
Peer-to-Peer Applications on Mobile Devices:
A Case Study with Compact .NET on Smartphone

2003

Fabio De Rosa
Università di Roma “La Sapienza”

Dipartimento di Informatica e Sistemistica
Via Salaria 113 (2nd floor, lab C4)

00198 Roma, Italy
derosa@dis.uniroma1.it

Massimo Mecella
Università di Roma “La Sapienza”

Dipartimento di Informatica e Sistemistica
Via Salaria 113 (2nd floor, room 231)

00198 Roma, Italy
mecella@dis.uniroma1.it

ABSTRACT

The traditional approach to information systems, accessed by users by means of powerful devices (such as
desktops and laptops) with known features, will not be anymore significant in the future years. Indeed, the
current trend suggests that it will be possible to offer continuous access to all information sources, from all
locations and through various kinds of devices, mainly small and mobile (e.g., palmtops and PDAs, cellular
phones). Therefore, the need emerges for the design of applications for smart devices, which are highly flexible,
capable of exploiting in an optimal way the resources. This experience paper analyzes the opportunity to design,
develop and deploy interactive applications running on smart cellular phones (commonly referred to as
smartphones), based on a peer-to-peer communication model and GPRS technology. A case study is presented
to verify whether current development tools and technologies for small devices require a radical different
approach with respect to more traditional application development. As a development platform, Window Mobile
for Smartphone 2003 with Compact .NET has been used, which is currently available, at least in Europe, only
on prototype devices.

Keywords
Peer-to-Peer – Mobile Device – Compact Framework .NET – Smartphone 2003.

1. INTRODUCTION
The traditional approach to information systems,
accessed by users by means of powerful devices
(such as desktops and laptops) with known features,
will not be anymore significant in the next years. The
current trend suggests that it will be possible to offer
continuous access to all information sources, from all
locations and through various kinds of devices, either
powerful but mainly static (e.g., PCs, laptops) or
small but mobile (e.g., palmtops and PDAs, cellular
phones). Moreover, users are interested in a wider
and wider variety of applications, beyond traditional
vocal interaction access to data of any kind and
complex interactive applications, also with

transactional properties.

Telecommunication networks, indeed, are
continuously evolving and diversifying; each kind of
network has its own features, in terms of capacity,
reliability, quality of service security, availability,
cost. Such features change significantly with the
various applications that make use of the network
services. However, the user is not interested in
technical details: he/she wants to access the end
services from the current location and with the best
possible performances. Therefore, the need emerges
for the design of applications which are highly
flexible, capable of exploiting the resources in an
optimal way. Finally, traditional client/server
computing, based on the availability of centralized or
clustered servers offering services and applications to
clients, is leaving the place to more decentralized
paradigms, such as peer-to-peer computing, in which
loosely coupled devices (i.e., the peers) interact with
each other without previously established mutual
agreements and knowledge. The goal of the “MAIS”1

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2004 workshop proceedings,
ISBN 80-903100-4-4
Copyright UNION Agency – Science Press, Plzen, Czech Republic

1 Multi-channel Adaptive Information Systems –
MAIS – is an Italian research projects, jointly carried

project is the development of models, methods and
tools that allow the implementation of adaptive
information systems able to provide services with
respect to different types of networks and access
devices.

The work presented in this experience paper, with
respect to the MAIS project sphere, is centered on
mobility and small device application development,
specifically on design and implementation issues
related to the development of distributed applications
running on cellular phones.

This work aims at experimenting the opportunity to
design, develop and deploy interactive applications
running on smart cellular phones (commonly referred
to as smartphones), based on a peer-to-peer
communication model. Current services offered by
telecommunication operators are mainly based on a
centralized paradigm, in which cellular phones
download simple applications from services available
on the Web, and, if communication with other
users/devices is needed, it is obtained through
centralized services. Apart from vocal interaction and
exchange of SMS/MMS2, no other end-user
application is currently designed and deployed
assuming a direct and peer-to-peer interaction
between users/devices. Even if this can be due to
commercial and exploitation considerations, we
argue that peer-to-peer interactions between devices
should be considered, as a possible alternative for the
future, on which to base future commercial and
exploitation strategies3. In depth, the work presents
the development of a peer-to-peer application
running on smartphones, in which all communication
is based on GPRS technology: as development
platform, Window Mobile for Smartphone 2003 with
.NET Compact Framework has been used, which is
currently available, at least in Europe, only on
prototype devices. From a practical software

out by about 10 subjects, including Universities and
enterprises. The interested reader can refer to
http://black.elet.polimi.it/mais/index.php.
2 In this work, when we refer to interaction, we consider it
at the application level, not at the network one. Of course
also vocal interaction and SMS/MMS exchange run
through centralized servers (e.g., the SMS dispatch center),
but users perceive such communication as direct with the
others. Conversely, current applications, such as the
recently appeared distributed games, require that all
application-level communication is collected through a
centralized service, and users/devices do not communicate
directly.

3 New computing paradigms for cellular phones could
foster GPRS and UMTS technologies in a similar way that
Napster/Gnutella-based systems made the Internet popular
among teenagers.

engineering point of view, the aim was also to verify
whether current development tools for small devices
require a radically different approach with respect to
more traditional application development.

The paper is organized as follows. In Section 2
relevant background is presented, focusing on the
peer-to-peer computing model and on the
technologies for application development on
smartphones. In Sections 3 and 4, the application
used as case study is presented, whereas in Section 5
a discussion on the gained experience and some
insights are presented.

2. BACKGROUND
In this section we give a brief overview and state of
art on peer-to-peer (P2P) systems and architectures,
as well as on technologies and tools commonly used
to realize smart device applications.

Peer-to-Peer Systems and Protocols
The interest for peer-to-peer (P2P) systems has been
considerably growing during the last years. Although
it is considered a revolution in network based
environments, it is actually only an evolution of the
original Internet model, that enables packet
exchanges among nodes with interchangeable roles.
The P2P acronym refers to each distributed system in
which nodes can be both clients and servers. In other
words, all nodes provide access to some of the
resources they own; in the context of this paper, the
resources are services provided/accessed from the
peers (i.e., mobile devices), enabling a basic form of
cooperation among them. An interesting
classification of P2P systems can be found in [1], in
which the following three models are introduced:
Decentralized Model, Centralized Model, and
Hierarchical Model. With respect to such a
classification, the application presented in Section 3
has been developed according to the decentralized
model. Example of P2P software architectures and
systems are [2, 3, 4] and Gnutella [5], the first system
implementing a fully distributed file search. All such
systems and protocols have been thought for wired
networks, that is, networks in which the connection
between two peers remains established as long as
peers dwell in the system (static connections). Works
that take into account mobility scenarios (i.e.,
dynamic connections) can be found in [6] and [7],
respectively. In the former, a mobile P2P architecture
and platform is proposed; in the latter, instead, a
special-purpose P2P file sharing tailored to Mobile
Networks, denoted Optimized Routing Independent
Overlay Network (ORION), is presented.

The convergen
conference p
referred to as
peers) consider
by our simple a
(International
H.323 [9,10]
[11]) are proto
over IP, that c
terminate calls
effort to combi
by the SIMPL
Presence Leve
[12]: its goals
messaging and
enabling the d
applications be
through messa
connections as
currently there
no implementa
application is
(even if much
availability wo
development is

Smartphone
Nowadays, two
for developing
cellular phone
[14]) and the
[13]. Both J2M
differently from
WAP (Wireles
user interfaces,
– Global Positi

Supported Devices

Language Support

Virtual Machine

Byte Code Compat

API Compatibility

Development Tools

Testing

Client Installation

Table 1. Differences among .NET CF and J2ME (CLDC/CDC) platforms
ce of Instant Messaging [8] with the
eer-to-peer protocols (commonly
call protocols between two or more
s issues similar to the ones addressed
pplication. In particular, both the ITU

Telecommunications Union) standard
and SIP (Session Initiation Protocol,
cols for multimedia conference calls
an be used to establish, maintain and
between two or more peers. A current
ne Instant Messaging and SIP is made
E (SIP for Instant Messaging and
raging Extensions) working group
 are of applying SIP to the instant
 presence (IMP) suite of services, thus
evelopment of distributed multimedia
tween different peers communicating
ges (and not requiring continuous
in SIP). To the best of our knowledge,
is not yet a complete specification and
tion is available. The purpose of our
very similar to the one of SIMPLE
narrower in generality), and SIMPLE
uld have considerably reduced the

sues.

 Application Development
 of the most promising technologies
 and running applications on smart
s are Java 2 Micro Edition (J2ME,
Compact .net Framework (.net CF)
E and .net CF are platforms that,
 micro-browser technologies such as

s Application Protocol), support rich
 leverage device extensions (e.g., GPS
oning System - and barcode scanners),

and security protocols. Furthermore, compared with
smartphone native platforms (e.g., eMbedded Visual
C++, C++ SDKs for the Symbian OS), both those
technologies have managed environments enabling
component-based application development, thus
improving developer productivity and application
reliability. Table 1 summarizes the differences
among the .NET CF and J2ME (CLDC/CDC)
platforms, with respect to the designer's/developer's
point of view.

.NET Compact Framework

.NET Compact Framework (.net CF) [13] is a subset
of the desktop .NET Framework. It has two main
components, namely the Common Language
Runtime (CLR) and the Base Class Library. The
Common Language Runtime is responsible for
managing code during execution: it provides core
services such as memory and thread management,
designed to enhance performance. Just-In-Time (JIT)
compilers enable the generated code to run in the
native machine language of the target platform.

The Base Class Library is a collection of reusable
classes that are used to develop applications; they
provide common and reusable programming tasks
such as string management, data collection, database
connectivity, user interface, etc. The classes included
in the .NET CF provide an identical interface to their
counterparts in the workstation/server .NET
Framework; some functionalities are not supported
due to size constraints, performance issues, or
limitations in the target operating system (e.g.,
printing, Multiple Document Interface forms, Drag-
and-Drop functionalities, etc). Class behaviors,
properties, methods, and enumeration values are the
same under both versions of the .net Framework.

.NET CF J2ME

Devices with Windows Mobile (in Europe
cellular phones not yet available)

Java-enabled devices (for MIDP 2.0 only
high-end phones)

 C#, Visual Basic .net, C++ Only Java

Unique CLR Virtual Machine Different versions: CDC and CLDC Virtual
Machines

ibility Standard .net CLR No compatibility with J2SE, and between
CDC and CLDC

Between all platforms supporting .net CF
(currently only Windows Mobile)

Partial compatibility between CDC, CLCD,
and J2SE

 Visual Studio .net 2003 Several tools (by SUN and different
vendors, not completely integrated)

Emulators in Visual Studio .net 2003 Various emulators (provided by SUN and
by device vendors)

ActiveSync or through Internet Explorer
download

Device synchronization mechanisms and
OTA (Over The Air) download

same functionalities, is that the appointment
management is carried out in a (semi-)automatic
way, on the basis of the protocol described in Section
3.3. Currently, a user willing to organize an
appointment with several persons: (i) decides a
candidate time slot (on the basis of its agenda); (ii)
manually contacts all involved persons (by calling
them, by sending them an SMS, by writing an e-mail,
etc.) and waits for their reply; (iii) if all invited
persons agree upon the time slot, he sends them a
confirmation, else (iii ') he/she chooses a new time
slot and begins the process again. All such activities
are carried out manually by the proposing user, and
they are a serious burden for very busy persons.

The idea of our Interact-Agenda is to provide an
application, running on user smartphones, that carries
out all the negotiation automatically, and only at the
end (i.e., after finding a suitable time slot) asks all
involved users for confirmations4.

ADO.NET is a set of libraries that allow
communication with various remote data stores from

Figure 1. Activity Diagram for the Appointment
and Contact Management.
Such libraries include classes for connecting to a
remote data source, submitting queries, and
processing results; frequently, they are used as a
robust, hierarchical, disconnected data cache to off-
line (i.e., during disconnections) work with remote
data. XML APIs, instead, are the same classes
provided by the .NET Framework, and used to
develop applications manipulating XML structures.

3. THE INTERACT-AGENDA
APPLICATION
In this section we describe the design of our SMS-
and GPRS-based application (called Interact-
Agenda), as well as the proposed peer-to-peer
architecture and protocol on top of which the
application is based. In next section implementation
details are provided.

Application Requirements
The Interact-Agenda application is an interactive
agenda for smartphone devices, which allows users
to automatically organize appointments between
several persons. The application offers to users the
following functionalities:

• visualization, to view details of one or more
appointments, also in the mode “all of the
week";

• appointment management, for inserting,
deleting and modifying both personal and group
appointments;

• contact management, for inserting, deleting
and modifying contacts in the personal book.

The novelty of the application with respect to already
existing ones (e.g., Pocket Outlook) providing the

When a user creates a new personal appointment in
his/her agenda, all the details are stored (as it
normally happens when the user takes an
appointment in Outlook): conversely, when the user
creates a new group appointment, a negotiation
procedure with all involved persons is required.

In Figure 1 we report the complete Activity Diagram
for the application. When a user selects the Interact-
Agenda menu, he/she can choose between the
following options: to enter in the appointment
management section; to enter in the contact
management section; or to exit from the application.
On the basis of the choice, the user can do several
tasks; for example, if he/she has chosen the
appointment management section, the user can view,
modify, delete or create an appointment.

In Figure 2 we report an example of the Sequence
Diagram for the negotiation phase between three
users (and their smartphone devices), carried out in
order to establish a group appointment proposed by
user_1. After the proposer (i.e., user_1) has entered
all appointment information (through an appropriate
sequence of windows), the peer instance of Interact-
Agenda running on its smartphone communicates
with the peer instances of Interact-Agenda running
on the smartphones of user_2 and user_3, in order to
verify the availability near the proposed date, and if
not possible, asking the user a new time slot and
conducting a new negotiation round5.

4 As users, the authors would not like a smartphone taking
appointment without at least letting them know !!

5 The Interact-Agenda instance of the proposer asks the
others for the availability of time slots near the initially

Return Av ailability

User_1 Application@peer_1 Application@peer_2 Application@peer_3

 : User_2

 : User_3

Select Appointment
Send Proposal

Date, Hour, Address,
Subject, participants

Send
Proposal

Return Av ailability

Elaboration

Release

Release
Choose Another Date

Select Appointment

Send Proposal

Send Proposal

Return Av ailability

Return Av ailability

Elaboration

Commit

Commit

Conf irm
Conf irm

with new
Date

OK

OK

OK

OK

OK

All this process happens silently and without (or
minimal) intervention by the users. At the end, when
a time slot has been “agreed upon” by the peer
instances of the Interact-Agenda, a message is
displayed to the respective users in order to gain
confirmation. That negotiation process runs on top of
SMS messages and GPRS network connections, as
detailed in Section 3.3.

Application Design
The Interact-Agenda is developed and deployed as a
peer-to-peer smartphone application: each device
hosts an instance of the application. In Figure 3, the
structure of (an instance/copy /peer of) the Interact-
Agenda application, is shown. The application
consists of:

• the User Interface package, in which all the
user-interface functionalities are managed;

proposed one, in order to find a match; near means a given
number N of time slot before or after the originally
proposed one, and it can be configured. If a match cannot
be found, the details of a new appointment are requested
from the proposer; the number of repetition of the
negotiation process is therefore directly driven by the
proposing user.

• the Application Logic package, in which all
the negotiation logic is contained;

• the Logical Data and Database are the
packages managing the local database (storing
appointment records and contact records).
Logical Data is an abstraction of simple DBMS
functionalities (table creation, tuple insertion,
deletion, modification and selection, etc.), while
Database is a concrete implementation of it (in
our application it implements that operations on
.txt files).

• the Peer-to-Peer package, which implements
the peer-to-peer protocol (see Section 3.3), and
the Networking package that manages SMS-
based communications and GPRS connections.

Communication Protocol
The communications between the smartphone
devices are conducted over GPRS and SMS. Indeed,
each device (peer) may be both client and server at
the same time, sending and receiving messages (by
SMS sockets) to/from another peer and exchanging
information by GPRS sockets. A device receives and
replies to an appointment request incoming from
another peer, which is the negotiation initiator; in
turn, the device can initiate an appointment
negotiation phase (its user wants to establish an
appointment with other persons).

In Figure 4 we illustrate the whole protocol. It may
be split into two phases: in the first phase the initiator
communicates to all members its IP address by a
SMS with a particular header; each active
destination, after receiving the message, replies with
an “I-am-alive" message; if the initiator receives all
the responses from all the clients, then it can proceed
with the second phase, that is, the exchange of
appointment information (month, day, hour, etc.)

User Interface
{Presentation Layer}

Application

Logic

Networking Database

{Application Logic Layer}

Peer To
Peer

Logical Data

{Resource Management Layer}

Figure 2. Sequence Diagram of the
Appointment Negotiation.

Figure 3. Structure of the Application.

with all participants, through sockets on GPRS.
Otherwise, i.e. if at least one device has not replied to
the initial message, the initiator terminates the
negotiation phase and closes all opened connections
with the others clients. Then the initiator (which acts
as a server of the different sockets) exchanges
information with the other devices (acting as clients)
until the agreement has been reached or the
proposing user decides to abort the appointment.
Therefore the second phase of the protocol is
straightforwardly derived from Figure 2. During all
the protocol, the initiator sets timeouts: if not all
replies are collected before their expiry, the initiator
aborts everything. Different timeouts are set for the
first and second phase (longer for SMS-based
communications, lasting hours, and shorter for
socket-based communications, as in usual network

programming practice). The choice of two different
technologies (SMS during the first phase and GPRS
connections in the following) is needed because of:

• GPRS connections assign an IP address
dynamically (i.e., each time the device
connects), therefore it is not possible to statically
store information such as < user, telephone number, IP
address of its device >. Conversely, the initiator can
discover its IP address (as described in Section
4.2), then it can send such an IP address to all
other devices (through SMS messages, as the
couple < user, telephone number > is static), listening
to a specific GPRS sockets, and finally all
contacted devices can connect to such an
initiator's socket through GPRS.

Send Meeting
Request

Receive "I am
alive"

send Proposed
Date

Receive all
Availabil i ty

MatchAsk for new
Date to user_1

NO

Reply Send Request
Commit

YES

Receive OK

Receive "Abort"Send "Abort" to the
other participants

Receive Meeting
Request

SMS

Send "I am alive"Socket

Receive
Proposed Date

Socket

Send
Availabil i ty

Socket

Receive CommitSocket

Ask for Commit to
user_1

 Commit Reply

Send OK

YES

Send "Abort" NOSocket

YES

NO

Application@user_2Application@user_1

• Currently (at least in Italy), an SMS is more
expensive than the GPRS transmission cost. The
former is about 20 cent of Euro, the latter is
about 0.6 cent of Euro per transmitted kilobyte.
As the dimension of data exchanged between
peers is low (few bytes), it is more convenient to
use a GPRS transmission rather than a SMS
communication. Indeed, the proposed protocol
has been thought to reduce the number of
exchanged SMS messages; to establish an
appointment among N peers, it needs no more
than N SMS: the peer that initiates the
negotiation sends its IP to all participants (N - 1).

4. IMPLEMENTATION FEATURES
In the current section we provide some
implementation insights of our Interact-Agenda

application. We will concentrate only on those
packages in which .NET CF has been heavily used,
providing specific functionalities to be considered
during the development of smartphone application,
i.e., networking, data storage and data access, user
interface logic (windows, forms, listbox, etc.) and
device interactions (keypad, joypad, home button,
record button, soft keys, etc.). The development of
the other packages, being pure business logic, does
not present peculiarities due to smartphone device
and .net CF (it is “normal” C# code). We will stress
the possibility and the simplicity for an programmer
to implement powerful and graceful application
running on smartphone devices, both in terms of
used libraries and generated source code lines.

User Interface Development
The Base Class Library provides a sufficient subset
of the components/widgets provided in the
workstation/server .NET Framework; therefore no
further training time is needed by a programmer in
order to develop the user interface. In order to build
graceful forms, we use the System.Windows.Forms
and the System.EventHandler packages. The
produced code is similar to that would have been
produced for workstation applications.

Figure 4. Communication Protocol.

Networking
The networking logic has been realized by
combining the .NET CF library System.Net and the
.NET CF mechanism for external procedure call, i.e.,
the method provided by the .NET CF technology
(more in general by the .net Framework) to invoke
procedures contained in external libraries (.dll).
Indeed, in order to use both SMS and GPRS
communication, we had to consider external native
libraries, and embed calls to these .dll in the source
code managing our peer-to-peer protocol. Then, in
order to establish a connection between two peers

over the GPRS protocol, we used the system library
System.Net, that provides all functions needed to
manage socket-oriented connections over TCP/IP
networks.

The code shown in the following is the one executed
by the initiator for sending an SMS with its IP
address and creating a specific socket; contacted
device has to reply with an “I-am-alive” message on
that socket (see class Receiver). Again, it is not very
different from the one to be used in
workstation/server scenarios for managing socket-
oriented communications.
public class Initiator{

 /* GPRS Connection Management */

 private System.Net.Sockets.Socket

 getBindSocket() {

 GPRS.DataCall();

 /* Getting local device IP */

 IPHostEntry ipHostInfo =

 Dns.Resolve(Dns.GetHostName());

 IPAddress ipAddress =
ipHostInfo.AddressList[0];

 /* Opening TCP/IP socket */

 System.Net.Sockets.Socket sock = new
System.Net.Sockets.Socket(System.Net.Sockets.Addres
sFamily.InterNetwork,System.Net.Sockets.SocketType.
Stream,System.Net.Sockets.ProtocolType.Tcp);

 try {

 sock.Bind(localEndPoint);

 sock.Listen(10);

 }

 catch(Exception e) {

 MessageBox.Show(e.ToString());

 throw(e);

 }

 return sock;

 }

 /* Message sending */

 private void contact() {

 for(int i = 0; i < guest.Count; i++) {

 try {
SMS.SendMessage(guest[i].phoneNumber,this.myIP);

 }

 catch(Exception sendSms){}

 }

}

}

public class Peer

{

 private void sendMessage(Message msg) {

 netStream = new

System.Net.Sockets.NetworkStream(getConnec

tSocket());

 writerClient = new StreamWriter(netStream);

 }

}

Database
In the Smartphone 2003 SDK, up to now, there are
no libraries and tools to manage local relational
database. Therefore the Database package has been
realized on the basis of the FileSystem.
Specifically, all the µ-databases used in the Interact-
Agenda consist of collections of text files stored on
an external SD-CARD memory. Through the file
management, the package provides a very simple
relational-like interface, allowing upper layer to
create tables, columns simple constraints and primary
keys. Simple querying capabilities (specifically select
but not join) have been provided. Specifically, the
.NET CF libraries System.IO and System.Data
have been used for writing and reading operations on
files and for table and column manipulation,
respectively. In the following code sample we report
database management, in particular how tables are
stored into text files.
public class DataBase{

 /* Writing table to file.txt */

 public static bool WriteTable(DataTable tab) {

 System.Data.DataTable table = tab;

 System.String fileTable = table.TableName;

 ForeignKeyConstraint key = null;

 UniqueConstraint pKey = null;

 /* openig table file.txt */

 System.IO.StreamWriter fileWriter =

System.IO.File.CreateText("\\"+fileTable+"
.txt");

/*Writing Table information: Name, column number */

 fileWriter.WriteLine(

 table.TableName.ToString());

 fileWriter.WriteLine(

 table.Columns.Count.ToString());

 /* Writing column's name and type */

 for(int i = 0; i < table.Columns.Count; i++)

fileWriter.WriteLine(table.Columns[i].Colu
mnName);

fileWriter.WriteLine(table.Columns[i].Data
Type.ToString());

 }

. . . .

}

Finally, Figure 5 shows the sequence of windows
presented to the initiator user when establishing a
group appointment.

5. C
The p
invest
applic
etc.),
platfo
analys
pattern
traditi
applie
Clearl
that i
particu
power
applic
main o

Some
made;
smart
transm
and d
smartp
transm
distinc
protoc
comm
apply
develo
in par
(Mobi
mobil
fixed

6. A
This w
2001
Unive
Comb

7. ADDITIONAL AUTHORS
Angelo Ritucci and Giuseppe Santoro, bachelor
students of the Faculty of Computer Engineering,
Università di Roma “La Sapienza”.

8. REFERENCES
[1] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer
Information System. In Proceedings of the 10th International
Conference on Information and Knowledge Management, Atlanta,
GA, USA, 2001.

[2] KaZaA. http://www.kazaa.com.

[3] Napster. http://www.napster.com.

[4] M.C. Fauvet, M. Dumas, B. Benatallah, and H.Y. Paik. Peer-to-
Peer Traced Execution of Composite Services. In Proceedings
Figure 5. Task to Establish a Group
Appointment.
ONCLUSION AND DISCUSSION
rincipal goal of the present work has been to
igate how to develop and design distributed
ations for small devices (PDAs, smartphones,
using current technologies such as .net CF
rm. Our main conclusion, supported by the
is of the produced code, is that concepts,
s and development methods that are used in

onal software construction can be seamlessly
d to smart device application development.
y this is due to the availability of a framework
s similar to desktops/workstations/servers. In
lar, the network programming interfaces are

ful enough for developing peer-to-peer
ations on cellular phones, that was the second
bjective of this work.

observations and recommendations can be
 specifically, when we design applications for
devices, we must consider some factors such as
ission cost, security, privacy, performances

evelopment platforms. With respect to them,
hone applications must be able to use several
ission channels (our application uses two
t channels: SMS and GPRS), and their
ols must be able to support different
unications. In the future work we would like to

the gained knowledge about design,
pment, and deployment of mobile applications
ticular scenarios, such as the one of MANET
le or Multi-hop ad hoc NETwork), in which
e devices communicate on the basis of a non-
network [15].

CKNOWLEDGMENTS
ork is supported by MIUR through the FIRB

Project MAIS. Thanks to Microsoft Research -
rsity Relationship Department and Marco
etto for providing the prototype devices.

of the 2nd VLDB International Workshop on Technologies for
e-Services (VLDB-TES 2001), Rome, Italy, 2001.

[5] Gnutella. The Gnutella Protocol Specification (version 0.4).
http://www9.limewire.com/developer/gnutella_protocol_l
0.4.pdf, June 2001.

[6] T. Kato, N. Ishikawa, H. Sumino, J. Hjelm, Y. Yu, and S.
Murakami. A Platform and Applications for Mobile Peer-to-
Peer Communications. NTT DoCoMo & Ericsson Research
Document, 2003, http://www.research.att.com/~rjana/Takeshi
Kato.pdf.

[7] A. Klemm, C. Lindemann, and O.P. Waldhorst. A Special-
Purpose Peer-to-Peer File Sharing System for Mobile Ad Hoc
Networks. In Proceedings IEEE Semiannual Vehicular
Technology Conference (VTC2003-Fall), Orlando, FL,
October 2003.

[8] RFC 2779 - Instant Messaging / Presence Protocol
Requirements. http://www.faqs.org/rfcs/rfc2779.html.

[9] International Telecommunications Union Standard H.323.
http://http://www.itu.int/.

[10] The OpenH323 Project. http://www.openh323.org/
[11] SIP - Session Initiation Protocol.

http://rfc.sunsite.dk/rfc/rfc3261.html.
[12] SIMPLE - SIP for Instant Messaging and Presence

Leveraging Extensions.
http://www.ietf.org/html.charters/simple-charter.html.

[13] .NET Compact Framework.
http://msdn.microsoft.com/mobility/prodtechinfo/devtools/net
cf/.

[14] Java 2 Micro Edition. http://java.sun.com/j2me/.
[15] F. De Rosa, V. Di Martino, L. Paglione, and M. Mecella.

Mobile Adaptive Information Systems on MANET: What We
Need as Basic Layer? In Proceedings of the 1st Workshop on
Multichannel and Mobile Information Systems (MMIS'03),
Rome, Italy, December 2003, IEEE.

	INTRODUCTION
	BACKGROUND
	Peer-to-Peer Systems and Protocols
	Smartphone Application Development
	.NET Compact Framework

	THE INTERACT-AGENDA APPLICATION
	Application Requirements
	Application Design
	Communication Protocol

	IMPLEMENTATION FEATURES
	User Interface Development
	Networking
	Database

	CONCLUSION AND DISCUSSION
	ACKNOWLEDGMENTS
	ADDITIONAL AUTHORS
	REFERENCES

