
Teaching Compiler Development
using .NET Platform

Andrey Terekhov

Microsoft Russia & CIS
Chapaevsky per., 14

125252, Moscow, Russia

terekhov@acm.org

Dmitry Boulychev, Anton Moscal, Natalia Voyakovskaya
St. Petersburg State University

Mathematical & Mechanical department
Universitetsky pr., 28, room 2360
198504, St. Petersburg, Russia

{db, msk, nat}@tercom.ru

ABSTRACT
We present our experience of teaching in the universities compiler development on the basis of .NET platform.
We discuss typical problems of teaching compiler development and our approach to dealing with these
problems. We consider applicability of .NET/Rotor in this context and share the lessons learned during
preparation and delivery of this academic course.

Keywords
Compilers, teaching, .NET, Shared Source CLI, Rotor

1. INTRODUCTION
Compiler development is one of the oldest and
the best researched topics in software engineering. It
is a fundamental part of the universities computer
science curricula. However, it is also one of the most
difficult topics to teach. Students often find courses
on compilers hard, because they have complex
theoretical foundation and exercises require tedious
coding. In most cases, the size of compilers that
students have to write during the course exceeds
anything they produced earlier. For these reasons,
development of a course in compilers merits special
consideration. The goal is to support early interest
and understanding of the subject, and retain students’
motivation throughout the course.

In 2001 we started rewriting an existing academic
course on compiler development which ran in St.
Petersburg State University since early 1970s. This
course is offered to the students in the 3rd year of
education and lasts for one academic semester (four

calendar months). The course has been regularly
updated every 5 to 10 years. At the beginning of our
project it was based on the architecture of Intel
microprocessors. At that time we have already had an
experience of working with early releases of Visual
Studio .NET and came to a conclusion that .NET
represents a future-proof platform that could be used
as a basis for the course on compiler development.

In March 2002 Microsoft announced its Shared
Source Initiative (see http://sharedsourcecli.sscli.net),
an open-source implementation of .NET that was
informally code-named Rotor, and we launched a
brief investigation on whether Rotor would be a
better fit for the purposes of our course. It turned out
that Rotor provides students with an excellent
opportunity to become acquainted with a real-life
compiler, as well as to get experience of working
with the large (3.5+ million lines of code!) software
code base while still at the university.

Simultaneously with Rotor’s announcement,
Microsoft Research issued a Request For Proposals
aimed at supporting Rotor-based research and
education projects. Our group was awarded one of
the grants under this initiative. We have created a
complete set of presentations and lecture notes for
one-semester academic course on "Compiler
Development for .NET Platform" in Russian and
English languages, which is available at the Web-site
of St. Petersburg State University (see
http://www.iti.spbu.ru/eng/grants/Cflat.asp).

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2004 workshop proceedings,
ISBN 80-903100-4-4
Copyright UNION Agency – Science Press, Plzen, Czech Republic

http://sharedsourcecli.sscli.net/
http://www.iti.spbu.ru/eng/grants/Cflat.asp

In this article we present the experience gained
during preparation and delivery of this academic
course. The article is organized as follows. In Section
2 we briefly discuss advantages and disadvantages of
.NET platform from the point of view of supporting
various programming languages. Section 3 presents
typical problems of teaching compiler development
and our approach to handling them. Section 4
contains a general overview of the course and a
description of the deliverables that we have created
during this project. In Section 5 we illustrate our
approach to teaching compiler development using
excerpts of the lectures. Finally, Section 6
summarizes our experiences so far and outlines some
directions for further research.

2. WHY .NET?
One of the more popular directions of the last decade
is virtual machines – a powerful concept, which
abstracts away the differences between hardware
platforms and thus enables portability of programs
written in a particular programming language.

At the moment .NET is arguably the most promising
of those virtual machines, because it was designed
from the very beginning to support most of the
existing programming languages, unlike previous
efforts that were aimed at a single language. Thus
.NET is a convenient platform for compiler
development, which is more powerful than its
predecessors, such as Java:

• In .NET there exists a special API for code

generation (Reflection.Emit), while Java
provides only file generation methods

• In .NET it is possible to pass a reference as a
parameter and as an output value (in C# this
options are represented by keywords ref and
out). To emulate such behavior in Java one has
to create a wrapper class that would be placed in
a heap.

• .NET platform provides support for important
encapsulation and abstraction mechanisms, such
as properties and indexers. In Java this cannot be
implemented directly, so one has to settle for the
use of naming conventions, which the compiler
does not verify.

• In .NET it is possible to generate unsafe (i.e.,
unverifiable) code. This could be useful, for
instance, for the purposes of achieving runtime
efficiency or integration of legacy systems. In
Java this is possible only by calling programs
written in other languages, such as C.

Naturally, .NET is not the perfect solution, and some
of its advantages are based on subtle design trade-
offs, which are especially visible during
implementation of languages that do not correspond
directly to the .NET model. Here are some features
typical for various programming languages, but
difficult to implement in a compiler to .NET
platform:

• Multiple inheritance (Eiffel, C++)
• Nested procedures (Pascal, Algol 68)
• Parametric polymorphism (ML, Haskell)
• Constructors with user-defined names other than

the name of the class (Pascal)
• Non-standard data types (for instance, consider

the problems of supporting PICTURE data type
used in Cobol and PL/I)

Finally, writing a compiler from almost any
functional languages to .NET is somewhat
problematic, because .NET is heavily biased towards
traditional imperative languages. Such a compiler
would lead to inefficiency of the generated code or
would require generating unverifiable code.

Nevertheless, practice has shown that these problems
are not crucial – there already exist dozens of
compilers from various languages to .NET, and new
compilers keep appearing. Writing a compiler for
.NET platform as an exercise is relevant for the
students ..NET continues to evolve – some of the
above mentioned problems are already obsolete and
others will probably get resolved in the upcoming
releases of .NET (see .NET version 1.2, and research
projects such as Gyro, see
http://research.microsoft.com/projects/clrgen and
ILX, see http://research.microsoft.com/projects/ilx).

3. ISSUES OF TEACHING COMPILER
DEVELOPMENT
The following technical and psycholiogical issues
need to be considered in preparation and delivery of
a compiler development course [Chanon75,
Appelbe79].

First of all, compiler courses deal with the
complexity of the problem domain, especially with
the abundance of mathematical theory. This presents
more difficulty for students majoring in software
engineering, since their curriculum is usually more
practical than theoretical. In some cases, this problem
leads to over-emphasis on theory at the expense of
practical usefulness of the course; in other cases the
course becomes all-embracing and overly time-

http://research.microsoft.com/projects/clrgen/
http://research.microsoft.com/projects/ilx

consuming for students. As a result, there exists a
gap between compilers "as taught in the universities"
and compilers "as written in the industry".

In order to overcome this problem, we tried to
minimize the amount of theory by describing only
those formalisms and theorems that are directly
required for understanding the material of the course.
Nevertheless, our course includes introduction to
language and grammar theory, automata theory, data
and control flow analyses, so purely theoretical
material constitutes about one third of our course.

We also found it useful to separate the text of the
lecture notes into "main text" and "digressions".,
Main text contains theoretical explanations and
description of universally accepted practices of
compiler construction, while digressions are the
advanced topics, such as practical tricks that are
useful only under certain conditions or could be
employed to overcome various limitations of the
straightforward approaches1. This is useful for
structuring the theoretical material of the course and
presents the student with two different perspectives
on compiler writing, from the computer science and
software engineering points of view. Experienced
students may also take advantage of this separation
by concentrating only on those parts that are less
well-known for them.

Secondly, for most students the size of compiler that
they have to produce is much greater than all their
previous projects at the university. In order to be
successful, courses on compilers should run in the
interactive mode and contain many possibilities for
the student to get clarifications. One of the main
methods to achieve this is to complement the lectures
with the self-paced independent work by students,
which, in our opinion, should be organized at regular
hours in the university computer labs and should be
supervised by either lecturer or assistant.

This course tries to teach not only the basics of
compiler writing (so called "programming-in-the-
small"), but also issues that are important for
working with large code base (so called
"programming-in-the-large"). We try to achieve both
of these goals by first demonstrating the concepts of

1 The idea of separating material into "main text" and

"digressions" was traditional for mathematical textbooks
of the Soviet era. Typically, digressions represented
reading that was not required for the students and were
typeset in fine print.

compiler writing using examples taken from a demo
compiler of a simple language C-flat, which is a
subset of C#, and then by illustrating advanced topics
using examples taken from a full-blown compiler of
C# that is available in Rotor. This approach shows
the student the whole set of "under-the-hood" details
of compilers that are usually too complicated for
implementation in "toy languages" and are quite
often omitted in academic courses on compilers:

• Possibility to illustrate various platform-

dependent aspects, such as run-time support and
generation of debugging information

• Demonstration of garbage collection, JIT-
compilation and other system mechanisms

• System and auxiliary tools (assembler,
disassembler, debugger etc.)

• Implementation of Foundation Class Library
classes

Note that one cannot guarantee that the algorithms
used in Rotor are equivalent to those used in Visual
Studio .NET, since their goals are different – Rotor is
designed to be as clear and understandable as
possible, while .NET is striving to achieve maximum
efficiency of the generated code. This makes Rotor
good for teaching, but creates a risk that students will
mechanically imply that the same algorithms work in
industrial implementation and will rely on that false
assumption in their work, so the lecturer should
explicitly draw students' attention on this difference.

Finally, for some of the students understanding the
target platform may be difficult, especially, at the
code generation phase. The knowledge of .NET
platform is not yet widespread, so it was a real
problem of our course. We recommend starting the
course with a two-lecture overview of .NET platform
presented from the programming point of view.
However, it might be a better idea to consider
knowledge of .NET as a pre-requisite for this course.
We have already started transition to this model,
because now there is a separate course on .NET
available for the students on elective basis earlier in
their studies in St. Petersburg State University. This
course was devised by one of the authors, Andrey
Terekhov, and based on a well-known book
[Richter02]. We believe that in the foreseeable future
.NET will gain more popularity both in industry and
academia and thus more universities will view this
approach as a better alternative.

4. OVERVIEW OF THE COURSE
As a result of preliminary research and planning we
came up with the following requirements to our

course – the course should unite both theory and
practice, complimenting both the theory-oriented text
books, such as [Aho86, Muchnick97], and practice-
oriented books, such as [Gough02]. The course
should be based on .NET and particularly on
examples taken from its open implementation, Rotor.

We wrote lecture notes and slides for this course
based on the above requirements. The phase of active
development lasted for about a year. As a result of
this activity, we created the following 15 lectures:

1. Overview of .NET and Rotor
2. Overview of C#
3. Compiler Basics
4. Language Theory
5. Lexical Analysis
6. Syntax Analysis – Recursive Descent
7. LR(k) and LALR Grammars
8. Grammars and YACC
9. Semantic Analysis. Internal Representation
10. Memory Management
11. Optimization
12. Control Flow Analysis
13. Data Flow Analysis
14. Generation of CIL
15. Instruction Selection during Code Generation

Note that some of the lectures require more time for
delivery than the usual one and a half hours that are
typically allotted in Russian academic system, so this
list represents logical division of the course into
related topics rather than the recommended duration.
We assume also that during the semester the students
will additionally spend a comparable amount of time
on review of source codes of C-flat and Rotor, and
will independently implement a sample compiler
according to the individual tasks set out by the
lecturer.

The course material includes a sources and binaies of
ademo compiler of a "toy language" called C-flat.
The grammar of this language is intentionally simple
– BNF grammar of C-flat takes less than 30 lines.
Anton Moscal, one of the authors of the course, has
produced the C-flat compiler.The course refers often
to the compiler sources. We are currently trying to
bootstrap C-flat compiler, i.e. we are trying to rewrite
C-flat compiler in C-flat. This is a dual process,
which requires both changing the compiler (i.e.,
using less powerful language constructions) and
changing the language (i.e., expanding the set of
allowed constructions).

In 2002-03 we made a pilot delivery of some of our
lectures to the students of St. Petersburg State
University. The lectures were well-received by the
audience and generated a lot of feedback that we
used to improve the contents of the course.

We also proposed topics for term work on the basis
of the course to the students. One of the goals of
these term assignments was to assess validity of our
assumptions about students' knowledge prior to the
course and the difficulty of course material. For
instance, a 3rd year student was given a task to
implement a C-flat compiler in C# in order to make
sure that it is possible for a student to develop such a
compiler during one semester. In another term
project, a team of 4th year students was asked to
develop a compiler from subset of Pascal to .NET
that would be written in SML.NET using
MLLex/MLYacc. Both of these projects were
successfully completed, which suggests a strong
evidence of importance of this course and relevance
of its content.

At the moment we are considering several ideas on
further development of the course. One of the ways
to improve the course is to enlarge the scope by
adding material on Mono project (see http://www.go-
mono.com). Mono is another open-source
implementation of .NET, which is interesting due to
the fact that it uses different approaches to
implementation of various aspects of .NET than
Rotor, for instance:

• Mono C# compiler is written in C# and thus

capable of bootstrapping itself. It might be
argued that it is also more readable from the
student's point of view than Rotor's compiler
written in C++

• Garbage collection is implemented using
Boehm's conservative garbage collector for C
[Boehm88, Boehm93], which is a radically
different approach to solving memory
management issues

• Unlike Rotor C# compiler, Mono uses BURG
[Pelegrì-Llopart88, Aho89, Fraser92] approach
for instruction selection. This topic is briefly
mentioned in the last lecture of our course, and
thus Mono presents a good opportunity to
illustrate this theory with a real-life example

http://www.go-mono.com/
http://www.go-mono.com/

5. AN EXAMPLE OF LECTURE
MATERIAL
To demonstrate some of the ideas behind this course,
we will briefly walk through the material of the
lecture on memory management and garbage
collection. This lecture relies heavily on examples
from Rotor source code that are mostly adopted from
the book [Stutz03], which we recommend as a
supplementary reading to students.

We start the lecture with asserting that memory
management is an extremely important and resource-
consuming problem in programming. According to a
classical textbook [McConnell93] in typical C
projects memory management consumes up to 50%
of the time dedicated to coding and debugging. As an
example we consider Rotor's C# compiler that is
written in C++ and thus is based on manual memory
tracking and disposal by the programmer. In order to
perform this task correctly, developers of C#
compiler had to come up with a number of auxiliary
structures, for instance, below we enumerated all the
places where Rotor stores information about an
object instance:

• Memory for object instances is stored in a

garbage-collected heap (excluding SyncBlock,
which is stored inside the execution engine
itself)

• Method table of the object is placed in the
“frequently used” heap of its application
domain; in the meantime EEClass, FieldDescs
and MethodDescs of the object are placed in
“rarely used” heap

• Native code, generated by JIT-compiler, is
placed in the code heap and is shared by all
application domains

• All other stuff related to object (for instance,
stubs generated for this object) are stored in a
separate memory region of the execution engine

Clearly, manual tracking of all these elements is a
tedious task and thus modern programming
languages and platforms tend to rely on automatic
memory management instead.

Then we provide an overview of existing methods of
memory management. The students should already
have this knowledge from the course on
fundamentals of programming languages, but we
believe that it is always helpful to provide a brief
refresher on this topic.

We proceed to a detailed discussion of garbage
collection scheme that is used in Rotor. This is
important for students because it enables them to
connect theoretical description from the previous part
of lecture with the concrete implementation. The
main focus is on practical consequences of the theory
that we have just discussed and on the fact that
programmers always have to deal with tricks and
heuristics in order to increase efficiency of the
implementation.

First, we emphasize the general approach to garbage
collection in Rotor and explain the reasoning behind
choosing particular garbage collection methods. We
mention that Rotor uses hybrid scheme of garbage
collection with two generations:

• Generation 0 is compacted by copying — this

pays off since the majority of the objects goe
away before the first GC, so not a great deal of
copying takes place

• Generation 1 is collected by mark & sweep —
copying would not be advantageous here, since
few objects are dying in this generation

There are many interesting details:

• Copying is always performed to a new heap (to

be more precise, to a new segment of the heap,
see below); this process is not overly expensive
because it takes place separately in different
generations

• Large objects are collected in a separate heap
without copying (see below)

• Completely different scheme exists in Rotor for
garbage collection of remote objects (see
sscli/clr/src/bcl/system/runtime/remoting)

Note that the issue of GC for remote objects could be
also discussed in a separate lecture “Remoting in
.NET”, which should be a part of a separate
academic course on .NET platform (this is the case
for St. Petersburg State University, where these
courses run in parallel).

Then we illustrate the implementation details by
going from the top. We point to the main entry point
of garbage collection –
GCHeap::GarbageCollect(). We explain that
it is called whenever a garbage collection is needed
and enumerate possible scenarios for that to happen –
for instance, if memory runs out, or an application
domain is being unloaded, or finalizers have just

completed, or if there was an explicit call by the
programmer, during exit from the process and during
debugging from the profiler. After the call to this
function, all threads are suspended except the thread
that performs the GC – this is achieved by call to the
following function:

SuspendEE(GCHeap::SUSPEND_FOR_GC);

Note that prior to that all threads should reach their
"GC safe" state (this is a good place to explain what
are the characteristics of this state). Then the control
is passed to the main function, gc_heap::gc1(). It
works as follows – an attempt of copying garbage
collection in the zero generation is made (as a result,

all live objects are moved to the first generation). If
garbage collection is required for the first generation
as well (this is almost always the case), then mark-
and-sweep is performed in it.
After these high-level explanations, we walk the
students through the actual Rotor code that performs
these tasks and explain the implementation details.
This is quite easy to do, because the code itself is
properly commented and readable, not even to
mention the detailed explanations provided in the
book [Stutz03]. For instance, below is the code that
we use to illustrate the first stage of GC,
gc_heap::copy_phase():

• Live objects are found by recursive search and copied into the elder generation:

// Promote objects referred to by cross-generational pointers

 copy_through_cards_for_segments (copy_object_simple_const);

 copy_through_cards_for_large_objects (copy_object_simple_const);

// Promote objects found on the stack or in the handle table

 CNameSpace::GcScanRoots(GCHeap::Promote, condemned_gen_number,
max_generation, &sc, 0);

 CNameSpace::GcScanHandles(GCHeap::Promote, condemned_gen_number,
max_generation, &sc);

// Promote any object referred to from the finalization queue

 finalize_queue->GcScanRoots(GCHeap::Promote, heap_number, 0);

• References to these objects are updated:

// Relocating cross generation pointers

 copy_through_cards_for_segments (get_copied_object);

 copy_through_cards_for_large_objects (get_copied_object);

// Relocating objects on the stack or in the handle table

 CNameSpace::GcScanRoots (GCHeap::Relocate, condemned_gen_number,
max_generation, &sc);

 CNameSpace::GcScanHandles(GCHeap::Relocate, condemned_gen_number,
max_generation, &sc);

// Relocating finalization data

 finalize_queue->RelocateFinalizationData (condemned_gen_number, __this);

Table 1. Rotor code used to illustrate the copying stage of garbage collection

After discussion of garbage collection we also briefly
mention code pitching. This is just one of the
examples of the topics that are difficult for the
students to grasp (it does not come easily to the
students that not only program data, but also the
generated code could be treated as garbage) and yet
is easily demonstrated using the Rotor source code.

As this is more or less an aside detail, we illustrate
only the general idea of code pitching and leave the
implementation details for students' independent
study. The scheme of this part goes as follows:

• When the size of the heap for the compiled code
exceeds some predefined maximum, the whole
contents of the buffer is thrown away and all
return addresses on the stack are replaced with
address of thunk that causes re-compilation of
methods

• To make a decision on throwing the code away,
this process takes into account a lot of
parameters (size of native code, ratio of native
code to IL, time of JIT-compilation of the
method etc.)

• See sscli/clr/src/vm/ejitmgr.cpp

We believe that it is important to make the students
study the source code of real-life compilers, because
it provides a much better way to learn how to write
the code and acquaints the students with all the
intricate details before they encounter them in their
professional work after graduation.

6. ACKNOWLEDGEMENTS
This work was financially supported by the Rotor
grant by Microsoft Research. We would also like to
thank Vladimir Pavlov (eLine Software Inc.), Dmitry
Malenko (Dnepropetrovsk National University,
Ukraine) and anonymous reviewers for their valuable
comments that helped to improve this paper.

7. CONCLUSIONS
We presented an academic course on compiler
development that is based on .NET and Rotor. In this
course we tried to bridge the gap between compilers
"as taught in the universities" and "real-world
compilers" by demonstrating both theoretical and
practical perspectives on compiler development.
From our point of view, .NET can be successfully
used as a platform for education and research in
various areas of computer science and software
engineering, such as compilers, programming
languages and component architectures. We also
found out that Rotor is an especially interesting
platform for education because it enables students to
get acquainted with typical problems of working with
industrial large-scale software projects.

8. REFERENCES
[Appelbe79] B. Appelbe "Teaching Compiler

Development", In Proceedings of the 10th
SIGCSE Technical Symposium on Computer
Science Education, 1979, pp. 23-27

[Aho86] A.V. Aho, R. Sethi, J. D. Ullman
"Compilers: Principles, Techniques and Tools",
Addison-Wesley, 1986, 500 pp.

[Aho89] A.V. Aho, M. Ganapathi, S.W.K. Tjiang
"Code Generation Using Tree Matching and
Dynamic Programming", ACM Transactions on
Programming Languages and Systems", Vol. 11,
No. 4, 1989, pp. 491-516.

[Boehm88] H.-J. Boehm, M. Weiser "Garbage
collection in an uncooperative environment",
Software Practice & Experience, Vol. 18, No. 9,
1988, pp. 807-820.

[Boehm93] H.-J. Boehm "Space efficient
conservative garbage collection", In Proceedings
of the Conference on Programming Language
Design and Implementation, 1993, pp. 197-206.

[Chanon75] R. Chanon "Compiler construction in an
undergraduate course: some difficulties", ACM
SIGCSE Bulletin, Vol. 7, No. 2, 1975, pp. 30-32.

[Crowe02] M.K. Crowe "Compiler Writing Tools
Using C#", see http://cis.paisley.ac.uk/crow-ci0/

[Fraser92] C.W. Fraser, R.R. Henry, T.A. Proebsting
"BURG – Fast Optimal Instruction Selection and
Tree Parsing", SIGPLAN Notices, Vol. 27, No. 4,
1992, pp. 68-76.

[Gough02] J. Gough "Compiling for .NET Common
Language Runtime", Addison-Wesley, 2002

[McConnell93] S. McConnell "Code Complete",
Microsoft Press, 1993

[Muchnick97] S. Muchnick "Advanced Compiler
Design and Implementation", Morgan Kaufmann,
1997, 856 pp.

[Pelegrì-Llopart88] E. Pelegrì-Llopart, S.L. Graham
"Optimal Code Generation for Expression Trees:
An Application of BURS Theory", Proceedings
of the Conference on Principles of Programming
Languages, 1988, pp. 294-308.

[Richter02] J. Richter “Applied .NET Framework
Programming”, Microsoft Press, 2002

[Stutz03] D. Stutz, T. Neward, G. Shilling "Shared
Source CLI Essentials", O'Reilly, 2003

http://cis.paisley.ac.uk/crow-ci0/

	INTRODUCTION
	WHY .NET?
	ISSUES OF TEACHING COMPILER DEVELOPMENT
	OVERVIEW OF THE COURSE
	AN EXAMPLE OF LECTURE MATERIAL
	ACKNOWLEDGEMENTS
	CONCLUSIONS
	REFERENCES

