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ABSTRACT

XMLSpaces.NET implements the Linda concept as a middleware for XML documents on the .NET platform. It introduces
an extended matching flexibility on nested tuples and richer data types for fields, including objects and XML documents. It is
completely XML-based since data, tuples and tuplespaces are seen as trees represented as XML documents. XMLSpaces.NET
is extensible in that it supports a hierarchy of matching relations on tuples and an open set of matching amongst data, documents
and objects.

1 INTRODUCTION

According to [3], middleware for XML-centric applications
can be classified as middleware that supports XML-based
applications – for example, a class library providing an
XML-parser –, as XML-based middleware for applications –
for example, a protocol suite that uses XML-representation
for messages –, or as completely XML-based middleware –
an example is the XML-based XSL language which trans-
forms XML documents.
XMLSpaces ([10, 11]) extends the Linda coordination lan-
guage by establishing a distributed shared space in which
XML documents are stored. A process, object, component
or agent contributing a result to the overall system will emit
it as an XML document to the XMLSpace. Here, it is stored
until some other active entity retrieves it. For retrieval, a
template of a matching XML document is given. The match-
ing relations possible are manifold, currently, XMLQueries,
textual similarity of XML documents and structural similar-
ity wrt. a DTD are supported.
XMLSpaces follows the Linda concept of uncoupled coor-
dination. Producers and consumers of information do not
have to reside at the same location. Also, they do not need to
have overlapping lifetimes in order to communicate and to
synchronize. The producer can well terminate after putting
a document into the space while the consumer does not even
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exist. The consumer can try to retrieve a matching document
while the producer has not started to exist. This uncoupled-
ness in space and time makes the Linda concept attractive
for open distributed systems.
XMLSpaces adds to Linda expressibility by providing a
richer type of exchanged information. While Linda deals
only with tuples composed of a set of primitive data types,
XMLSpaces allows any well-formed XML document in tu-
ple fields. The set of matching relations is not fixed but can
be extended. The distribution and replication schema imple-
mented in XMLSpaces is well-encapsulated and extensible.
XMLSpaces was implemented at TU Berlin on top of Java
using RMI. For the basic tuplespace functionality, it relied
on TSpaces, an IBM implementation of Linda with small
extensions. In addition, it implemented a set of matching
relations and a set of distribution strategies.
Following the above classification, XMLSpaces is middle-
ware that supports XML-applications. In this paper, we de-
scribe an evolution of XMLSpaces, called XMLSpaces.NET
which goes even further and tries to be a self contained
XML-middleware. It consists of two parts. First, the
implementation of an XMLSpaces kernel in C# that in-
cludes the basic coordination mechanisms and the specific
XML support. Second, the implementation of a distributed
XMLSpaces on top of the .NET framework. In this paper
we describe the ideas for a complete XML-representation for
both tuples, subtuples and tuplespaces in XMLSpaces.NET,
its architecture and current implementation on the .NET plat-
form.

2 TUPLESPACES IN XML

A generic middleware has to offer means to exchange data,
documents and objects among distributed applications. See
[3] for a review of the historic distinction between object-
and document-oriented middleware. XMLSpaces.NET pro-
vides an integrated representation of data in standard Linda-
tuples, objects from common programming platforms and



documents in XML representation. The operations – fol-
lowing the Linda coordination language – implemented in
XMLSpaces.NET become more powerful since they can be
applied to all three mentioned kinds of data of interest in a
uniform manner.

2.1 XML-based Tuplespaces

A standard Linda-tuple is a list of fields. Those fields
carry values from or denote some primitive types, usually
from that of a host language. For richer structuring of tu-
ples, XMLSpaces.NET extends that basic notion by allow-
ing nested tuples. An XMLSpaces.NET-tuple thus contains
a sequence of fields or XMLSpaces.NET-tuples and is ac-
tually a tree of a certain “depth” with primitive data or ob-
jects as leaves. Such atupletreeis sufficient to represent
all our tuples, since fields cannot contain references. The
common Linda operations supported by XMLSpaces.NET
always manipulate a complete tuple at a time, so the struc-
ture of an existing tupletree is never changed or manipulated.
As mentioned above, we strive for a middleware that sup-
ports data, documents and objects. A standard Linda-tuple
can be considered as data with fields being primitives from
some simple type-system. Lindas standard matching scheme
can be applied for such tuples. For now, we leave the aspect
of matching nested tuples open.
To support documents, we allow well-formed XML docu-
ments as tuple fields. The aforementioned XMLSpaces al-
ready allowed for tuples that contained XML documents and
offered a set of matching relations to select tuples contain-
ing XML documents as fields, for example by referencing
a DTD to which a document in a field had to comply. Fur-
thermore, a tuple can contain an object from some program-
ming language – Java objects or .NET objects are examples.
Matching on them is object- resp. class-specific.
Our aim is to design an integrated and self contained XML-
middleware. So far, we have talked about tuples, primitive
data, XML documents and objects. For XMLSpaces.NET
we have to find a uniform notion that integrates these. The
natural choice is, of course, to use an XML representation
for the tuples. A tuple (and a nested tuple, too) is a tree with
fields as leaves or nested tuples as subtrees. It is obvious, that
there can be an XML representation for such tuples. XML
documents in fields are trees, since they are wellformed. Fi-
nally, the objects that we want to support can also be consid-
ered as trees, at least there can be some tree - based serializa-
tion of them. It is a reasonable assumption that in a modern
object system, one can generate an XML-based serial repre-
sentation which maps an object into an XML-document.
With that XMLSpaces.NET takes the idea of an XML based
coordination medium a step further, since any tuple in
XMLSpaces.NET is an XML document. We can go on to
apply that principle to tuplespaces.
A tuplespace is a collection of tuples. In the case of multiple
or nested tuplespaces, it is a collection of tuples and spaces.
The tuplespaces are in any case also trees.
For XMLSpaces.NET, we consider a tuplespace as a collec-
tion of XML documents as described. This collection can
be represented, in turn, as another tree similar to the tuple-
tree described. The tuplespace differs from tuples in that it
cannot contain fields as direct descendants of the root node.

So – at least conceptually – XMLSpaces.NET considers the
complete coordination medium as a single XML document
with the first level being the tuplespace (or one or several
levels in the case of multiple or nested spaces) and the further
levels being tuples and nested tuples. The leaves of this one
XML document are the fields which are primitives, XML
documents or XML serializations of objects. This view is
one contribution of XMLSpaces.NET

2.2 Matching in XMLSpaces

Fields in Linda tuples are eitherformals– containing only a
type as in〈?int〉 – or actualscontaining a typed value as in
〈2〉. Tuples that contain formals are considered templates in
Linda.
In XMLSpaces.NET an item used with tuplespace opera-
tions can be classified as a tuple or a template. A tuple
contains only actual fields or tuples as fields, like〈1,2〉 or
〈1,〈2,3〉〉. A template can also contain formal fields or tem-
plates like〈1,?int〉 or 〈1,〈?int〉〉. The set of tuples is a subset
of templates.
We do not introduce the classification as typing in
XMLSpaces.NET, since this would require us to consider
either tuples as subtypes of templates (they are more special
in that they cannot contain formals), or vice versa (templates
are more special in that they can contain formals). Thein
andread operations expect something that is classified as a
template, an out something classified as a tuple. So the item
〈1,2〉 is classified by itsusein an operation as a tuple or a
template.
Matching in XMLSpaces.NET distinguishes actuals and for-
mals as in Linda. Any matching tuple and templates must
have the same length, that is the same number of fields and
subtuples or subtemplates.
We now distinguish two extreme kinds of matching when
considering subtuples. FlatTemplate-matching performs
matching only on the fields of the first level of the tuple-
tree. The content of fields containing primitive data, XML
documents or objects is not even tested for equality or type-
equivalence but only considered as being of the metatype
“tuplefield”. Similar, nested tuples and templates are only
considered as being of the metatype “subtuple/subtemplate”.
It suffices thatsome(sub-)subtuple is present in a field, its
structure and content is not considered further. In contrast
to that,DeepTemplate-matching performs a complete recur-
sive matching of the content of contained subtuples and tem-
plates considering type- and value-equivalence.
We write〈1,2〉D for a template that requires deep matching
and 〈1,2〉F for one with flat matching. A tuple〈1,〈2〉,3〉
will be matched by a template〈1,〈2〉D,3〉D, but not by
〈1,〈0.0〉D,3〉D. Deep matching is intuitively the standard
Linda matching recursively applied to nested tuples. Flat
matching transforms the typing to a metalevel. A flat tem-
plate 〈1,〈2〉F ,3〉F matches both〈1,〈2〉,3〉 and 〈1,〈0.0〉,4〉.
The template is transformed into〈F,T,F〉, where F means
field and T means tuple. Flat and deep matching can be
combined. 〈1,〈2〉F ,3〉D matches〈1,〈2〉,3〉 and 〈1,〈0.0〉,3〉
but not〈1,〈0.0〉,4〉.
Finally, flat matching takes precedence over deep matching.
In a template〈1,〈2〉D,3〉F , the second field will be trans-
formed to the metatype T, overriding the deep matching.



This means that〈1,〈2〉F ,〈3〉D〉F is equal to〈1,〈2〉F ,〈3〉F 〉F .
We therefore make deepmatching the default and require
only the notation for flat matching if necessary. So we
write 〈1,〈2〉F ,3〉D as 〈1,〈2〉F ,3〉 and 〈1,〈2〉F ,〈3〉F 〉F as
〈1,〈2〉,〈3〉〉F .
It turns out that there are further interesting relations be-
tween flat and deep matching. While flat matching ignores
all further characteristics of fields and subtuples,flat/size
matching requires that subtuples must be of the same size
as the one given as template. Size is defined as the sum
of the number of fields and subtuples. We write〈. . .〉FS

for a template that requires this matching. The template
〈1,〈2〉FS ,3〉D matches〈1,〈0.0〉,3〉 but neither〈1,〈2,3〉,3〉
nor 〈1,〈2,〈3〉〉,3〉.
The “metatyping” of fields can also be of interest. We
introduce flat/type matching for that case. Here, subtu-
ples must contain the same number of fields and subtuples.
We write 〈. . .〉FT for that kind of matching. The tem-
plate〈1,〈2〉F ,3〉FT matches〈1,〈2〉,3〉 and〈〈1〉,2,3〉 but not
〈〈1〉,〈2〉,3〉. As a further relation of interest, we introduce
flat/valuematching. Here, subtuples are not considered fur-
ther while fields have to have equal value. We write〈. . .〉FV .
The template〈1,〈2〉F ,3〉FV matches〈1,〈0.0〉,3〉 but neither
〈1,2,3〉 nor 〈0.0,〈2〉,3〉.
The relations mentioned are ordered, sinceD ⇒ FV ⇒
FT ⇒ FS ⇒ F . Further possible relations are currently
under study. The differentiated and extensible view on struc-
tural matching of nested tuples is one of the contributions of
XMLSpaces.NET.
Further matching is possible which combines the relations
above. In the current implementation XMLSpaces.NET also
supports a matching based on the FV and FT relations. It
checks for value- and type-equivalence for fields on the first
level of the tupletree, but only for equal numbers of fields
and subtuples in any subtuples.
Three cases of field matching have to be distinguished for
which different matching relations are defined:
Primitive datacan be matched on type- and value equiva-
lence as in Linda. In addition, we foresee matching relations
like comparisons (〈≥ 5,≤ 3〉).
Objectsare matched on type and object equivalence. Object
equivalence is defined here by equal representation of a nor-
malized serialization. It is implemented by comparing the
respective SOAP serializations of objects.
Type equivalence of objects and its use in matching is an in-
teresting topic and has led to several proposals in tuplespace
research ([2, 8, 9] and others). Objects usually are typed
and classified. In most object oriented systems, there is a
type- and class-hierarchy. With that, two objects can be
in several relations – they can be type compatible if their
interfaces are in a subtype relation or can be specializa-
tions/generalizations if their classes are in a sub-/superclass
relation. The hierarchies mentioned form trees. Again, we
have a deep and a flat matching. A template can reference a
class or a type like〈?AClass〉F . For flat matching, an object
matching such a field has to be an instance of that class or
type like〈aObject〉. Deep matching here means that match-
ing objects are instances of direct or indirect subclasses or
subtypes like〈bObject〉 if BClass is a subclass of AClass or
the interfaces of the objects are in a subtype relation.
XML documentsare matched according to some further

matching relation since we lack a definition of normalized
equivalence of XML documents.
The flexible and extensible matching of values is another
contribution of XML-Spaces.NET.

3 ENGINEERING XMLSPACES

In this section we give an overview of the internal structure
and architecture of XML-Spaces.NET.

3.1 Local operations

As aforementioned, nested tuples have a tree-structure,
therefore it is easy to build a complex nested tuple from the
subtuples (subtrees). Fig. 1(a) shows, that two classes with
appropriate methods and constructors are sufficient to de-
scribe nested tuples.
While nested tuples provide structure to what is put into a
tuplespace, fields contain the specific data. A field should
be capable of storing any type that is valid in a host pro-
gramming language that uses XMLSpaces.NET. In addition
XMLSpaces.NET adds XML-documents as a valid type.

Tuple Field

1 1..*

1

0..*

contains

contains

(a) Tuple and Field

XmlTemplate

FlatTemplate DeepTemplate

XmlTuple
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(b) Template

Figure 1: Tuples and Templates

After creating tuples and writing them to a tuplespace with
anout, it is necessary to retrieve them. Linda specifies two
retrieval operations, a consuming (in) and a non-consuming
(read) one. To retrieve a tuple from a tuplespace, a template
is defined against which a tuple has to match. If the template
contains only values it acutally is a tuple. As stated in sec-
tion 2, one can see Template as a subclass of Tuple and vice
versa. For an implementation, however, it is necessary to de-
cide which approach to take. We therefore define Template
as a subclass of Tuple, because apart from (actual) fields and
tuples, a template can contain templates and formal fields.
At least three groups of types can be stored in a field: primi-
tive types, objects and XML-documents (see section 2.1). In
our implementation we can join two groups, primitive types
and objects, since they are part of the host programming lan-
guage C#.



The definined matching-relations on the two remaining
groups (types of the host language and XML Documents)
are totally different. Types of the host programming lan-
guage can be checked for their specific type and value, us-
ing the programming language operations. The document
type of a wellformed XML-document is determined by its
structure and its value by the values of the tags, attributes
and contained text. An XML-document itself could have a
structure and contents that is itself as complex as a complete
tuplespace. Matching relations can be defined on different
levels of granulation, i.e. an XML-document’s structure or
even values of a single element or attribute. The most ob-
vious way to define matching relations is by using XPath-
expressions. Although XPath already offers a wide variety
of matching-relations, many more matching-relations can be
imagined, e.g. validation against XML-schema or XQuery.
To keep the creation and maintenance of matching-relations
flexible, we have defined two interfaces, which stand for one
type of matching-relation each.
With nested tuples, there are at least two different ways of
matching (see section 2.2). XMLTemplate is defined as an
abstract class, that contains rules for combination of Tem-
plates, Tuples, Fields and matching-relations. Any subclass
of XMLTemplate can be used interchangeably. By defining
a class that extends XMLTemplate it is possible to extend the
set of templates. As we have observed in Sec. 2.2, there are
many interesting templates for nested tuples that should be
realizable via an easy extension-mechanism. The matching-
algorithm should be able to decide which template to use
at runtime, so new templates are just defined and used in
matching without having to change existing code.

3.2 Remote Operation

Any active entity that emits tuples to or retrieves tuples from
a TupleSpace is considered to be a client. In order to create
and work on a tuplespace, a client needs a TupleSpace ob-
ject. TupleSpace objects serve as references to tuplespaces
on a server. Clients may have many TupleSpace objects, of
course. Apart from the traditional Linda-operations (in, out,
read, eval) a TupleSpace object contains methods to log on
or create tuplespaces and manipulate attributes that affect its
behavior. Examples of such planned attributes are timeouts,
lease-time of objects etc.
The server manages the tuplespaces and the distribution
strategies. It has a collection of TupleBuckets, which rep-
resent tuplespaces. Any TupleSpace object that a client uses
is associated exactly to one TupleBucket. However, many
TupleSpace objects may be associated to the same bucket
and thereby share the same tuplespace.
We plan to support three types of replication (none, full and
partial replication) as described in [10, 11].
In a system where the tuples are not replicated, all servers
manage their own tuplespaces only. If a client writes a tu-
ple to a tuplespace that is on the local server, we have the
non-distributed case and simply write (out) the tuple to the
tuplespace. If the target tuplespace is on a remote server,
a Distributor object forwards the tuple to the server, which
manages that tuplespace. Anin or read is executed on the
local server first and then performed on remote servers, if
the tuple or tuplespace can not be found. This strategy is

easy to implement and consumes little resources compared
to strategies with replication.
The counterpart to that strategy is the full replication strat-
egy. Every tuple is stored locally and on every remote server.
This brings about a lot of communication and organiza-
tion overhead among the servers, as with every operation
all servers have to be notified and their tuplespaces must be
changed according to the source server. This strategy offers a
high failsafety. The disadvantages, however, are potentially
heavy network traffic and a high consumption of resources.
Between these two extremes is the partial replication strat-
egy in order to gain the advantages of both. In a system per-
forming partial replication all servers are regarded as nodes
in a rectangular grid. The grid is partitioned into horizon-
tal and vertical stripes, assigning each node to exactly one
intersection of stripes. Each horizontal stripe is defined as
an in-set and each vertical stripe is defined as anout-set.
Tuplespaces of nodes inin-setsmust be disjunct, whereas
tuplespaces of nodes inout-setsare exact copies.
This structure limits all operations to only a subset of
servers. Allin operations are performed on onein subset
of servers. The advantage forout operations is that they are
performed on one out-set only. If a tuple is consumed or
added, only the nodes in thatout-setneed to be updated.
However, the number of participating servers should be dy-
namic. This does not affect the non-replication and the full
replication strategy, but for the partial replication strategy it
is impossible to guarantee a rectangular grid of nodes. To
solve this problem simulated nodes were introduced. When-
ever the number of nodes is not sufficient to form a rectan-
gular grid, i.e. when new servers want to participate in or
leave the distributed tuplespace, the neighbour in thein-set
of such a “hole” in the grid simulates its presence. As they
are members of the samein-setthey have the same contents.
In addition to these issues, a distributed system performing
any kind of replication must guarantee the integrity of its
data. Therefore all distributed operations must follow a com-
munication and operation protocol to lock and release tuples
and thereby guarantee data integrity.

4 IMPLEMENTATION

We use Microsoft’s .NET Framework to implement
XMLSpaces.NET. It already features functionality we need
to implement the Linda-System and the extensions. Lan-
guages like VB.NET, C++.NET, Python.NET were extended
to work with the .NET Framework. We choose C# as the host
language, as it is specially developed for the .NET Frame-
work. All languages, however, compile to the Microsoft In-
termediate Language (MSIL) and there should be no signif-
icant difference in terms of performance.
After XMLSpaces.NET is released, clients can be written
in any host language of the .NET Framework, as they are
capable of accessing the same assemblies.

4.1 Tuples

Tuples use the built-in .NET typeSystem.Xml.XmlDocument
to represent their contents.System.Xml.XmlDocumentis an
implementation of the W3C’s DOM and DOM2. It is there-



(a) The Grid of Nodes (b) Example of a simulated node

Figure 2: Intermediate Replication of Tuplespaces

fore an in-memory representation of an XML-Document
with methods for manipulation. In order to store data into
XML, we need a serialization pattern. Pattern in this con-
text means the XML-structure that represents the types. The
.NET Framework has a uniform type-system for all host
languages, called Common Type System (CTS). Types are
namedSystem.*, where * is any of the types defined in
.NET. Depending on the host language, the available types
may vary. For example, C# does not support pointers so
the Pointer- Types are not available in C# but they exist in
C++.NET. XMLSpaces.NET is capable of handling all pos-
sible types, as the type-information is extracted during run-
time and stored in the XML-document. On the other hand
only clients that know of those specific types (written in a
host language in which those types are available) will need
to retrieve tuples with such fields.
For these primitive types a serialization is found easily, as
we only need a string that represents the value. How-
ever, a string representing the value is ambiguous, since
”1” might be System.Int16, System.Int32, System.Int64, Sys-
tem.Charor a System.String. We therefore need to store
the value’s type in order to deserialize it correctly. The
serialization for primitive datatypes is therefore:<Field
type=”System.*”>VALUESTRING</Field>.
Objects, in this context are instances of classes, arrays or
structs (container for structured data in C#). They are se-
rialized differently, of course. We could useReflectionto
do the serialization to XML manually, but the .NET Frame-
work already features functionality that serializes an ob-
ject into a SOAP-document ([12]). Any other XML seri-
alization of objects can be used instead, of course. The
serialization for primitive datatypes is therefore:<Field
type=”Soap”>SOAPDOCUMENT</Field>. It is possible
to serialize primitive datatypes into SOAP-documents as
well, but we have chosen to serialize into the indtroduced
form, because the resulting SOAP-document would be much
larger and thus takes more time for matching operations and
occupies more memory.
XML-Documents do not need to be serial-
ized, as they can already be represented as
strings. The third serialization pattern is<Field
type=”XmlDocument”>XMLDOCUMENT</Field>.

4.2 Templates

As we have stated in section 3.1, we choose Template to
extend Tuple with functionality for matching. It is obvi-
ous that we only need to make small modifications. Apart
from Tuples a Template may contain other Templates and a
field can be substituted by a matching-relation. We imple-
ment two interfaces, which form the basis for the extensi-
bility of XMLSpaces.NET. Their serialization is as follows:
<Field type=”IMatchable”>SOAPDOCUMENT</Field>
and<Field type=”IXMLMatchable”>SOAPDOCUMENT
</Field>.
We can determine if an object is an instance of a class that
implements one of those interfaces. Thereby we differentiate
two more types that are serialized in Templates,IMatchable
and IXMLMatchable. The SOAP-Formatter of the .NET
Framework serializes those objects, which produces well-
formed XML-documents.
Only in a template, instances of classes with these inter-
faces have to be handled separately, as they are needed to
perform the matching. In a Tuple templates and those ob-
jects would be treated like any other object, allowing even
instances of matching-relations and templates to be stored in
the tuplespace and be exchanged among clients.
So far only matching-relations where investigated. How-
ever, we need an extensibility-mechanism for templates,
too. It is necessary to store the type of the tem-
plate in the XML-representation. Any object in C#
has a fully qualified name as its type description, e.g.
XMLSpaces.Templates.DeepTemplate. We extend the XML-
representation of a tuple to contain XML-elements, where
the type attribute stores the fully qualified name of the tem-
plate. On one hand the resulting XML-document contains all
information that is needed for matching and keeps the core
implementation independent from any modifications. On the
other hand, there is no limitation to the number of templates.

4.3 Extending Matching Relations

In C# any class or primitive data type is a sub-class ofob-
ject. We therefore define an interfaceIMatchablewith a sin-
gle methodbool matches(object o). Any matching operation



on objects, i.e. primitive data types and instances of objects,
can be defined using this interface. This concept is much
more powerful than the Linda matching, which is either a
type-match, or an exact match of value. Our approach al-
lows the definition of finer relations. A string for example,
can be matched in many different ways. A few examples
are to match the string exactly, by ignoring the case of the
letters, by matching on a substring or its conformity to a reg-
ular expression. Depending on the use of XMLSpaces.NET,
different matching-relations may be preferred.
XML-documents can be matched in a wide variety of ways.
There are existing standards such as XPath, XPointer, XSLT
and drafts for future standards like XPath2 and XQuery.
It is essential that the set of matching relations for XML-
documents is at least as extensible as the set for objects
and primitive types. We define the interfaceIXMLMatch-
able for that purpose. It contains a single methodbool
matches(XmlDocument doc). Any matching-relation for
XML Documents that is not part of the basic set released
with XMLSpaces.NET can be defined by implementing this
interface. If future development of the .NET Framework in-
tegrates, for example, XQuery (which it currently does not),
or an API to an existing XQuery system is available, it will
be easy to extend the matching-relations of the basic system
with that matching relation.

4.4 Matching

A tuplespace consists of a collection of tuples. Following
our concept, a tuplespace is a special form of a nested tu-
ple. It contains only tuples and no fields on the first level.
Again, we can represent the whole tuplespace as an XML-
document. From a higher level a tuplespace can be consid-
ered as a tuple of an other tuplespace. This makes it possible
to store whole tuplespaces in another and retrieve it at a later
time as if it were a tuple.
Matching in XMLSpaces.NET (as in Linda) occurs only on
in and read operations. All arguments passed to them are
regarded as templates. Even if a tuple is passed to these
methods, a DeepTemplate is wrapped around it to perform an
actualmatch. As a tuplespace is an XML-document, we can
use XPath, which is implemented in the .NET Framework,
to perform a preselection (number of fields and subtuples)
of potentially matching tuples. The server then checks if a
tuple of that preselected set matches on a given template.
A client requests a tuple by callingin or read on the Tu-
pleSpace object. The call is delegated to the server, which
does the preselection on the TupleBucket and performs the
match on the collection of potential matches. The first
matching tuple is returned to the TupleSpace object and
deleted from the TupleBucket. The other tuples are left un-
touched. The TupleSpace returns either the retrieved tuple
to the client, or a null-reference.
The template determines to which depth (DeepTemplate,
FlatTemplate, etc.) a tuple is checked and how exact the
Fields of the tuple are examined. As stated in Sec. 2.2 there
are many interesting types of templates that match a tuple on
a very high level (FlatTemplate), where only the metatypes
of fields and subtuples are checked, or on a very low level
(DeepTemplate), where a template has to match exactly on
the tuple. The matching-algorithm traverses the DOM-tree

of the XML-document and compares the nodes. Depend-
ing on the template the fields and depth are checked dif-
ferently, so the algorithm has to determine whether there
are any nested templates and switch to the algorithm of the
nested template.
Whenever an IMatchable or IXMLMatchable object is found
in a template, it is deserialized and thematches()method
is called with the required parameter, i.e.System.objectfor
IMatchableandSystem.Xml.XmlDocumentfor IXMLMatch-
able. If any field does not match or any IMatchable or
IXMLMatchable object returns false, the algorithm termi-
nates.
Every match operation performs following actions: a) pre-
select a set of matching tuples on the bucket based on their
number of fields and subtuples, b) perform the match method
of the template on each tuple in the set of potential matches.
Using the number of fields and tuples we can also decide
early whether to continue matching on deeper levels of an
XML-document or not. This information limits the matching
times on nested tuples as the number of fields and tuples can
be checked on any subtupletree.

4.5 Distribution

The .NET’sRemoting Frameworkis used to implement the
client-server architecture. Using a directory service, such as
Microsoft’s Active Directory[5] or OpenLDAP[7], allows
a dynamic configuration of the participating servers and the
replication mode, i.e. switching the replication mode of all
servers during runtime.
However, on a campus networkActive Directoryis not al-
ways flexible enough, as theschemaof the directory has
to be modified to meet the needs of XMLSpaces.NET. The
schema change might require administrative rights not avail-
able to an end-user. OpenLDAP is an alternative in this case.
We decided to stay as independent as possible of those tech-
nical problems and have implemented an extra class to main-
tain the server list.
The distributed system differs from the non-distributed one
in the use of the buckets. While in a non-distributed sys-
tem the server directly calls methods on its local buckets, a
distributor object manages the calls to the local buckets and
the remote buckets. The implementation of the distributed
system profits from the XML structure of the TupleBucket.
If each tuple is assigned a unique identifier pointing to its
source location, a TupleBucket is able to group those tuples
in an XML subtree associated to that remote source. This
is beneficial for the implementation of the replication as it
is easy to sort out tuples of different servers, since all tuples
with the same source server are under the same subtree. For
an out operation the Distributor inspects all servers in the
server list for their replication mode, adds the identifier to
the tuple and sends it to appropiate target servers, depending
on the replication strategy, where they are stored to a Tuple-
Bucket’s subtree according to its identifier.
For anin operation the identifier is ignored and the search
includes all tuples in the tuplespace. The removal of a match
is easy, as the tuple’s identifier points to the correct subtree
in each TupleBucket, in which the tuple can be found and
therefore speeds up the operation. The XPath API allows a
fast search on the XML structure of the TupleBucket using



the tuple’s identifier.
In case the replication mode changes, or a server deregisters
from the server list, the whole contents of the server’s tu-
plespace can be easily removed by deleting the subtree rep-
resenting that server’s replicated tuplespace. If the replica-
tion starts up, the contents of a TupleBucket can be added as
a subtree to a remote server’s TupleBucket.
For locking a tuple we add a boolean attribute “locked” to
the tuple’s XML root element. If an operation is being
performed on the tuple the attribute has to be set to “true”
and else “false”. The .NET Framework’s native support for
XPath queries and the DOM2 make this approach easy.

5 PERFORMANCE

We ran several performance tests on our system, a 2.40 GHz
Pentium 4 with 512MB RAM running Microsoft Windows
XP Pro and the Microsoft .NET Framework 1.1. As there
are many dependencies in the XMLSpaces.NET system, we
decided to explore the performance along the following di-
mensions: 1) type of tuple, i.e. tuples containing primitive
data types, objects, or XML documents 2) number of tuples
in the tuple-bucket 3) number of potentially matching tuples
in the bucket, i.e. tuples that have equal tuplecount and field-
count as the template or tuple we want to match against
For the implementation of the performance test we designed
some reference tuples, which contained 5 fields with primi-
tive data or 5 fields with an object each or 5 fields with an
XML document each.
The tests were ran on buckets of size 500, 1000 and 2000. At
the beginning of each test the corresponding number of tu-
ples is randomly generated to fill the bucket. The randomly
generated tuples built from template fields to make sure they
have a determinable form. The tuples only vary in the num-
ber of fields and their depth. At this point we assumed two
different probabilites on matching tuples: In one experiment,
we assumed that 25% of the tuples in the bucket are potential
matches, in the other, we assumed 50% of potential matches.
No templates were used to retrieve tuples, as we intended to
measure the time taken for an exact match of tuples. Ow-
ing to the recursive matching algorithm any match against a
template (using matching relations) is usually faster since a
template match only compares a fragment of information an
exact match does.
Using this testbed we had the system play “ping pong” for
each of the above defined type of tuples and got the results
shown in Figure 3. Two clients play “ping pong” when each
has a tuple the other is waiting for, i.e. one client writes
its tuple to the tuplespace and waits for the tuple of the
other client. The other client starts by waiting for the tu-
ple and writes its own tuple only after having received the
other client’s tuple etc.
The observations can be explained easily. A match took
longer the more potential matches were in the bucket, as the
algorithm tries to match against any of the potentially match-
ing tuples. In the worst case it is the last tuple (or none) that
matches the template-tuple.
Apart from the number of potential matches the time elapsed
for a match depends upon its type. As explained earlier the
serialization pattern for primitive types is relatively compact

and, except the type “string”, cannot be very long. It is
therefore easy to see that this type of matching is the fastest.
As objects are serialized to SOAP-format XML documents
they should be matched in approximately the same time as
equally large XML documents. However, all objects that are
represented in the SOAP - format have a large root element
in common, which identifies the SOAP version and Common
Language Runtime (CLR) the system is running on. If many
potentially matching tuples with objects are in the bucket the
overhead for comparing that root element is relatively high.
One possible optimization is to skip the header and compare
only the body of the SOAP envelope. The consequenc is,
however, that objects of systems running different CLR are
identified as the same object, even though they represent dif-
ferent ones.
The XML representation gives us some advantages. Us-
ing the attributestuplecountandfieldcountwe can make a
preselection with XPath. As in our two test scenarios there
are 50% or 25% of potentially matching tuples in the tuple
bucket, the preselection speeds the matching algorithm up
by the maximum factor of two or four.
Currently the matching algorithm is very simple and com-
pares each node in the XML representation of the tuple to
the template or the template-tuple. Performance improve-
ment might be achieved if the matching algorithm was to ap-
ply the preselection to each subnode. Additionally one can
think of an extended preselection that uses the value of the
current node. The result could be an even smaller range of
potentially matching tuples and a faster matching algorithm.
Of course the performance improvement that is possible de-
pends heavily on the implementation of the XPath API. With
an efficient implementation, though, one can still expect fur-
ther improvements.

6 RELATED WORK

There are several projects documented on extending Linda-
like systems with XML documents. However, XMLSpaces
seems to be unique in its support for multiple matching rela-
tions and its extensibility.
MARS-X [1] is an implementation of an extended JavaS-
paces [4] interface. Tuples are represented as Java-objects
where instance variables correspond to tuple fields. Such
an tuple-object can be externally represented as an element
within an XML document. Its representation has to validate
towards a tuple-specific DTD. MARS-X closely relates tu-
ples and Java objects and does not look at arbitrary relations
amongst XML documents.
XSet [14] is an XML database which also incorporates a
special matching relation amongst XML documents. Here,
queries are XML documents themselves and match any other
XML document whose tag structure is a strict superset of
that of the query. It should be simple to extend XMLSpaces
with this engine.
[6] describes a preversion for an “XML-Spaces”. However,
it provides merely an XML based encoding of tuples and
Linda-operations with no significant extension. Apparently,
the proposed project was never finished.
TSpaces has some XML support built in [13]. Here, tu-
ple fields can contain XML documents which are DOM-
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Figure 3: Performance

objects generated from strings. Thescan-operation provided
by TSpaces can take an XQL query and returns all tuples
that contain a field with an XML document in which one or
more nodes match the XQL query. This ignores the field
structure and does not follow the original Linda definition of
the matching relation. Also, there is no flexibility for further
relations on XML documents.

7 SUMMARY AND OUTLOOK

With the XMLSpaces.NET conception we have developed a
very extensible XML-based middleware. The further work
is on finalizing the set of supported matching relations. The
challenge here is to find a set of practically useful relations
amongst the wide variety of possible combinations. Also,
comparisons like〈≥ 5,≤ 3〉 have to be carefully limited not
to deadlock the selection of matches.
As mentioned in the beginning, the XMLSpaces.NET
project consists of two parts. The XMLSpaces.NET kernel
in C# and the distribution of the kernel itself by applying
mechanisms like replication etc. Part of the research on dis-
tribution will be to explore possibilities to support detach-
ment of parts of a tuplespace for transportation and manipu-
lation by mobile devices.
Furthermore, we will explore to what extend we can easily
incorporated further functionalities like secure spaces by the
adoption of the respective XML technologies. We hope that
such extensions are quite seamless.
In conclusion, XMLSpaces.NET is a flexible XML-based
middleware founded on the tuplespace principles. The main
contributions are the integrated view on data, documents and
objects, the support for structural matching, the extensibility
and flexibility of match mechanisms and consequent usage
of XML technologies.
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