
A Framework Built in .NET for Embedded and Mobile
Navigation Systems

Zoltán Benedek

Budapest University of Technology and Economics
Dept. of Automation and Applied Informatics

Goldmann György tér 3, 4.em
Hungary 1111, Budapest

zoltan.benedek@aut.bme.hu

ABSTRACT
With the appearance of low cost high performance embedded and mobile computers the applications running on
these computers can offer novel services on board of a wide variety of transportation vehicles. These services
include providing navigation aid based on GPS (Global Positioning System) and digital maps in the field of
personal in-car navigation. Considering public transportation vehicles the most important services are automatic
next-stop annunciation, electronic sign control, automatic passenger counting, dispatch communication and
Wireless LAN (Local Area Network) data management. Most of these applications can be decomposed into a
common set of components. This paper describes a component-based framework developed in .NET to support
the development of navigational applications. The core of the framework is the component configuration,
component wiring and communication infrastructure which facilitates the low coupling of components and also
enables the tight integration of services. Utilizing this infrastructure and building a predefined set of component
building blocks the development time and cost of specific applications can be reduced significantly.

Keywords
navigation system framework, component framework, embedded event-driven applications

1. INTRODUCTION
Recently a boom in the market of general purpose
personal mobile devices (Pocket PCs, Smartphones,
etc.) can be observed. In addition, GPS receivers can
easily be connected to most of these devices, then
installing a map software (e.g. Microsoft Packet
Streets) a complete navigation system can be
developed. As an operating system Microsoft Mobile
2003 SE is one of the candidates targeting these
devices.

Though the complete functionality is available, it is
not possible to directly use these personal devices as
on-board controllers on public transportation
vehicles. In this field the environment calls for more
ruggedized devices. Fortunately, the appearance of
low cost high performance PC/104 (and other PC

compatible) embeddable computers enables the
application of powerful Operating Systems, such as
Windows CE or Windows XP Embedded. The first
public transportation vehicles equipped with on-
board computers appeared quite a long time ago.
Most of these systems were deeply embedded and
provided relatively simple services, such as GPS
based location identification and automatic next stop
annunciation. Modern on-board computer systems
can offer significantly wider ranges of services
[Zhao97], as it will be described in details in
section 2.

Applying modern managed runtime platforms (such
as the .NET Framework or the .NET Compact
Framework) on top of the Operating System these
computers open new ways for rapid application
development providing high quality integrated
services. The .NET Framework is a general purpose
framework which provides general services that are
used by most applications.

This paper presents a specialized component based
framework built on top of the .NET Framework to
maximize the productivity developing embedded
navigation applications. With the help of this
framework the developers should be able to create

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2004 workshop proceedings,
ISBN 80-903100-4-4
Copyright UNION Agency – Science Press, Plzen, Czech Republic

complex navigational applications offering strongly
integrated high level services. These services are
realized by components, the low coupling and
flexible configurability of components is guaranteed
by the framework according to the fundamental
design for change and reuse concept.

The core services of this framework constitute the
infrastructure that takes care of the component related
(configuration, startup, communication) and the
threading issues, so that application developers can
fully focus on solving application specific problems.
Utilizing this infrastructure the first step is to develop
components, then to configure and wire them together
(in an XML configuration file) according to the
application specific requirements.

Although the framework currently requires the full
.NET framework due to making use of a few legacy
components by COM Interop, care has been taken to
minimize the utilization of features that are not
available in the .NET Compact Framework to ease
porting in the future. The navigation framework
currently targets the Windows XP Embedded
platform with the full .NET Framework installed.

A remarkable amount of research has been conducted
related to embedded component based frameworks
[Muller01], [Doucet02]. Most of these frameworks
have been developed to realize applications running
on low performance embedded chips and therefore a
lot of emphasis has been put on performance,
memory optimization, real-time execution
requirements and similar issues, which can be best
achieved by unmanaged C or C++ runtime
environments. As a typical example, the Balboa
component framework [Doucet02] uses C++ for
component development and defines a high level
component integration language (CIL) that supports
introspection and loose typing. Most achievements of
this environment are readily provided by the .NET
Framework. Instead of focusing on component
integration problems in unmanaged environments the
framework described in this paper targets embedded
systems offering high level, complex, strongly
integrated services by loosely coupled reusable
components. Also, medium to high performance
embedded computers are supposed to be available
running managed execution environments.

2. EMBEDDED AND MOBILE
NAVIGATION SYSTEMS
Public transportation systems exhibit a set of highly
complex navigation applications for on-board
computer systems [Bened00], [Bened04]. These
systems can automate several tasks, such as making
next stop announcements or driving electronic next-
stop, route and destination signs. Though the vehicle

position can be determined applying a GPS, in most
cases dead reckoning capabilities based on evaluating
odometer and compass information are also required
to handle those cases when GPS satellite visibility is
blocked by high buildings or tunnels.

Processing normal operating records on-board
systems can feed a number of statistical calculations:
passenger counting on a per stop basis, logging
detected off-route events (detours), detecting late
arrivals, early departures and alarm conditions
represent a great source of valuable business
information for transit authorities.

The offload of collected data and the update of the
on-board route-schedule database can be fully
automated if the vehicle and the garage have Wireless
LAN installed and appropriately configured.

Images taken by on-board cameras can also be
captured so that accidents and incidents can be
played back to clarify what happened in a specific
situation.

Vehicles can be connected online to the dispatch
centre via some remote communication link, such as
GPRS (General Packet Radio Service). Vehicles
report their position and status (alarm, delay, device
status, vehicle health problems) so that dispatchers
can see and effectively handle fleet related problems.

As described above, a typical on-board system is
connected to several back-end and front-end systems.
Figure 1 depicts a whole fleet information system
built around the on-board system.

Switches

Traffic light
priority

On-board system

Dispatch

GPS
Satellites

Depot 1..N

Local data
server

LAN

Dispatch server

Workstation

Workstation

Operations

Operations server

Workstation

Workstation

Data collection

Field supervisorPolice

Laptop

PDA

WLAN
WLAN

Data management

Central data server

Workstation

Workstation

LAN

LAN
or

MAN

Wired connection

WLAN

Wayside
information
sign

Remote conn.

Remote conn.

Remote
co

nn.

Remote
conn.

Figure 1. The system architecture of a fleet

information system
There are several key points regarding the software
modules running on the on-board computer. Beyond
the fact that a number of tasks have to be handled by
the same computer, these tasks have to work in a
tightly integrated way. For instance, when the driver
changes route, the new route identifier has to be has
to be sent to the electronic signs installed on the

vehicle. In addition, it has to be logged into a file
(source of statistical data), it has to be sent to the
dispatching centre via the remote communication link
and it has to be used as labeling data for the captured
video frames. When developing applications the
programmers have to be able to handle this complex
net of interrelationships between the system modules.
There is another important aspect: different transit
authorities may have significantly different
requirements, different vehicle infrastructures, so
each software component should be easily
replaceable and new modules should be easily
pluggable without affecting the others.

Figure 2 illustrates the most important logical
components required on board in case of a public
transportation vehicle.

Figure 2. On-board components
In the following sections the component model of the
framework, the details of component definition,
component configuration, system startup, inter-
component communication and threading issues will
be presented.

3. COMPONENTS

Component Definition
As mentioned earlier, the framework follows a
component-based approach. A component in our case
has a more specific meaning than the general
technical definition of most books and papers. A
component conceptually is a building block
encapsulating some processing logic and providing
services for other components. It is a wrapper around
some domain specific logic allowing the framework
to treat components uniformly and to provide services
for component startup, initialization, configuration,
shutdown, according to the Service Configurator
design pattern [Dougl99]. Components can contain
an arbitrary number of objects possibly realizing very
complex component logic.

Components are implemented in .NET assemblies to
facilitate flexible system configuration: enabling or
disabling a component will result in the given
component being loaded or not loaded by the
framework at startup, respectively. Components are
specialized based on the layer they belong to. As a
matter of fact, three layers are defined. Port type
components (serial ports, parallel ports, sockets) form
the lowest layer, they communicate with the outside
world. Device type components abstract GPS,
odometer and other devices for the higher level logic.
Application logic components perform the real
domain specific tasks. Fig. 3 shows one simple
configuration made up by eight components.

Figure 3. A simple system configuration

Component Structure
Each component has to have certain predefined
interfaces and has to follow some predefined rules so
that it can be managed by the framework.
Components are composed of three parts as shown in
Figure 4.

Figure 4. Component structure
The Logic part represents the objects performing the
domain specific tasks the component is responsible
for.

The Configuration Port is the connection point to the
central Component Manager object, which is the
central configuration management unit of the whole
framework with respect to component startup,
shutdown and configuration. The ConfigurationPort
class provides built in support for the component for

starting/stopping/restarting and configuring based on
a configuration file section belonging to the
component. The component developer has to derive a
new class from the ConfigurationPort class. This
class has a CreateSubComponents method, which
shall be overridden by the component developer to
instantiate the objects internal to the component.

The Message Port objects implement message-based
communication with other components, as it will be
described in more detail later on. They basically
receive messages from components they are
connected to and forward messages to the Logic part.
They also transform events raised by the Logic part to
messages to be published to other components.

Although the development of a new component may
look complicated, all what a component developer in
most cases has to do (besides writing the component
logic code) is derive two classes from the
ConfigurationPort and MessagePort classes and
override some of their methods.

4. COMMUNICATION

Conceptual Considerations
The cornerstone of being able to create applications
that are manageable and extendible despite the
complex interrelationships between their components
is to define a communication infrastructure that yields
low coupling between components. Instead of using
strongly typed interfaces, the communication
primarily based on events following the publisher-
subscriber pattern results in a far more flexible
solution. Taking this into consideration an event
driven approach following the push model
[Szyper98] has been chosen, no direct method calls
are used.

The push model communication concept naturally
suits the event-driven nature of the embedded
application domain the framework has been primarily
designed for. The representative configuration shown
in Figure 3 is a good example. In most cases the GPS
device calculates and sends new position information
once in every second. This data is received by a serial
port component, which raises an IncomingData event
("event" means conceptual events and not .NET
events in this case). The GPS Device component
receives this event as it is registered at the Serial Port
component. It analyses the data and extracts the
position information according to the communication
protocol of the GPS device. The position information
is sent to the Positioning component, which possibly
checks GPS coordinate validity based on data
received last from the odometer device and sends the
noise filtered position to the Route Processor
component. Next, the Route Processor checks if the

vehicle has entered/left a close proximity of a stop
and rises appropriate events. The Sign Control
component is registered to stop change events and
updates the electronic signs according to a specific
sign communication protocol.

This approach has several advantages. First it
inherently supports the broadcasting and multicasting
of events. When the components are developed it is
not known which other, not yet existing components
will be interested in their events. This is not an issue
if events are used. The subscription schema is defined
in an XML configuration file processed by the
framework at application startup. Even though this
configuration file has to be edited manually now, an
application with an intuitive user interface is being
developed to help creating wiring definition.

Events can be implemented as sending and receiving
message objects. In this case the parameter of a
callback (event handler) method is always an object
that can be perceived as a message encapsulating the
type and the parameters of the event. This approach
enables the logging of these messages to a log file
during in the field operation, which can be played
back in simulation mode later on. Multithreading
combined with message queues yields a solution that
can handle communication with slow hardware in a
separate thread and also can hide threading issues
from the programmer. Furthermore, messages can be
easily serialized and sent via sockets making
communication transparent across process or machine
boundaries.

However, there are some liabilities. Realizing calls as
sending messages makes calls requiring result more
difficult to handle, as the correspondence between a
particular request and a particular response has to be
handled explicitly by the programmer.

Implementation
In the navigation framework inter-component events
are implemented as sending and receiving message
objects. In fact, messages are parameters of .NET
delegates. When a .NET delegate is fired, the
registered objects receive the message as the
parameter of the event handler method. The type of
event is encoded by the type of the message
parameter. Therefore, there is no need to define a
separate .NET event member for each event type,
new message types can be introduced without
modifying the interface of the related classes. The set
of services offered and the events published by a
component can be represented by different command
and status type messages, respectively. There is a
class hierarchy of messages with the IMessage
interface as the root. Figure 5 shows a few message
types involved in GPS communication.

LLAPositionFix

+ latitude : double
+ longitude : double
+ altitude : double
+ dateTime : DateTime

XYZPositionFix

+ x : double
+ y : double
+ z : double
+ dateTime : DateTime

GPSTime

+ GMTDateTime : DateTime

XYZVelocityFix

+ xVelocity : float
+ yVelocity : float
+ zVelocity : float
+ dateTime : DateTime

IGPSMessage

IGPSCommand
IGPSReport

IMessage

Figure 5. A part of the message class hierarchy
Each component has at least one Message Port object
at the component boundary as mentioned earlier. This
acts as a communication gateway between the logic
part and other components. It has an OnNewMessage
event handler method with an IMessage parameter,
which is a reference to the message object received.
The OnNewMessage method is registered (via .NET
delegates) at other components and is called when
there is a new incoming event for the component. The
registration of this event handler at the event source
components is performed by the framework at system
startup. It is the responsibility of the component
developer to “translate” incoming events to
appropriate method calls into the component logic.
The component developer also has to decide which
events originated by the logic part should be
transformed into messages and then forwarded to
other components through the Message Port.

The core framework objects constituting the
infrastructure services handle messages only through
the IMessage interface, so they do not need to be
recompiled when new components with new message
types are introduced in the framework.

Messages are arranged into a class (or type, as
interfaces are also involved) hierarchy. A few
examples of different message types are the
following: GPS related messages (e.g. position and
time), position messages (either GPS or calculated
from odometer and compass data), route processing
status messages for detected off-route and late arrival
conditions.

Filtering incoming events based on the type of the
incoming event is possible in the Message Port. The
following code snippet illustrates a component that is
interested in GPS report messages only and ignores
all other messages:
protected override void NewMessage(IMessage
message)
{

if (message is IGPSReport)
 NewGPSReport(message);
}

The NewMessage method is an abstract method
defined in the MessagePort base class. The

OnNewMessage event handler calls the NewMessage
operation for each incoming event. This way the
component developer is forced to override the
NewMessage method in his/her MessagePort derived
class and handle the events appropriately.

The next piece of code illustrates how the
MessagePort “derived” object translates the incoming
message to a method call into the component logic.
protected override void NewMessage(IMessage
message)
{

if (message is LLAPositionFix)
 {

theComponentLogic.InLLAPositionPacket
(message as LLAPositionFix);

 }
…

}

If in case of a specific component the same object is
the target of all incoming events it is possible to free
up the programmer from writing any dispatching
code. The name of the method to be called can be
derived from the name of the type of the message
object parameter according to a certain naming
convention. First the existence of the method should
be checked. If the method exists then it can be called
with the message as a parameter. The next code
fragment realizes this simple algorithm:
protected override void NewMessage(IMessage
message)
{

string methodName = "On" +
 message.GetType().Name;
 MethodInfo minfo=
 theCompLogic.GetType().GetMethod(met
 hodName);
 if (minfo!=null)
 minfo.Invoke(theCompLogic,
 new object[] {message});
}

Mainly the receiving aspect of communication has
been discussed so far. With respect to sending events
to other components the developer of a component
can call the dispatchMessage(IMessage message)
method of the MessagePort class to send events to
other components.

5. COMPONENT WIRING
The communication model of the framework
supporting the publisher-subscriber pattern does not
provide by itself a comprehensive solution. If the
definition of component wiring - connecting
subscribers to publishers - is awkward, then building
specific target applications remains difficult.

Therefore, the configuration of components with the
wiring information can be defined in an XML
configuration file. Each component has a section
within this file with a unique name, the assembly

name containing the code of the component, the class
name of the Configuration Port object of the
component, the enabled/disabled state, the
configuration data specific to the component, and a
ComponentConnections section with the list of the
names of the components whose messages the
component subscribes to. The next section shows a
fraction of a sample configuration file.
...
<Component>
 <UniqueName>Route Processor</UniqueName>
 <Assembly>RouteProcessor</Assembly>
 <Class>RouteProcessor.RouteProcConfPort</
 Class>
 <Enabled>True</Enabled>
 <ComponentConnections>

 <ComponentConnection>Positioning
 Component</ComponentConnection>

<ComponentConnection>Main
 UI</ComponentConnection>

 </ComponentConnections>
 <AutomaticPathStart>True
 </AutomaticPathStart>
</Component>
<Component>
 <UniqueName>Positioning
 Component</UniqueName>
 <Assembly>PositioningComponent</Assembly>
 <Class>PositioningComponent.PositioningCo
 mponent ConfPort</Class>
 <Enabled>True</Enabled>
 <ComponentConnections>
 <ComponentConnection>GPS Device</
 ComponentConnection>
 </ComponentConnections>
</Component>
...
The framework processes the configuration file at
startup. The next code sample shows how simple
.NET reflection makes the dynamic loading of
assemblies and the creation of objects, given only the
name of the class as a string:

…
ComponentListElement cle;
Assembly assembly = Assembly.LoadFrom(
cle.assemblyName + ".dll");

Type type = assembly.GetType(
 cle.className);

cle.componentRef =
(ComponentConfManager)Activator.CreateInsta
 nce(type);

cle.isLoaded = true;

The ComponentListElement is a simple class holding
the name of the class to be instantiated, the name of
the source assembly and a reference to the created
object.

6. SYSTEM STARTUP
The navigation framework instantiates a singleton
Component Manager object at application startup,
which takes care of most of the component loading,
instantiation, configuration and cleanup tasks.

The Component Manager processes the system
configuration file, instantiates the Configuration Port
object of the enabled components based on their
assembly and class name, and stores a reference to
them in a running component list. Having the
Configuration Port object instantiated its
CreateSubcomponents method is called. This method
has to be overridden by the component developer to
instantiate the objects internal to the component. In
the next step the Component Manager calls the
Configure method on the Configuration Port object of
the component (passing the XML path to the section
of the configuration file belonging to the component)
so that the component can configure itself. The same
steps are performed for each component in turn. At
this point the Component Manager registers the
OnNewMessage event handler method of the
subscriber Message Port objects at the event source
Message Port objects according to the component
wiring schema defined in the configuration file. Now
the runtime configuration has been set up and the
communication between components is enabled. The
framework calls the Start method of the
Configuration Port objects, which can be overridden
by the component developer giving a chance to
perform startup tasks specific to components.

7. THREADING
Most components perform tasks that do not take a
long processing time and therefore can run in the
main thread of the application without involving a
thread context switch. Most port type components
(e.g. serial ports) however have to perform long
running blocking operations, for example reading
data from a device. These operations can not be
performed in the main thread as it would halt all other
components running here. Consequently, port type
components inherently have to utilize multithreading.
However, most application and component
developers do not have experience in handling
multithreading issues (applying mutual exclusion
locks properly and avoiding dead locks). For these
reasons the framework has built in threading support
for port type components. Each port type component
starts a separate thread to perform blocking
operations and hides it from the component
developer.

The key issue is how to dispatch events to
components connected to the port from within the
main thread (for instance when new data is received).
If the events originated from the external thread of
the port can be routed by the port to itself in a way
that they are triggered to other components from
within the main thread, then from this point the intra-
thread event dispatching mechanism (discussed in
section 4) can be used. The key question is how to

"inject" the call into the main thread for the specific
port object. .NET delegates form the bases of the
solution as they encapsulate both the target objects
and the method to be called.

Each thread (including the main thread) creates a
synchronized message queue in its TLS (Thread
Local Storage) memory area to hold references to
messages sent by other threads. Figure 6 outlines the
solution.

Figure 6. Threads and message queues
 When new data is received by the port, an object of
class QueueItem is created (abbreviated as QItem in
Figure 6) by the external thread. This class
encapsulates the delegate to be fired with its
parameter, which is always of the type IMessage.
public class QueueItem
{

public NewMessageEvent messageDelegate;
 public IMessage message;
};
The messageDelegate member is set up by the
component, so that when the delegate is fired a
specific method (dispatchMessageHandler) of the
sender component is called. The message member is
set to the message object parameter, for instance to
and object of class IncomingData in case of a serial
port component that has just received new data. The
newly created QueueItem object is put into the
message queue of the main thread. The main thread
taking out the QueueItem object from its queue fires
its messageDelegate member, passing the message
member as a parameter:
queueItem.messageDelegate(queueItem.message)
This results in calling the dispatchMessageHandler
event handler method of the same Message Port
object from within the main thread. The
dispatchMessageHandler dispatches the event to all
registered components exactly the same way as
sending events to components residing in the same

thread, making threading fully transparent for the
receiving component. Sending messages across
thread boundaries is also made transparent for the
sender component. The developer of a port type
component calls the dispatchMessage(message)
method in the MessagePort derived object to send
messages to other components. This method is
inherited from the MessagePort base class and is
implemented differently for port type components,
which use a message queue, and the regular
components, which use direct invocation for message
dispatching.

The scenario is very similar with respect to the flow
of events in the opposite direction. If data is sent by a
higher level component to a port type component, the
event with the message parameter is transparently
dispatched from the main thread to the message
queue of the port, and from the queue to the
appropriate handler function.

A different approach would be using .NET
asynchronous delegates. Calling a delegate
asynchronously results in executing the method
encapsulated by the delegate by a thread pulled from
a thread pool. This solution however would require
the called method to take care of the synchronization
by using appropriate locks when accessing shared
data, and threading issues could be not hidden by the
framework.

It should be mentioned that the .NET Framework has
built in support for message queuing based on the
COM+ MSMQ facility, made available under the
Messaging namespace. The MSMQ targets enterprise
applications, and is less suitable for performance
sensitive embedded systems. The message queue
implementation of the navigation framework uses the
System.Collections.Queue class and the
synchronization for the queue is provided by the
System.Threading.Monitor class, together yielding a
simple and efficient implementation.

8. SIMULATION
One of the most appealing benefits of message based
inter-component communication is that messages can
be serialized to a log file during in the field operation.
This log file can be played back later on in simulation
mode enabling the full reconstruction of system
behavior. This feature can be really useful for
instance in the fine tuning phase of developing dead
reckoning algorithms, or when an accident occurs and
the exact scenario has to be played back with an
enhanced user interface representation (e.g. with the
vehicle symbol animated on a digital map). Only
messages created by port type component are logged
as these are the components that communicate with
the outside world. Each message is logged with the

name of the component that just generated the
message. During simulation the simulation manager
object reads the log file, extracts the messages and
forwards them to that particular component which
originally generated the message. According to this
fundamental design concept applications can be
started either in normal or in simulation mode. Most
components are unaware of the actual mode, only
port type components have to able to be switched to
normal or simulation mode. In simulation mode the
port type components are supposed to disable their
hardware connections and dispatch data sent by the
simulation manager.

9. SAMPLE APPLICATION
The infrastructure services of the framework have
been implemented in the .NET Framework. Besides,
the following components, which can be used as
building blocks for developing applications have
been developed so far: Serial Port, GPS Processor
(handling Trimble TSIP protocol), Positioning and
Route Processing. The Route Processing component
encapsulates relatively complex component logic: it
is fully capable to determine the relative position of
the vehicle according to the route number set by the
driver, can trigger next stop announcements and
similar events. A map framework using an
appropriate digital map database has also been
developed within the ESRI MapObjects map
component framework, which was built into the user
interface component to visualize vehicle location,
vehicle status and the current route with all the stops
along that route. To demonstrate system capabilities
an application has been composed using these
components. Figure 7 illustrates the application:

Figure 7. An application built utilizing the
framework

10. CONCLUSION
A framework effectively supporting the development
of complex, highly integrated, easily extendible
applications in event-driven environments has been
presented in this paper. As a primary application field

navigation on-board computer systems have been
discussed. When creating application building blocks
developers can easily encapsulate system logic into
components. Once the components have been
developed, creating specific target applications from
these components is straightforward. A
communication mechanism has been elaborated
following the push model: events are dispatched by
the framework from the source component to each
component connected to the source according to the
component wiring schema. The wiring itself is
defined in a configuration file, along with the
individual settings specifically required by the given
component. Future work will include hiding objects
common to all components (Message Ports and
Configuration Ports) from the component developers
and enable them to provide these as .NET attributes.
This will further simplify the component
development process.

11. ACKNOWLEDGEMENTS
The author would like express his thanks to István
Bihari, Balázs Osztatni and Milan Trenovszki for
their valuable contribution in designing and
implementing both the framework and the building
block components.

12. REFERENCES
[Bened03] Z. Benedek: Intelligent Integrated Fixed

Route Transportation Systems, Wesic
Conference, 2003

[Bened04] Z. Benedek, S. Juhász: Intelligens
Járműfedélzeti Rendszerek, Elektrotechnika
folyóirat (Intelligent On-board Computer
Systems, Journal of Electronics), 2004

[Doucet02] An Environment for Dynamic
Component Composition for Efficient Co-
Design, In Proc. Design Automation and Test in
Europe, 2002

[Dougl99] S. Douglas et al.: Pattern-Oriented
Software Architecture, Volume 2, John Wileys &
Sons, Ltd, 1999

[Richt02] Jeffrey Richter: Applied Microsoft .NET
Framework Programming, Microsoft Press, 2002

[Szyper98] C. Szypersky: Component Software –
Beyond Object-Oriented Programming, Addison-
Wesley, New York, 1998

[Muller01] Muller, P.O. et al.: Components @ work:
component technology for embedded systems,
Euromicro Conference, 2001

[Zhao97] Y. Zhao: Vehicle Location and Navigation
Systems, Artech House, Inc, 1997

[Web01] ITS Online, <http://www.itsonline.com>
[Web02] The United States Department of

Transportation, <http://www.dot.gov>

