of thecatch block since it is not definitely
assigned at the beginning of thetry statement.

A necessary condition for C# to be a type safe lan-
guage is the following: whenever an expression is
evaluated, the resulting value is of the type of the ex-
pression. If we suppose that a local variable is unini-
tialized when its value is required, the execution pro-
ceeds with the arbitrary value which was at the mem-
ory position of the uninitialized local variable. Since
this value could be of any type, we would obviously
violate the type safety of C# and we could easily pro-
duce unpredictable behavior.

Since local variables are not initialized with de-
fault values like static variables or instance variables
of class instances, a C# compiler must carry out a spe-
cific conservative flow analysis to ensure that every
local variable isdefinitely assignedwhen any access
to its value occurs. This definite assignment analysis
which is a static analysis (see [Nie99, Gru00] for other
static analyses) has to guarantee that there is an initial-
ization to a local variable on every possible execution
path before the variable is read. Since the problem
is undecidable in general, the C# Language Specifica-
tion [Wil03, §5.3] contains a definition of a decidable
subclass. So far, the definite assignment analysis of
the Java compiler has been formalized with data flow
equations in the work of Stärk et al. [Sta01] and re-
lated to the problem of generating verifiable bytecode
from legal Java source code programs. A formaliza-
tion of the analysis for Java which uses type systems



is presented in [Sch03]. Since in our case, the analy-
sis involves a fixed point iteration, the presentation as
type systems does not appear to be a feasible solution.

The formalization of the C# definite assignment
analysis we provide, sheds some light in particular on
the complications generated by thegoto andbreak
statements (incompletely specified in [Wil03]) and by
the method calls withref /out parameters - these are
crucial differences with respect to Java. We also use
the idea of data flow equations (see [Sta01]) but due to
thegoto statement, the formalization cannot be done
like in Java. For a method body withoutgoto , how-
ever, the equations that characterize the sets of defi-
nitely assigned variables can be solved in a single pass.
If goto statements are present, then the equations de-
fined in our formalization do not specify in a unique
way the sets of variables that have to be considered
definitely assigned. For this reason, a fixed point com-
putation is performed and the greatest sets of variables
that satisfy the equations of the formalization are com-
puted. Another difference with respect to Java is the
presence of structs. Regarding the correctness of the
analysis, we prove that, these sets of variables repre-
sent exactly the sets of variables assigned on all pos-
sible execution paths and in particular they are asafe
approximation.

A series of bugs in the Mono C# compiler were de-
tected during the attempt to build the formalization of
the definite assignment analysis (see [Fru03b] for de-
tails). This is the reason we refer here only to .NET
and Rotor C# compilers. A bug in the assignment anal-
ysis of the Rotor C# compiler is mentioned also here.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the data flow equations which for-
malize the C# definite assignment analysis while Sec-
tion 3 shows that there always exists a maximal fixed
point solution for the equations. In order to define
the execution paths in a method body, the control flow
graph is introduced in Section 4. The paper concludes
in Section 5 with the proof of the correctness of the
analysis, Theorem 1. Due to space limitations we do
not make here the proofs in detail. We focus on illus-
trating how we deal with the jump statements and their
complications in the presence offinally blocks.
The full details, as well as further examples can be
found in the full technical report [Fru03b].

2 THE DATA FLOW EQUATIONS
In this section, we formalize the rules of definite as-

signment analysis from the C# Specification [Wil03,
§5.3] by data flow equations. Since this analysis is
an intraprocedural analysis, we restrict our formaliza-
tion only to a given methodmeth. We use labels in
order to identify the expressions and the statements.
Labels are denoted by small Greek letters and are dis-
played as superscripts, for example, as inαexpor in

αexp the data flow equations
true true(α) = before(α)

false(α) = vars(α)

false false(α) = before(α)
true(α) = vars(α)

(! βe) before(β) = before(α)
true(α) = false(β)
false(α) = true(β)

(βe0 ? γe1 : δe2) before(β) = before(α)
before(γ) = true(β)
before(δ) = false(β)
true(α) = true(γ) ∩ true(δ)
false(α) = false(γ) ∩ false(δ)

(βe1 &&γe2) before(β) = before(α)
before(γ) = true(β)
true(α) = true(γ)
false(α) = false(β) ∩ false(γ)

(βe1 || γe2) before(β) = before(α)
before(γ) = false(β)
false(α) = false(γ)
true(α) = true(β) ∩ true(γ)

Table 1: Definite assignment for boolean expressions
αstm. We will often refer to expressions and state-
ments using their labels. In order to precisely spec-
ify all the cases of definite assignment, static func-
tions before, after, true, falseandvars are computed
at compile time. Note thattrue andfalseare only for
boolean expressions. These functions assign sets of
variables to each expression or statementα and have
the following meanings.before(α) contains the lo-
cal variables definitely assigned before the evaluation
of α andafter(α) the variables definitely assigned af-
ter the evaluation ofα when α completes normally.
true(α) andfalse(α) consist of the variables definitely
assigned after the evaluation ofα whenα evaluates to
true andfalse , respectively.vars(α) contains the
local variables in the scope of whichα is.

We skip those language constructs (e.g.foreach ,
for , do , switch , ++, -- ) whose analysis is similar
to the one of the constructs dealt with explicitly in our
framework. Note that the definite assignment analy-
sis for variables of a struct type is a little bit different:
such a local variable is considered definitely assigned
iff all its instance fields are definitely assigned. The
structs are not considered here but their detailed anal-
ysis is included in the full technical report [Fru03b].

A equation is given by initial conditions: for the
method bodymb of methwe havebefore(mb) = ∅.
Actually we should consider the set of value and ref-
erence parameters ofmethbut there is no worry that
an access to any of them could cause troubles since
when meth is invoked they are supposed to be defi-
nitely assigned [Wil03,§5.1].

For the other expressions and statements inmb, in-
stead of explaining how the functions are computed,



αexp the data flow equations
loc after(α) = before(α)

lit after(α) = before(α)

(loc = βe) before(β) = before(α)
after(α) = after(β) ∪ {loc}

(loc op= βe) before(β) = before(α)
after(α) = after(β)

(βe0 ? γe1 : δe2) before(β) = before(α)
before(γ) = true(β)
before(δ) = false(β)
after(α) = after(γ) ∩ after(δ)

c.f after(α) = before(α)

ref βexp before(β) = before(α)
after(α) = after(β)

out βexp before(β) = before(α)
after(α) = after(β)

c.m(β1arg1, . . . ,βk argk) before(β1) = before(α)
before(βi+1) = after(βi),

i = 1, k − 1
after(α) = after(βk)∪
∪OutParams(arg1, . . . , argk)

Table 2: Definite assignment for arbitrary expressions

we simply state the equations they have to satisfy. Ta-
ble 1 contains the equations for boolean expressions
(see [Fru03b] for details). In addition, we have for
all expressions in Table 1 the equationafter(α) =
true(α) ∩ false(α). For a boolean expressionα which
is not an instance of one of the expressions in Table 1,
we havetrue(α) = after(α) andfalse(α) = after(α).

Table 2 lists the equations specific to arbitrary ex-
pressions whereloc stands for a local variable andlit
for a literal. Note that following a method invoca-
tion, theout parametersOutParams(arg1, . . . , argk)
are definitely assigned. In cases not stated in Ta-
bles 1,2, ifαexp is an expression withdirect subex-
pressionsβ1e1, . . . ,

βn en, then the left-to-right evalu-
ation scheme yields thegeneral data flow equations:
before(β1) = before(α), before(βi+1) = after(βi),
i = 1, n− 1 andafter(α) = after(βn).

The equations specific to every statement can be
found in Table 3. We assume thattry statements
are eithertry-catch or try-finally statements
(see [Bor03] for a justification of this assumption).
Special attention is paid to the labeled statement. The
set of variables definitely assigned before executing a
labeled statement consists of the variables definitely
assigned both after the previous statement and before
each correspondinggoto statement or after any of
the finally blocks of try-finally statements
in which thegoto is embedded (if any). This can
be formalized as follows. For two statementsα and
β, we considerFin(α, β) to be the list[γ1, . . . , γn]

αstm the data flow equations
; after(α) = before(α)

(βexp; ) before(β) = before(α)
after(α) = after(β)

{β1stm1 . . . βn stmn} before(β1) = before(α)
after(α) = after(βn) ∩ vars(α)
before(βi+1) = after(βi)∩
∩ goto(βi+1), i = 1, n− 1

if (βexp) γstm1 before(β) = before(α)
else δstm2 before(γ) = true(β)

before(δ) = false(β)
after(α) = after(γ) ∩ after(δ)

while (βexp) γstm before(β) = before(α)
before(γ) = true(β)
after(α) = false(β) ∩ break(α)

goto L; after(α) = vars(α)

break; after(α) = vars(α)

continue; after(α) = vars(α)

return; after(α) = vars(α)

return βexp; before(β) = before(α)
after(α) = vars(α)

throw; after(α) = vars(α)

throw βexp; before(β) = before(α)
after(α) = vars(α)

try βblock before(β) = before(α)
catch (E1 x1) γ1block1 before(γi) = before(α) ∪ {xi}
... i = 1, n
catch (En xn) γn blockn after(α) = after(β)∩

∩
⋂n

i=1 after(γi)

try βblock1 before(β) = before(α)
finally γblock2 before(γ) = before(α)

after(α) = after(β)∪
∪ after(γ)

Table 3: Definite assignment for statements

of finally blocks of all try-finally state-
ments in the innermost to outermost order fromα
to β. Then we define the setJoinFin(α, β) of def-
initely assigned variables after the execution of all
thesefinally blocks:

⋃
γ∈Fin(α,β) after(γ). Fur-

ther, we define the setgoto for a statementβ. For a
labeled statementβL : stm, the setgoto(β) is given
by

⋂
αgoto L; (before(α) ∪ JoinFin(α, β)) where we

take only thegoto statements in the scope ofβ. For
all the other statements, as well for a labeled state-
ment with nogoto statements,goto(β) is the univer-
sal setvars(β). Now we are able to state the equation
before(βi+1) = after(βi) ∩ goto(βi+1) from Table 3.
In case of a labeled statement, the equation formalizes
the above stated idea while for a non-labeled statement
becomesbefore(βi+1) = after(βi).



The following example is a simplification of an ex-
ample from the C# Specification [Wil03,§5.3.3.15]:

int i;
δtry {α goto L; }
finally γ{i = 3; }
βL:Console.WriteLine(i);

The C# Specification states thati is definitely as-
signed beforeβ , i.e. i ∈ before(β). Our equation
before(β) = after(δ) ∩ goto(β) led us to the same
conclusion sincegoto(β) = before(α) ∪ after(γ) and
i ∈ after(γ) ⊆ after(δ) (see the equations for a
try-finally in Table 3). Surprisingly, the exam-
ple is rejected by the C# compilers of .NET Frame-
work 1.0 and Rotor: we get the error thati is unas-
signed. This problem was fixed in .NET Framework
1.1 but still exists in Rotor.

The following explanation holds for the equation
after(α) = after(βn) ∩ vars(α) corresponding to a
block of statements: the local variables which are def-
initely assigned after the normal execution of the block
are the variables which are definitely assigned after the
execution of the last statement of the block. However,
the variables must still be in the scope of a declaration.
Thus, let us consider the example:

{α{int i;i = 1; } {int i;i = 2 * β i; }}
The variablei is not in after(α) since at the end
of α, i is not in the scope of a declaration. Thus
i 6∈ before(β) and the block is rejected.

The idea for the equation which computesafter(α)
of a while statementα, is similar with that for a
labeled statement. Similarly with the setgoto, we
define the setbreak(α) to be the set of variables
definitely assigned before all correspondingbreak
statements (and possibly after appropriatefinally
blocks). This means that the setbreak(α) is given
by

⋂
βbreak; (before(β) ∪ JoinFin(β, α)) where we

take only thebreak statements for whichα is the
nearest enclosingwhile . If the while statement
does not have anybreak statements, then we define
break(α) = vars(α). With this definition ofbreak(α),
we have the equation forafter(α) as stated in Table 3.

There is one more technical detail to be decided.
Suppose we want to state the equation forafter of a
jump statements. Letα be the following statement:

if(b) γ{i = 1; } else δreturn;

It is clear that, the variables definitely assigned afterα
are the variables definitely assigned after thethen
branch and since our equation takes the intersection
of after(γ) andafter(δ), it is obvious that one has to
require the set-intersection identity forafter(δ). That
is why we adopt the convention thatafter(α) is the
universal setvars(α) for any jump statementα.

3 THE MAXIMAL FIXED POINT
The computation of the sets of definitely assigned

variables from the data flow equations described in
Section 2 is relatively straightforward. The key dif-
ference with respect to Java is thegoto statement
which brings more complexity to the analysis. Since
thegoto statement makes loops possible, the system
of data flow equations does not have always a unique
solution. Here is an example: if we consider a method
which takes no parameters and has the following body
{αint i = 1; βL: γgoto L; }

then we have the following equationsafter(α) = {i },
before(β) = after(α) ∩ before(γ) and before(γ) =
before(β). After some simplification we find that
before(β) = {i }∩before(β) and therefore we get two
solutions forbefore(β) (and also forbefore(γ)): ∅ and
{i }. This is the reason we perform a fixed point itera-
tion - which is not the case in Java. The set of variables
definitely assigned afterα is {i } and sinceβ does not
‘unassign’i , i is obviously assigned when we enter
β. Consideration of the example and the definition of
definitely assignedshow that the most informative so-
lution is {i } and therefore the solution we require is
the maximal fixed pointMFP.

In the rest of this section we show that there al-
ways exists a maximal fixed point for our data flow
equations. In order to prove the existence, one needs
first to define the functionF which encapsulates the
equations. For the domain and codomain of this func-
tion, we need the setVars(meth) of all local vari-
ables from the method bodymb. We define the func-
tion F : D → D with D = P(Vars(meth))r such
that F (X1, . . . , Xr ) = (Y1, . . . , Yr ), wherer is the
number of equations and the setsYi are defined by
the data flow equations. For example in the case of
an if-then-else statement, if the equation for
the after set of this statement is thei-th data flow
equation, then the set of variablesYi is defined by
Yi = Xj ∩ Xk wherej andk are the indices of the
equations for theafter sets of thethen and theelse
branch, respectively. Note that the setsvarsare inter-
preted as constants.

We define now the relationv on D to be the point-
wise set inclusion relation: if(X1, . . . , Xr ) ∈ D and
(X

′

1, . . . , X
′

r ) ∈ D, then we have(X1, . . . , Xr )v
(X

′

1, . . . , X
′

r ) if Xi ⊆ X
′

i for all i = 1, r. We are
now able to prove the following result:

Lemma 1 (D,v) is a finite lattice.

Proof. D is finite since for a given method body we
have a finite number of equations and local variables
and on the other hand,D is a lattice since it is a prod-
uct of lattices:(P(Vars(meth)),⊆) is aposetsince the
set inclusion is a partial order and for every two sets
X, Y ∈ P(Vars(meth)) there exists a lower bound
(X ∩ Y ) and an upper bound (X ∪ Y ). ut



The following result will help us conclude the exis-
tence of the maximal fixed point.

Lemma 2 The functionF is monotonic on(D,v).

Proof. In order to prove the monotonicity ofF =
(F1, . . . , Fr ), it suffices to remark that the compo-
nentsFi are monotonic functions. This holds since
they consist only of set intersections and unions which
are monotonic (see the form of the equations). ut

The next result guarantees the existence of the max-
imal fixed point solution for our data flow equations:

Lemma 3 The functionF has a unique maximal fixed
point MFP∈ D.

Proof. (D,v) is a finite lattice (Lemma 1) and there-
fore a complete lattice. But in a complete lattice, every
monotonic function has a unique maximal fixed point
(known also asthe greatest fixed point). In our case,
F is monotonic (Lemma 2) and the maximal fixed
point MFP is given by

⋂
k F (k)(1D). Here1D is the

r-tuple(Vars(meth), . . . , Vars(meth)), i.e. the top ele-
ment of the latticeD. ut

From now on, for an expression or statementα we de-
note by MFPb(α), MFPa(α), MFPt(α) and MFPf (α)
the components ofMFP corresponding tobefore(α),
after(α), true(α) andfalse(α), respectively.

4 THE CONTROL FLOW GRAPH
The main result we want to prove is that, for an ar-

bitrary expression or statement, the sets of local vari-
ablesMFPb, MFPa (andMFPt, MFPf for boolean ex-
pressions) correspond indeed to sets ofdefinitely as-
signedvariables, i.e. variables which are assigned on
every possible execution path to the appropriate point.
The considered paths are based on the control flow
graph. The nodes of the graph are actually points as-
sociated with every expression and statement. We sup-
pose that every expression or statementα is character-
ized by anentry point B(α) and anend pointA(α).
Beside these two points, a boolean expressionα has
two more points: atruepointT (α) (used whenα eval-
uates totrue ) and afalsepointF(α) (used whenα
evaluates tofalse ). The edges of the graph are given
by the control transferdefined in the C# Specifica-
tion [Wil03, §8]. We show in Tables 4 and 5 the edges
specific to each boolean and arbitrary expression, re-
spectively. If the expressionα is not an instance of one
expression in these tables (e.g.exp1| exp2) and has
thedirect subexpressionsβ1, . . . , βn, then the left-to-
right evaluation scheme adds to the flow graph also the
following edges: (B(α),B(β1)),(A(βn),A(α)) and
(A(βi),B(βi+1)), i = 1, n− 1.

For each boolean expressionα in Table 4, we have
supplementary edges:(T (α),A(α)), (F(α),A(α))

αexp edges
true (B(α), T (α))

false (B(α),F(α))

(! βe) (B(α),B(β)), (F(β), T (α))
(T (β),F(α))

(βe0 ? γe1 : δe2) (B(α),B(β)), (T (β),B(γ)),
(F(β),B(δ)), (T (γ), T (α)),
(T (δ), T (α)), (F(γ),F(α)),
(F(δ),F(α))

(βe1 &&γe2) (B(α),B(β)), (T (β),B(γ)),
(F(β),F(α)), (T (γ), T (α)),
(F(γ),F(α))

(βe1 || γe2) (B(α),B(β)), (T (β), T (α)),
(F(β),B(γ)), (T (γ), T (α)),
(F(γ),F(α))

Table 4: Control flow for boolean expressions

αexp edges
loc (B(α),A(α))

lit (B(α),A(α))

(loc = βe) (B(α),B(β)), (A(β),A(α))

(loc op= βe) (B(α),B(β)), (A(β),A(α))

(βe0 ? γe1 : δe2) (B(α),B(β)), (T (β),B(γ))
(F(β),B(δ)), (A(γ),A(α)),
(A(δ),A(α))

c.f (B(α),A(α))

ref βexp (B(α),B(β)), (A(β),A(α))

out βexp (B(α),B(β)), (A(β),A(α))

c.m(β1arg1, . . . ,βk argk) (B(α),B(β1)), (A(βk),A(α)),

(A(βi),B(βi+1)), i = 1, k − 1

Table 5: Control flow for arbitrary expressions

which connect the boolean points ofα to the end point
of α. These edges are necessary for the control transfer
in cases when it does not matter whetherα evaluates
to true or false . For example, ifβ is the method
invocationc.m(true) andα is the argumenttrue ,
then the control is transferred from the end point of the
last argument - that isA(α) - to the end point of the
method invocation - that isA(β). But since in Table 4
we have no edge leading toA(α), we need to define
also the supplementary edge(T (α),A(α)).

For a boolean expressionα which is not an in-
stance of any expression from Table 4, we add to the
graph the edges(A(α), T (α)), (A(α),F(α)). They
are needed if control is transferred from a boolean ex-
pressionα to different points depending on whetherα
evaluates totrue or false . For example, ifα is of
the formexp1| exp2 and occurs inβ(!( exp1| exp2)) ,



then the control is transferred fromF(α) to T (β)
(if α evaluates tofalse ) or from T (α) to F(β) (if
α evaluates totrue ). The necessity of the edges
(A(α), T (α)), (A(α),F(α)) arises since, so far we
have defined forexp1| exp2 only edges toA(α).

Table 6 introduces the edges of the control flow
graph for each statement. Note that we assume that the
boolean constant expressions are replaced bytrue or
false in the abstract syntax tree. For example, we
consider thattrue||b is replaced bytrue in the
following if statement:

αif β(true||b) δ i = 1;
else γ{int j = i; }

Although the new considered test (i.e.true ) cannot
evaluate tofalse , we still add to the graph the edge
(F(β),B(γ)) since anyway the false point oftrue
is not reachable (see Table 4). In the presence of
finally blocks, the jump statementsgoto , break
andcontinue bring more complexity to the graph.
Whenever such a jump statement exits one or more
try blocks with associatedfinally blocks, the
control is transferred first to thefinally block
(if any) of the innermosttry statement. Further, if
the control reaches the end point of thefinally ,
then it is transferred to the next (with respect to the
innermost to outermost order of thetry statements)
finally block and so on. If the control reaches
the end point of the lastfinally block, then it is
transferred to the target of the jump statement. For
these control transfers we have special edges in our
graph. But one needs to take care to some detail:
these special edges cannot be used for paths other
than those which connect the jump statement with
its target. In other words, if a path uses such an
edge, then necessarily the path contains the entry
point of the jump statement. For this reason, we
say that an edgee is conditionedby a point i with
the meaning thate can be used only in paths that
contain i. If we do not make this restriction, then
[B(mb)B(α1)B(α2)B(α3)B(α4)B(α5)A(α5)B(α6)]
would be a possible execution path to the labeled
statement in the following method body

α1 try α2 {
α3( α4(i = 1);)
goto L;

} finally α5{}
α6L:Console.WriteLine(i);

in the theoretical case when the evaluation ofα4

would throw an exception. But this does not match
the control transfer described in the C# Specification.

The following sets introduce the above described
edges. Ifα andβ are two statements andFin(α, β)
is the list[γ1, . . . , γn], then the setThroughFinb(α, β)
consists of the edges(B(α),B(γ1)), (A(γn),B(β)),
(A(γi),B(γi+1)), i = 1, n− 1 all conditioned by

αstm edges
; (B(α),A(α))

(βexp; ) (B(α),B(β)), (A(β),A(α))

{β1stm1 . . . βn stmn} (B(α),B(β1)), (A(βn),A(α)),
(A(βi),B(βi+1)), i = 1, n− 1

if (βexp) γstm1 (B(α),B(β)), (T (β),B(γ)),
else δstm2 (F(β),B(δ)), (A(γ),A(α)),

(A(δ),A(α))

while (βexp) γstm (B(α),B(β)), (T (β),B(γ)),
(F(β),A(α)), (A(γ),A(α))

L: βstm (B(α),B(β)), (A(β),A(α))

goto L; ThroughFinb(α, β), where
βL: stmis the statement to
whichα points

break; ThroughFina(α, β), where
β is the nearest enclosingwhile
wrt α

continue; ThroughFinb(α, β), where
β is the nearest enclosingwhile
wrt α

return; no edges

return βexp; (B(α),B(β))

throw; no edges

throw βexp; (B(α),B(β))

try βblock (B(α),B(β)), (A(β),A(α))
catch (E1 x1) γ1block1 (B(α),B(γi)), (A(γi),A(α)),
... i = 1, n
catch (En xn) γn blockn

try βblock1 (B(α),B(β)), (B(α),B(γ)),
finally γblock2 (A(β),B(γ)) and(A(γ),A(α))

conditioned byA(β)

Table 6: Control flow for statements
B(α) and the setThroughFina(α, β) has the edges
(B(α),B(γ1)), (A(γn),A(β)), (A(γi),B(γi+1)), i =
1, n− 1 all conditioned byB(α). If Fin(α, β) is
empty, then the setThroughFinb(α, β) has only the
edge(B(α),B(β)) while ThroughFina(α, β) refers to
the edge(B(α),A(β)).

Note that in Table 6, forgoto and continue ,
the set of edgesThroughFinb is added to the graph,
since after executing thefinally blocks the control
is transferred to the entry point of the labeled statement
andwhile statement, respectively, while in case of
break the setThroughFina is considered, since at the
end, the control is transferred to the end point of the
while statement.

There are two more remarks concerning thetry
statement. Since in atry block can anytime occur
a reason for abruption (e.g. an exception), we should



have edges from every point in atry block to: ev-
ery associatecatch block, everycatch of enclosing
try statements (if thecatch clause matches the type
of the exception) and to every associatefinally
block (if nocatch clause matches the type of the ex-
ception). We do not consider all these edges, since
from the point of view of the definite assignment anal-
ysis which is in particular an ‘over all paths’ analysis,
it is equivalent to consider only one edge to the entry
points of thecatch andfinally blocks - from the
entry point of thetry block (see Table 6).

The next remark is concerning the end pointA(α)
of a try-finally statementα. The C# Specifica-
tion states in [§8.10] thatA(α) is reachable only if
both end points of thetry block β and finally
block γ are reachable. The only edge toA(α) is
(A(γ),A(α)) and we know that thefinally block
can be reached either through a jump or through a nor-
mal completion of thetry block. In case of a jump, if
control reaches the end pointA(γ) of the finally ,
then it is transferred further to the target of statement
which generated the jump and not toA(α). This
means that all paths toA(α) contain also the end point
A(β) of the try block. That is why we require that
the edge(A(γ),A(α)) is conditionedby A(β) (see
Table 6) - otherwise in the following example,A(α)
would be reachable in our graph (under the assump-
tion thatB(α) is reachable):

αtry β {goto L; } finally γ{}
We define now the sets ofvalid paths to all points in
the method body. We will not consider all the paths in
the graph but only thevalid paths - that is the pathsp
for which the following is true: ifp uses aconditioned
edgethen it contains also the point which conditions
the edge. Ifα is an expression or a statement, then
pathb(α) andpatha(α) are the sets of all valid paths
from the entry point of the method bodyB(mb) to the
entry pointB(α) and to the end pointA(α) of α, re-
spectively. Moreover, ifα is a boolean expression,
then patht(α) and pathf (α) are the sets of all valid
paths fromB(mb) to the true pointT (α) and to the
false pointF(α) of α, respectively.

5 THE CORRECTNESS OF THE
ANALYSIS

We prove that, when a C# compiler relies on the
setsMFPb, MFPa, MFPt andMFPf derived from the
maximal fixed point of the equations in Section 2, the
risk of accessing the value of an unassigned variable
does not exist. The correctness means that, if the anal-
ysis infers a variable as definitely assigned at a certain
program point, then this variable will actually be as-
signed at that point during every execution of the pro-
gram, i.e. on every path. A variableloc is assigned
on a path if the path contains aninitialization of loc:
a simple assignment toloc, a method invocation for

which loc is an out parameter or acatch clause
whose exception variable isloc. We prove actually
more than the correctness. We show that the compo-
nents of the maximal fixed point are exactly (not only a
safe approximationof) the sets of variables for which
there is aninitialization on every path to the appro-
priate point. To formalize this, we define the follow-
ing sets. Ifα is an arbitrary expression or statement,
then APb(α) and APa(α) denote the sets of variables
in vars(α) (the variables in the scope of whichα is)
for which there exists an initialization on every path in
pathb(α) and inpatha(α), respectively. For a boolean
expressionα, we have two more sets: APt(α) and
APf (α) are defined similarly as above, but with re-
spect to paths inpatht(α) andpathf (α), respectively.

The following lemma is proved by induction over
the abstract syntax tree, starting from the root of the
method body. It claims that, the MFP sets of an expres-
sion or statementα, consist of variables in the scope
of whichα is (see [Fru03b] for details).

Lemma 4 For every expression or statementα we
haveMFPb(α) ⊆ vars(α) andMFPa(α) ⊆ vars(α).
Moreover, ifα is a boolean expression, then we have
alsoMFPt(α) ⊆ vars(α) andMFPf (α) ⊆ vars(α).
The correctness of the definite assignment analysis in
C# is proved in the next theorem, which claims that
the analysis is asafe approximation.

Theorem 1 (safe approximation) For every expres-
sion or statementα, the following relations are true:
MFPb(α) ⊆ APb(α) andMFPa(α) ⊆ APa(α). More-
over, if α is a boolean expression, then we have
MFPt(α) ⊆ APt(α) andMFPf (α) ⊆ APf (α).

Proof. We consider the following definitions. The set
APn

b (α) is defined in the same way as APb(α), except
that we consider only the paths of length less or equal
than n. Similarly, we define also the sets APn

a(α),
APn

t (α), APn
f (α) (analogously, we have definitions

for the sets of pathspathn). According to these defini-
tions, the following set equalities hold for an arbitrary
α: APb(α) =

⋂
n APn

b (α), APa(α) =
⋂

n APn
a(α)

and if α is a boolean expression, then APt(α) =⋂
n APn

t (α) and APf (α) =
⋂

n APn
f (α). Therefore

to complete the proof, it suffices to show for everyn:
if α is an expression or statement, then MFPb(α) ⊆
APn

b (α) and MFPa(α) ⊆ APn
a(α) and in addition, if

α is a boolean expression, MFPt(α) ⊆ APn
t (α) and

MFPf (α) ⊆ APn
f (α). This is done by induction onn.

Basis of induction:[B(mb)] is the only path of length1
(the entry point of the method body). There is no
initialization of any local variable on this path and
therefore we have AP1b(mb) = ∅ which satisfies
MFPb(mb) ⊆ AP1

b(mb) since from the equations
MFPb(mb) = ∅. From the definition of AP1a, we get
AP1

a(mb) = vars(mb) = ∅ and from the equations
of a block, we derive also MFPa(mb) ⊆ vars(mb)



and implicitly MFPa(mb) ⊆ AP1
a(mb). If α 6= mb,

then AP1b(α) = AP1
a(α) = vars(α) and AP1t (α) =

AP1
f (α) = vars(α) (if α is a boolean expression) and

the basis of induction is complete (see Lemma 4).

Induction step:we prove here only MFPb(βi+1) ⊆
APn+1

b (βi+1) for a labeled statementβi+1 in a
block (see Table 3). Letloc be a local variable in
MFPb(βi+1). If there are nogoto statements point-
ing toβi+1, then the proof is the same as for awhile
statement with no associatedcontinue statements
(see [Fru03b]). If there aregoto statements which
point to βi+1, we prove that there exists an initial-
ization of loc on every path toB(βi+1) of length at
most n + 1 that passes through agoto statement
and possibly throughfinally blocks of enclosing
try statements. Letp be such a path containing a
goto statementα. The equations in Table 3 im-
ply loc ∈ goto(βi+1) and furtherloc ∈ MFPb(α) ∪
JoinFin(α, βi+1). If there are nofinally blocks in
Fin(α, βi+1), thenJoinFin(α, βi+1) = ∅ and implic-
itly loc ∈ MFPb(α). Using the induction hypothesis,
we obtainloc ∈ APn

b (α) and thereforep should con-
tain at least one initialization ofloc. If Fin(α, βi+1)
is non-empty, i.e.Fin = [γ1, . . . , γk], then from the
definition of the setJoinFin(α, βi+1), we get loc ∈
MFPb(α)∪

⋃k
j=1 MFPa(γj). The caseloc ∈ MFPb(α)

has been previously analyzed. If there is afinally
block γj such thatloc ∈ MFPa(γj), then we get
loc ∈ APn

a(γj) from the induction hypothesis. And
since necessarilyp containsA(γj), we are sure that
p has one initialization ofloc. Thus, we showed that
each path toB(βi+1) of length at mostn + 1, contains
an initialization ofloc, i.e loc ∈ APn+1

b (βi+1). ut

We can prove actually more: theMFP solution is not
only an approximation ofAP but it is perfect (Theo-
rem 3). For this, we need also the following theorem
which states that theMFP solution contains the local
variables which are initialized overall possible paths.

Theorem 2 For every expression or statementα, the
following relations are true:APb(α) ⊆ MFPb(α) and
APa(α) ⊆ MFPa(α). Moreover, ifα is a boolean ex-
pression, then we have alsoAPt(α) ⊆ MFPt(α) and
APf (α) ⊆ MFPf (α).

Proof. Tarski’s fixed point theorem states thatMFP is
the lowest upper bound (with respect tov) of the set
Ext(F ) = {X ∈ D | X v F (X)}. It suffices to
show that ther-tuple consisting of theAP sets is an
element ofExt(F ) sinceMFP is in particular an upper
bound of this set. Sincev is the pointwise subset rela-
tion, the idea is to prove, for the data flow equations in
Tables 1, 2, 3, the left-to-right subset relations where
instead of the setsbefore, after, trueandfalsewe have
the setsAPb, APa APt andAPf , respectively. For the
complete proof we refer the reader to [Fru03b]. ut

The following result is then an obvious consequence
of Theorem 1 and Theorem 2:

Theorem 3 The maximal fixed point solution of the
data flow equations in Tables 1,2,3 represents the sets
of local variables which are assigned over all possible
execution paths.

6 CONCLUSION
In this paper, we have formalized the definite as-

signment analysis of C# by data flow equations. Since
the equations do not always have a unique solution, we
defined the outcome of the analysis as the solution of
a fixed point iteration. We proved that there exists al-
ways a maximal fixed point solution MFP. We showed
the correctness of the analysis, i.e. MFP is asafe ap-
proximationof the sets of variables assigned over all
possible paths. This is a key property for the type
safety of C#. This paper is part of a research project fo-
cusing on formalizing and verifying important aspects
of C#. So far, we have an ASM model for the opera-
tional semantics of C# in [Bor03]. During the attempts
to build this model, there were discovered in [Fru03a]
a few discrepancies between the C# Specification and
different implementations of C#.
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