
Design and implementation of a FIPA compliant
Agent Platform in .NET

Miguel Contreras Ernesto Germán Manuel Chi Leonid Sheremetov

Instituto Mexicano del Petróleo
Eje Central Lázaro Cárdenas #152

Col. San Bartolo Atepehuacán.
 México, D.F. 07730, México

mcontrer{egerman, machi, sher}@imp.mx

ABSTRACT
The aim of this paper is to describe the design and implementation of an agent platform called CAPNET
(Component Agent Platform based on .NET) that is fully compliant with the specifications of the Foundation for
Intelligent Physical Agents (FIPA) and implemented as 100% managed code in the .NET framework.

Keywords
Distributed Computing, Multi-Agent Systems , FIPA, Agent Platform, .NET Framework.

1. INTRODUCTION
Agent-based computing has the potential to
significantly improve the theory and the practice of
modeling, designing, and implementing complex
distributed computer systems [Jen00, Woo99].
Autonomous agents are entities that can complete
their objectives while situated in a dynamic and
uncertain environment, that can engage in rich, high-
level social interactions, and that can operate within
flexible organizational structures and systems.

Agent-based software should be robust, scalable and
secure. To achieve this, the development of open,
stable, scalable and reliable architectures that allow
compliant agents to discover each other,
communicate and offer services to one another is
required. These architectures go beyond the
capabilities of the typical distributed object oriented
programming techniques and tools. The FIPA's
Agent Platform (AP) reference model seems to be an
effective approach to address this problem [Fip00].

An AP is a software architecture that controls and
manages an agent community allowing the survival

and mobility of an agent in a distributed and
heterogeneous environment.

In the last few years, several APs have been
developed, and special attention has been paid to
interoperability and compatibility issues. In this
sense, the FIPA reference model has emerged as a
standard for interoperability sustaining the
development of APs. Most of the FIPA compliant
APs were developed in Java language, such as JADE
[Jad00], FIPA-OS [Nor99] and Zeus [Zeu00] just to
mention a few of them. One exception to this trend
was the original CAP [She01] agent platform
implemented using Microsoft DCOM and ActiveX
technology. The purpose of CAP was to enable the
construction and operation of multi-agent systems
(MAS) using Windows programming languages and
platform.

Our recent work has lead to the development of a
completely new AP, named CAPNET under the
novel Microsoft .NET Framework and Compact
Framework in 100% managed code written entirely
in the C# language. This new agent platform uses a
great number of the technologies available in .NET
and the windows platform, such as Web Services
(WS), remoting, asynchronous callbacks, delegates,
XML, database connectivity, performance counters,
event log, Winforms, Windows Services and network
access, among others.

The main objective of CAPNET is to bring an
integrated infrastructure that covers the
programming, deployment, administration and
integration with legacy applications of MAS (Fig. 1).
It consists of a run-time environment that supports

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2004 workshop proceedings,
ISBN 80-903100-4-4
Copyright UNION Agency – Science Press, Plzen, Czech Republic

MAS deployment, development environment in the
form of agent templates, programming tools and a
component gallery and some connectors to enable the
integration with enterprise applications. The run-time
environment is described in this paper focused on the
design and technical details of its implementation on
the .NET Framework.

Figure 1. MAS development and deployment in
CAPNET

This paper is structured as follows: in section 2, basic
concepts of agents and multi-agent systems are
presented along with a short description of the FIPA
specifications. In section 3, the CAPNET
architecture is defined. In section 4, the most
important implementation details are addressed and
technically described. Finally, the main features and
advantages of this work are discussed, along with
some future work.

2. AUTONOMOUS AGENTS
An agent is a computational entity that interacts with
one or more software counterparts or real-world
systems [Fra96]. Unlike traditional computer
programs, agents exhibit the following capabilities to
various degrees: autonomy, reactiveness, proactive-
ness, mobility, intelligent behavior and social
abilities.

The autonomy and pro-activeness features of an
agent allow it to plan and perform tasks defined to
accomplish the design objectives. The social abilities
enable an agent to interact in MAS and cooperate or
compete to fulfill its goals. An agent may be static or
mobile. In the latter case it is able to migrate along
with its associated data, state, and logic to another
host to interact with local resources and other agents
to perform a given task.

The open nature of the MAS is provided by the agent
organization, similar to that of distributed

enterprises, and supported in the agent platform’s
tools, which are responsible to provide flexibility
both in component aggregation and interaction
between them [She03]. The AP reference model of
the FIPA provides the framework of normative work,
inside which the agents exist and operate; it also
establishes the logical and temporal contexts for the
creation, operation and destruction of agents [Fip00].
The reference model considers an AP as a set of four
components: Agents, Directory Facilitator (DF),
Agent Management System (AMS), and Message
Transport System (MTS). The DF and AMS are
special types of agents that support the management
of other agents, while the MTS provides a message
delivery service (fig. 2).

Figure 2. Agent Management Reference Model

[Fip00].
The functionality of the main components of the
FIPA spec are: the AMS provides white-page and
life-cycle service, maintaining a directory of agent
identifiers (AID) and agent state. The DF is the agent
who provides the default yellow page service. The
MTS is the software component controlling all the
message exchange within the platform, including
messages to/from remote platforms.

The agents are the main parts of a platform. An agent
encapsulates one or more services inside a unified
and integrated execution model. FIPA maintains an
open concept of what an agent is, to be able to
include a great number of agent applications, and not
limit the form in which they are implemented. The
Software refers to all those systems that do not have
characteristics of agents but that are used by agents
to fulfill their tasks. Here, domain specific systems,
as well as the Application Programming Interfaces
(API) for handling communication protocols,
databases, security algorithms, etc. are included.

3. CAPNET ARCHITECTURE
The main objectives of CAPNET design are to
construct a platform that enables developers to easily

create and integrate distributed agent applications in
a consistent and scalable way. The Platform should
be able to interoperate with applications developed in
other APs as well.
The architecture of CAPNET is shown in fig. 3. In
this architecture four main parts are shown: i)
application agents, ii) agent management and
directory facilitator services, iii) built-in security
services, and iv) message transport system and
connectivity techniques. The message transport
mechanisms are the core of the platform, supporting
a wide variety of transport types. Among the
considered transport managers are all those required
to ensure platform interoperability with other widely
available APs such as those mentioned in section 1.

Figure 3. CAPNET architecture

The services of transport, delivery and reception of
messages represent a central point within the
CAPNET platform. In CAPNET, an agent
communicates with others using a service provided
by the MTS. This level of abstraction allows
developers of multi-agent systems to design them
based on schemes of loosely coupled messaging
systems between components. With this type of
asynchronous messaging the communication can be
seen as a distributed messaging system similar to a
Message Oriented Middleware (MOM) [Ber96] or
publish/subscribe architectures [Pal03].

To assure MTS reliability, some additional
mechanisms are implemented. When an agent sends
a message, it knows if the MTS has delivered it to
the destination agents or not. If some adressee could
not be contacted then the emitting agent receives a
notification indicating that the message could not be
delivered. It is the responsibility of the emitting agent
to maintain its state or to block its execution while it
waits for the answer.
Two cases for message delivery exist. The first one
takes place when the addressee agent is accessible
through the same MTS and the internal mechanism
of the MTS is used. In the second case, the message
addressee is registered in other MTS. In this case, a
component called Message Transport Adapter
(MTA) has been implemented to determine the type
of message transport that is needed to complete the
operation and to use the appropriate technological
infrastructure for it. The MTA uses the services of
Message Transport Protocol Factory (MTPF) to
instantiate the component that really implements the
access to the physical transport. This component in
our architecture is called Transport Manager (TM).

If a new transport mechanism is required, a new TM
component has to be created implementing the
standard interface known by the MTPF and the
MTA. If that interface is implemented, the
interaction with the MTPF is assured and the
particular implementation of the transport mechanism
is completely open to the developer, and can include
any form of communication both synchronous and
asynchronous, such as raw sockets, MSMQ, FTP,
SMTP, etc. The TM has to be registered in the
platform in order to be used. At the time of writing
the TMs for HTTP and .NET Remoting have been
implemented, and several more are in process.

In a heterogeneous multi-agent environment, security
becomes an extremely sensitive issue. Security risks
exist throughout the whole agent life-cycle: agent
management, registration, execution, agent-to-agent
communication and user-agent interaction. Agent
Platform Security Manager is out of the scope of this
paper, the details on its architecture and
implementation can be found in [San03].

4. IMPLEMENTATION DETAILS

4.1 The Message Transport Mechanism
The MTS was implemented as a singleton
remoteable object [Ram01] that can be instantiated
by the agents in order to be able to send and receive
messages. This remote object is able to deliver
messages to the agents based on delegated method
and publish/subscribe mechanisms for events.

The mechanism for message delivery is a type of
asynchronous callback allowing messages to be
delivered as they are received by the MTS. The
agents use a special class working like a listener of
incoming messages. This listener contains a delegate
method which is invoked when the MTS receives a
message.

When agents are initialized they subscribe to the
MTS sending a listener object. This object is
registered in the events manager administered by the
MTS. When a message has to be delivered by the
MTS, it consults events manager to look for the
listener of the destination agent of the message. This
way it can invoke the delegated method that was
registered for the listener of the agent.

If an agent wishes to send a message (fig. 4), it
contacts its MTS. When a message is received by the
MTS, it is processed as specified by FIPA. When it is
prepared for delivery to the destination agent(s), if
any of them is located in a different CAPNET, MTS
contacts the MTA to delegate the delivery. The MTA
determines the required type of delivery based on the
destination agent’s address. Using this information
the MTA obtains a concrete TM from the MTPF.
That TM is the object capable of performing the real
delivery of the message and once obtained, the MTA
invokes the delivery functionality on it.

Figure 4. Sequence for message sending.

When a message is received by a TM, it extracts the
important fields and constructs a new platform
specific Transport Message object to be sent to the
known MTA. This MTA forwards the Transport
Message to the MTS, which sends the message to the
destination agent. Message receiving is similar.

4.2 The AMS and DF Services
The AMS and DF services of the platform have been
implemented using a multi-tier architecture (Fig. 5).

We shall only describe the AMS Service, since the
implementation of the DF is almost identical.

The agent tier (Tier 1 in the figure) is implemented
by the functionality provided by the BasicAgent class
(described in the next section), and involves all the
communication, interaction and conversation
mechanisms that provide the social interaction
capabilities. This layer is responsible for listening to
other agents requests, implemented as an ACL
(Agent Communication Language) request message
specifying the action and its parameters, and
launching the corresponding services.

Figure 5. AMS Service implementation.

The application-logic tier (Tier 2) is implemented in
the services (actions) that the AMS_Agent is able to
perform. The actions that this agent is able to
perform are: registration, deregistration and
modification of agent descriptions in the white page
directory, and search of agent descriptions.

The data access tier (Tier 3) is implemented in the
AMS_Component which is a remoteable component
hosted in a Windows Service. This component
designed as a “singleton” exposes two interfaces: the
IAMS interface for the AMS_Agent and the
IAMSAdmin interface for the administration and
monitoring applications, such as the Society Viewer
(that shows the registered agents and their inte-
ractions) or the AMS_Administrator among others.

The AMS_Component registers and updates
constantly a set of performance counters. These
counters allow system administrators to monitor and
record the state of the platform and to raise events or
generate alarms under certain conditions they are
interested in.

The data tier (Tier 4) is implemented in a relational
database using Microsoft SQL Server as the DBMS
that stores Agent Descriptions of all the registered
agents.

4.3 Agent Implementation
The construction of a set of basic elements that
constitute the internal architecture of the agents in a
FIPA compliant environment is crucial for
application development. These elements provide the
ways to develop agents, their unique identifiers,
registry information, ACL message construction,
message reception and handling, content codification
and representation with different content languages,
the platform services description and application
agents services. In the following sections these
elements are described in more details.

4.3.1 Basic Agent
In order to be successful or, at least, easy to use, the
AP has to provide some mechanism for agents
creation. Being the central element of the
applications, a basic agent class takes advantage of
the entire infrastructure in a transparent way. This
class allows carrying out several tasks like i)
instantiating the local MTS and registering its
listener in it for incoming messages reception, ii)
registering of AMS and DF services, and iii)
processing of received messages. AMS and DF
registration have been implemented using the
conversation mechanism designed to control the
messages exchange. This mechanism is described in
the following section.

In order to support agents programming for the AP,
an API is provided. This API includes classes to
construct the unique agent identifier (AID), DF
service descriptions (ServiceDescription), the local
platform description (APDescription), AMS agent
descriptions (AMSAgentDescription), DF agent
descriptions (DFAgentDescription), etc. Figure 6 (in
appendix) shows the diagram of CAPNET utility
classes.

Two mechanisms for message processing are
developed: polling and callback. Polling is the
mechanism that allows an agent to process messages
in a synchronous way and is used by the
conversations mechanism to control the predefined
message sequence in an interaction protocol.
Callback works similar to the MTS message delivery
mechanism. Events are declared in each agent to
process each one of the message types or a pre-
established conversation. The particular mechanism
to be used is dynamically determined according to
the attributes of the message (conversation-id and
protocol).

4.3.2 Conversation Manager
A conversation manager is an internal component of
each agent linked to its communication capacity.
Conversations are important to facilitate the
interaction between different agents to carry out
some tasks within a multi-agent environment.
Besides facilitating the interaction, a conversation
manager allows an agent to control its course of
action on the basis of the results that are obtained
during their conversations. A conversation manager
allows an agent i) to add new conversations required
during the communication process, ii) to add agent
interaction protocols (AIP) that can be used to
control the message sequence in a conversation, and
iii) in general, to offer access to the completion state
and results of a conversation.

A conversation is added when a message establishes
a conversation and AIP identifiers. A new
conversation is dynamically created determining (by
means of the .NET reflection mechanism) the AIP
from the CAPNET library. It is important to mention
that an AIP can have several implementations. Each
new conversation is handled in a new execution
thread in such a way that an agent can carry out
parallel interaction through simultaneous
conversations.

We have defined a set of classes and interfaces that
helps to create conversations and AIPs in a standard
way. At the moment, two interfaces for the
synchronous and asynchronous conversations are
implemented. When a new interface is created, it
must inherit from a conversation class to establish its
attributes (conversation-identifier, AIP class to be
used in conversation control and delay time-out
between messages) and must implement some of the
interfaces of conversation type, that mainly serve to
give access in run time to an AIP’s concrete
implementation.

4.3.3 Agent Communication and Content
Languages
In order to provide communication functionality,
FIPA-ACL is implemented [Fip00]. XML is used as
the standard encoding for messages. The content of
the ACL messages is represented in a content
language allowing agents to obtain and handle
objects from the agent’s knowledge base. It enables
knowledge interchange and handling between
heterogeneous applications and guarantees high
interoperability and autonomy degrees. For CAPNET
message coding two languages are implemented:
FIPA-RDF0 (using XML representation with
validation through schemes) and FIPA-SL (using the
string representation scheme, a grammar and parser
for construction and validation of these content
objects).

4.3.4 Dynamic action invocation
Agents can carry out actions in favor of others.
Because the action requests are codified in a sort of
text format and are not obtained directly through
method invocation, agents extract the requested
action and achieve dynamic invocation by means of
.NET reflection mechanism. The content language
allows expressing an action, its internal results and
its arguments. The agent itself determines how to
extract the action and its attributes to carry out the
invocation.

4.4 Administration Tools
Along with the platform, a set of tools for its
configuration and administration have been
developed. These tools include a society viewer, a
ping agent, AMS and DF administrator, Pocket PC
version of the AMS and DF administrator, platform’s
communication infrastructure configurator, etc.

One of the most important tools is the AMS
administrator (fig. 7), because it allows monitoring of
agents registered at the AP, their state and properties.

Figure 7. AMS Administration architecture.

This tool is designed to connect directly to the
AMS_Componet using the IAMSAdmin interface via

.NET Remoting. When communication using
remoting is not possible (because of network
restrictions or using the Pocket PC version of the
administrator) a Web Service is used to form a bridge
to the AMS_Component. The latter approach
however has a drawback: the administrator has to
request constantly the last state of the AMS, whereas
using remoting the Administrator is able to subscribe
to the published events of the AMS_component, in
order to receive instant notifications of any changes
occuring in the AMS as a result of registration,
deregistration or modification of agent descriptions
in the AMS.

5. DISCUSSION AND
CONCLUSIONS
In this paper we have presented an Agent Platform
named CAPNET that constitutes an excellent
example of a distributed system built on top of the
.NET Framework. One particular feature of this
platform is that its primary goal is to enable the
developers to construct another kind of distributed,
flexible and open systems (MAS) using it as the
basic infrastructure for communication and adminis-
tration of the elements that will be part of them.

The architecture proposed for the core of the
CAPNET is divided into three main blocks: directory
services, security and message transport services.
Along with those elements a set of tools for the
administration, monitoring and development of MAS
for the platform have been constructed.

Since agent communication plays a key role in social
interaction, a great effort was invested in order to
make it very extensible and interoperable. To achieve
this, the low level transport mechanisms (TM) were
isolated from the core of the MTS and integrated into
it using the “factory pattern” that enables the
possibility to have several concrete implementations
of TMs for different protocols or communication
techniques. Another advantage of using this design
pattern is that it will easily accept the implementation
of load balancing techniques in the future.

The implementation of the CAPNET required the
extensive use of remoting for different tasks such as
agent communication and administration. The use of
remote delegates allowed the agents to subscribe to
the events published by the MTS, and also enabled
the administrative tools to get instant notifications of
the changes in the state of the platform services.

All the remoteable AP components involved in the
message transport mechanisms (MTS and Remoting
TM) and directory services (AMS and DF) were
implemented as Server Activated Singleton Objects
and hosted in Windows Services.

This particular implementation has the advantage of
high availability of these components and will
eventually lead to the clusterization of these services
to increase the reliability of the AP in future
versions.

The use of XML as the standard encoding for
messages has several advantages. Some of them are:
native support on the .NET framework for managing
XML documents, easy integration with the modern
commercial and industrial applications available and
the natural integration to the semantic languages.

In order to take advantage of the features of the
development platform, the CAPNET services report
their state to the operating system via performance
counters and the event log.

In order to make CAPNET compatible with the .NET
Compact Framework (CF) and to be able to deploy
administration tools and agent systems in mobile
devices, alternative mechanisms to remoting for
communications had to be implemented. These
mechanisms included the use of Web Services, easily
accessible for applications written for the CF and
capable of bridging to the main CAPNET
infrastructure.

The communication capacities of the platform were
stress tested with a custom made benchmark
application that involved the creation of 100 agents
distributed in 10 hosts in a single segment of a
10Mbps LAN. The benchmark measured the time it
took for each agent to send one message to each
other agent, and one to itself (sending a total of
10,000) XML encoded messages with a length of
300 bytes/each. The results obtained showed that the
full load of 10,000 messages took a variable time of
83 to 108 seconds to be delivered in 40 different
simulations at different times (the network
infrastructure was not exclusive for this purpose and
had peek use hours).

A very important feature to be implemented in future
versions of CAPNET, will be the support for agent
mobility, that will enable the agents to traverse hosts
to perform their tasks.

Several prototype MAS are under development using
CAPNET, which will help to test its functionality for
concrete applications. Most of these prototypes were
earlier implemented using JADE or the first version
of the CAP and include supply chain configuration,
secure desktop, contingency management (fig. 8).
Details can be found in [She04, Smi04].

6. ACKNOWLEDGMENTS
Support for this research work has been provided by
the Mexican Petroleum Institute within the project
D.00006 "Distributed Intelligent Computing".

The authors would like to thank Microsoft™
México, especially Luis Daniel Soto and Felipe
Lemaitre for their support for the realization of this
work and also to all their colleagues for the helpful
advices on the CAPNET architecture and Ana Luisa
Hernandez for her contribution to the development of
the CAPNET message encoding mechanism.

7. REFERENCES
[Ber96] Bernstein, Philip A. "Middleware: A Model

for Distributed Services." Communications of the
ACM 39, 2 (February 1996): 86-97.

[Fip00] FIPA Specifications.
http://www.fipa.org/specs/

[Fra96] Franklin, S. and Graesser, A., “Is it an
Agent, or just a Program? A Taxonomy for
Autonomous Agents”, Proc. ATAL’96, Springer-
Verlag, Berlin, Germany, 1996.

[Jad00] JADE Programmer’s guide, Bellifemine F.,
Caire G., Trucco T., Rimassa G. JADE 2.5.

[Jen00] Jennings N. R. On agent-based software
engineering. Artificial Intelligence, 117, 277–296.

[Nor99] Nortel Networks FIPA-OS
http://www.nortelnetworks.com/products/cements/

[Pal03] Pallickara, S. Fox J., Yin J., Gunduz G., Liu
H., Uyar A., Varank M. A Transport Framework
for Distributed Brokering Systems. Proc.
PDPTA'03.Volume II pp 772-778.

[Ram01] Rammer I. Advanced .NET Remoting, 1st
edition, Apress, ISBN: 1-59059-025-2

[San03] Santana G., Sheremetov B. L., and Contreras
M. Agent Platform Security Architecture,
Computer Network Security (Proceedings of the
MMM-ACNS 2003, St. Petersburg, Russia,
September 2003), V. Gorodetsky, L. Popyack, V.
Skormin (Eds.), LNCS 2776, Springer Verlag,
2003, pp.457-460

[She01] Sheremetov, L. & Contreras, M. Component
Agent Platform. In Proc of the Second
International Workshop of Central and Eastern
Europe on Multi-Agent Systems, CEEMAS'01,
Cracow, Poland, 26-29 of September, 2001, pp.
395-402.

[She03] Sheremetov L., Contreras M., Chi M.,
Germán E., Alvarado M. Towards the Enterprises
Information Infrastructure Based on Components
and Agent. In Proc. of the 5th International
Conference On Enterprise Information Systems,
Angers, France, 23-26 April, O. Camp, J. Filipe, S.
Hammoudi and M. Piattini (Eds.) Escola Superior
de Tecnologia do Instituto Politécnico de Setúbal,
Portugal, 2003. pp. 340-347.

[She04] Sheremetov L., Contreras M. and Valencia
C. Intelligent Multi-Agent Support for the
Contingency Management System. International
Journal of Expert Systems with Applications
(Special Issue), Pergamon Press, 26(1): 57-71,
2004.

[Smi04] Smirnov, A. V. Sheremetov, L. B. Chilov,
N. Romero-Cortes, J. Soft-computing
Technologies for Configuration of Cooperative
Supply Chain. Int. Journal Applied Soft

Computing. Elsevier Science, Vol. 4(1):87-107,
2004.

[Woo99] Wooldridge M. “Multiagent Systems: A
Modern Approach to Distributed Artificial
Intelligence”, G. Weiss (Ed.), MIT Press,
Cambridge, MA, 1999.

[Zeu00] ZEUS: Nader A., Thompson S. A Toolkit
for Building Multi-Agent Systems Proceedings of
fifth annual Embracing Complexity conference,
Paris April 2000.

Figure 6. CAPNET Utility Class Diagram.

Figure 8. CAPNET Tools (Contingency Management System application).

