
The correctness of
the definite assignment analysis in C#

Nicu G. Fruja
Computer Science Department, ETH Zürich

8092 Zürich, Switzerland
fruja@inf.ethz.ch

ABSTRACT
In C# the compiler guarantees that each local variable is initialized before an access to its value occurs at runtime.
This prevents access to uninitialized memory and is a crucial ingredient for the type safety of C#. We formalize
the definite assignment analysis of the C# compiler with data flow equations and we prove the correctness of the
analysis.

Keywords
definite assignment, C#, type safety, static analysis

1 INTRODUCTION
Let us suppose that an attacker wants to fool the C#

type system. His idea is expressed by the next block:

{
int[] a;
try {a = (int[])(new object());}
catch(InvalidCastException)

{Console.WriteLine(a[7]);}
}

A pure object is type casted into an array of inte-
gers. The attacker thinks the following will work: after
the InvalidCastException which is thrown at
runtime is caught, theobject can be used in the han-
dler of thecatch clause, as an array to generate un-
predictable behavior. Some people might think that a
NullReferenceException is thrown at runtime
whena[7] is accessed and thus the attacker will not
succeed. Actually, his idea does not work since the
block is rejected already at compile time due to the
definite assignment analysis. Through this analysis,

Permission to make digital or hard copies of all part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or fee.
.NET Technologies’2004workshop proceedings,

ISBN 80-903100-4-4

Copyright UNION Agency - Science Press, Plzen, Czech Republic

the C# compiler infers thata might not be assigned in
one execution path to the access ofa[7] . The anal-
ysis states thata is not definitely assigned at the be-
ginning of thecatch block since it is not definitely
assigned at the beginning of thetry statement.

A necessary condition for C# to be a type safe lan-
guage is the following: whenever an expression is
evaluated, the resulting value is of the type of the ex-
pression. If we suppose that a local variable is unini-
tialized when its value is required, the execution pro-
ceeds with the arbitrary value which was at the mem-
ory position of the uninitialized local variable. Since
this value could be of any type, we would obviously
violate the type safety of C# and we could easily pro-
duce unpredictable behavior.

Since local variables are not initialized with de-
fault values like static variables or instance variables
of class instances, a C# compiler must carry out a spe-
cific conservative flow analysis to ensure that every
local variable isdefinitely assignedwhen any access
to its value occurs. This definite assignment analysis
which is a static analysis (see [Nie99, Gru00] for other
static analyses) has to guarantee that there is an initial-
ization to a local variable on every possible execution
path before the variable is read. Since the problem
is undecidable in general, the C# Language Specifica-
tion [Wil03, §5.3] contains a definition of a decidable
subclass. So far, the definite assignment analysis of
the Java compiler has been formalized with data flow
equations in the work of Stärk et al. [Sta01] and re-
lated to the problem of generating verifiable bytecode
from legal Java source code programs. A formaliza-
tion of the analysis for Java which uses type systems

is presented in [Sch03]. Since in our case, the analy-
sis involves a fixed point iteration, the presentation as
type systems does not appear to be a feasible solution.

The formalization of the C# definite assignment
analysis we provide, sheds some light in particular on
the complications generated by thegoto andbreak
statements (incompletely specified in [Wil03]) and by
the method calls withref /out parameters - these are
crucial differences with respect to Java. We also use
the idea of data flow equations (see [Sta01]) but due to
thegoto statement, the formalization cannot be done
like in Java. For a method body withoutgoto , how-
ever, the equations that characterize the sets of defi-
nitely assigned variables can be solved in a single pass.
If goto statements are present, then the equations de-
fined in our formalization do not specify in a unique
way the sets of variables that have to be considered
definitely assigned. For this reason, a fixed point com-
putation is performed and the greatest sets of variables
that satisfy the equations of the formalization are com-
puted. Another difference with respect to Java is the
presence of structs. Regarding the correctness of the
analysis, we prove that, these sets of variables repre-
sent exactly the sets of variables assigned on all pos-
sible execution paths and in particular they are asafe
approximation.

A series of bugs in the Mono C# compiler were de-
tected during the attempt to build the formalization of
the definite assignment analysis (see [Fru03b] for de-
tails). This is the reason we refer here only to .NET
and Rotor C# compilers. A bug in the assignment anal-
ysis of the Rotor C# compiler is mentioned also here.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the data flow equations which for-
malize the C# definite assignment analysis while Sec-
tion 3 shows that there always exists a maximal fixed
point solution for the equations. In order to define
the execution paths in a method body, the control flow
graph is introduced in Section 4. The paper concludes
in Section 5 with the proof of the correctness of the
analysis, Theorem 1. Due to space limitations we do
not make here the proofs in detail. We focus on illus-
trating how we deal with the jump statements and their
complications in the presence offinally blocks.
The full details, as well as further examples can be
found in the full technical report [Fru03b].

2 THE DATA FLOW EQUATIONS
In this section, we formalize the rules of definite as-

signment analysis from the C# Specification [Wil03,
§5.3] by data flow equations. Since this analysis is
an intraprocedural analysis, we restrict our formaliza-
tion only to a given methodmeth. We use labels in
order to identify the expressions and the statements.
Labels are denoted by small Greek letters and are dis-
played as superscripts, for example, as inαexpor in

αexp the data flow equations
true true(α) = before(α)

false(α) = vars(α)

false false(α) = before(α)
true(α) = vars(α)

(! βe) before(β) = before(α)
true(α) = false(β)
false(α) = true(β)

(βe0 ? γe1 : δe2) before(β) = before(α)
before(γ) = true(β)
before(δ) = false(β)
true(α) = true(γ) ∩ true(δ)
false(α) = false(γ) ∩ false(δ)

(βe1 &&γe2) before(β) = before(α)
before(γ) = true(β)
true(α) = true(γ)
false(α) = false(β) ∩ false(γ)

(βe1 || γe2) before(β) = before(α)
before(γ) = false(β)
false(α) = false(γ)
true(α) = true(β) ∩ true(γ)

Table 1: Definite assignment for boolean expressions
αstm. We will often refer to expressions and state-
ments using their labels. In order to precisely spec-
ify all the cases of definite assignment, static func-
tions before, after, true, falseandvars are computed
at compile time. Note thattrue andfalseare only for
boolean expressions. These functions assign sets of
variables to each expression or statementα and have
the following meanings.before(α) contains the lo-
cal variables definitely assigned before the evaluation
of α andafter(α) the variables definitely assigned af-
ter the evaluation ofα when α completes normally.
true(α) andfalse(α) consist of the variables definitely
assigned after the evaluation ofα whenα evaluates to
true andfalse , respectively.vars(α) contains the
local variables in the scope of whichα is.

We skip those language constructs (e.g.foreach ,
for , do , switch , ++, --) whose analysis is similar
to the one of the constructs dealt with explicitly in our
framework. Note that the definite assignment analy-
sis for variables of a struct type is a little bit different:
such a local variable is considered definitely assigned
iff all its instance fields are definitely assigned. The
structs are not considered here but their detailed anal-
ysis is included in the full technical report [Fru03b].

A equation is given by initial conditions: for the
method bodymb of methwe havebefore(mb) = ∅.
Actually we should consider the set of value and ref-
erence parameters ofmethbut there is no worry that
an access to any of them could cause troubles since
when meth is invoked they are supposed to be defi-
nitely assigned [Wil03,§5.1].

For the other expressions and statements inmb, in-
stead of explaining how the functions are computed,

αexp the data flow equations
loc after(α) = before(α)

lit after(α) = before(α)

(loc = βe) before(β) = before(α)
after(α) = after(β) ∪ {loc}

(loc op= βe) before(β) = before(α)
after(α) = after(β)

(βe0 ? γe1 : δe2) before(β) = before(α)
before(γ) = true(β)
before(δ) = false(β)
after(α) = after(γ) ∩ after(δ)

c.f after(α) = before(α)

ref βexp before(β) = before(α)
after(α) = after(β)

out βexp before(β) = before(α)
after(α) = after(β)

c.m(β1arg1, . . . ,βk argk) before(β1) = before(α)
before(βi+1) = after(βi),

i = 1, k − 1
after(α) = after(βk)∪
∪OutParams(arg1, . . . , argk)

Table 2: Definite assignment for arbitrary expressions

we simply state the equations they have to satisfy. Ta-
ble 1 contains the equations for boolean expressions
(see [Fru03b] for details). In addition, we have for
all expressions in Table 1 the equationafter(α) =
true(α) ∩ false(α). For a boolean expressionα which
is not an instance of one of the expressions in Table 1,
we havetrue(α) = after(α) andfalse(α) = after(α).

Table 2 lists the equations specific to arbitrary ex-
pressions whereloc stands for a local variable andlit
for a literal. Note that following a method invoca-
tion, theout parametersOutParams(arg1, . . . , argk)
are definitely assigned. In cases not stated in Ta-
bles 1,2, ifαexp is an expression withdirect subex-
pressionsβ1e1, . . . ,

βn en, then the left-to-right evalu-
ation scheme yields thegeneral data flow equations:
before(β1) = before(α), before(βi+1) = after(βi),
i = 1, n− 1 andafter(α) = after(βn).

The equations specific to every statement can be
found in Table 3. We assume thattry statements
are eithertry-catch or try-finally statements
(see [Bor03] for a justification of this assumption).
Special attention is paid to the labeled statement. The
set of variables definitely assigned before executing a
labeled statement consists of the variables definitely
assigned both after the previous statement and before
each correspondinggoto statement or after any of
the finally blocks of try-finally statements
in which thegoto is embedded (if any). This can
be formalized as follows. For two statementsα and
β, we considerFin(α, β) to be the list[γ1, . . . , γn]

αstm the data flow equations
; after(α) = before(α)

(βexp;) before(β) = before(α)
after(α) = after(β)

{β1stm1 . . . βn stmn} before(β1) = before(α)
after(α) = after(βn) ∩ vars(α)
before(βi+1) = after(βi)∩
∩ goto(βi+1), i = 1, n− 1

if (βexp) γstm1 before(β) = before(α)
else δstm2 before(γ) = true(β)

before(δ) = false(β)
after(α) = after(γ) ∩ after(δ)

while (βexp) γstm before(β) = before(α)
before(γ) = true(β)
after(α) = false(β) ∩ break(α)

goto L; after(α) = vars(α)

break; after(α) = vars(α)

continue; after(α) = vars(α)

return; after(α) = vars(α)

return βexp; before(β) = before(α)
after(α) = vars(α)

throw; after(α) = vars(α)

throw βexp; before(β) = before(α)
after(α) = vars(α)

try βblock before(β) = before(α)
catch (E1 x1) γ1block1 before(γi) = before(α) ∪ {xi}
... i = 1, n
catch (En xn) γn blockn after(α) = after(β)∩

∩
⋂n

i=1 after(γi)

try βblock1 before(β) = before(α)
finally γblock2 before(γ) = before(α)

after(α) = after(β)∪
∪ after(γ)

Table 3: Definite assignment for statements

of finally blocks of all try-finally state-
ments in the innermost to outermost order fromα
to β. Then we define the setJoinFin(α, β) of def-
initely assigned variables after the execution of all
thesefinally blocks:

⋃
γ∈Fin(α,β) after(γ). Fur-

ther, we define the setgoto for a statementβ. For a
labeled statementβL : stm, the setgoto(β) is given
by

⋂
αgoto L; (before(α) ∪ JoinFin(α, β)) where we

take only thegoto statements in the scope ofβ. For
all the other statements, as well for a labeled state-
ment with nogoto statements,goto(β) is the univer-
sal setvars(β). Now we are able to state the equation
before(βi+1) = after(βi) ∩ goto(βi+1) from Table 3.
In case of a labeled statement, the equation formalizes
the above stated idea while for a non-labeled statement
becomesbefore(βi+1) = after(βi).

The following example is a simplification of an ex-
ample from the C# Specification [Wil03,§5.3.3.15]:

int i;
δtry {α goto L; }
finally γ{i = 3; }
βL:Console.WriteLine(i);

The C# Specification states thati is definitely as-
signed beforeβ , i.e. i ∈ before(β). Our equation
before(β) = after(δ) ∩ goto(β) led us to the same
conclusion sincegoto(β) = before(α) ∪ after(γ) and
i ∈ after(γ) ⊆ after(δ) (see the equations for a
try-finally in Table 3). Surprisingly, the exam-
ple is rejected by the C# compilers of .NET Frame-
work 1.0 and Rotor: we get the error thati is unas-
signed. This problem was fixed in .NET Framework
1.1 but still exists in Rotor.

The following explanation holds for the equation
after(α) = after(βn) ∩ vars(α) corresponding to a
block of statements: the local variables which are def-
initely assigned after the normal execution of the block
are the variables which are definitely assigned after the
execution of the last statement of the block. However,
the variables must still be in the scope of a declaration.
Thus, let us consider the example:

{α{int i;i = 1; } {int i;i = 2 * β i; }}
The variablei is not in after(α) since at the end
of α, i is not in the scope of a declaration. Thus
i 6∈ before(β) and the block is rejected.

The idea for the equation which computesafter(α)
of a while statementα, is similar with that for a
labeled statement. Similarly with the setgoto, we
define the setbreak(α) to be the set of variables
definitely assigned before all correspondingbreak
statements (and possibly after appropriatefinally
blocks). This means that the setbreak(α) is given
by

⋂
βbreak; (before(β) ∪ JoinFin(β, α)) where we

take only thebreak statements for whichα is the
nearest enclosingwhile . If the while statement
does not have anybreak statements, then we define
break(α) = vars(α). With this definition ofbreak(α),
we have the equation forafter(α) as stated in Table 3.

There is one more technical detail to be decided.
Suppose we want to state the equation forafter of a
jump statements. Letα be the following statement:

if(b) γ{i = 1; } else δreturn;

It is clear that, the variables definitely assigned afterα
are the variables definitely assigned after thethen
branch and since our equation takes the intersection
of after(γ) andafter(δ), it is obvious that one has to
require the set-intersection identity forafter(δ). That
is why we adopt the convention thatafter(α) is the
universal setvars(α) for any jump statementα.

3 THE MAXIMAL FIXED POINT
The computation of the sets of definitely assigned

variables from the data flow equations described in
Section 2 is relatively straightforward. The key dif-
ference with respect to Java is thegoto statement
which brings more complexity to the analysis. Since
thegoto statement makes loops possible, the system
of data flow equations does not have always a unique
solution. Here is an example: if we consider a method
which takes no parameters and has the following body
{αint i = 1; βL: γgoto L; }

then we have the following equationsafter(α) = {i },
before(β) = after(α) ∩ before(γ) and before(γ) =
before(β). After some simplification we find that
before(β) = {i }∩before(β) and therefore we get two
solutions forbefore(β) (and also forbefore(γ)): ∅ and
{i }. This is the reason we perform a fixed point itera-
tion - which is not the case in Java. The set of variables
definitely assigned afterα is {i } and sinceβ does not
‘unassign’i , i is obviously assigned when we enter
β. Consideration of the example and the definition of
definitely assignedshow that the most informative so-
lution is {i } and therefore the solution we require is
the maximal fixed pointMFP.

In the rest of this section we show that there al-
ways exists a maximal fixed point for our data flow
equations. In order to prove the existence, one needs
first to define the functionF which encapsulates the
equations. For the domain and codomain of this func-
tion, we need the setVars(meth) of all local vari-
ables from the method bodymb. We define the func-
tion F : D → D with D = P(Vars(meth))r such
that F (X1, . . . , Xr) = (Y1, . . . , Yr), wherer is the
number of equations and the setsYi are defined by
the data flow equations. For example in the case of
an if-then-else statement, if the equation for
the after set of this statement is thei-th data flow
equation, then the set of variablesYi is defined by
Yi = Xj ∩ Xk wherej andk are the indices of the
equations for theafter sets of thethen and theelse
branch, respectively. Note that the setsvarsare inter-
preted as constants.

We define now the relationv on D to be the point-
wise set inclusion relation: if(X1, . . . , Xr) ∈ D and
(X

′

1, . . . , X
′

r) ∈ D, then we have(X1, . . . , Xr)v
(X

′

1, . . . , X
′

r) if Xi ⊆ X
′

i for all i = 1, r. We are
now able to prove the following result:

Lemma 1 (D,v) is a finite lattice.

Proof. D is finite since for a given method body we
have a finite number of equations and local variables
and on the other hand,D is a lattice since it is a prod-
uct of lattices:(P(Vars(meth)),⊆) is aposetsince the
set inclusion is a partial order and for every two sets
X, Y ∈ P(Vars(meth)) there exists a lower bound
(X ∩ Y) and an upper bound (X ∪ Y). ut

The following result will help us conclude the exis-
tence of the maximal fixed point.

Lemma 2 The functionF is monotonic on(D,v).

Proof. In order to prove the monotonicity ofF =
(F1, . . . , Fr), it suffices to remark that the compo-
nentsFi are monotonic functions. This holds since
they consist only of set intersections and unions which
are monotonic (see the form of the equations). ut

The next result guarantees the existence of the max-
imal fixed point solution for our data flow equations:

Lemma 3 The functionF has a unique maximal fixed
point MFP∈ D.

Proof. (D,v) is a finite lattice (Lemma 1) and there-
fore a complete lattice. But in a complete lattice, every
monotonic function has a unique maximal fixed point
(known also asthe greatest fixed point). In our case,
F is monotonic (Lemma 2) and the maximal fixed
point MFP is given by

⋂
k F (k)(1D). Here1D is the

r-tuple(Vars(meth), . . . , Vars(meth)), i.e. the top ele-
ment of the latticeD. ut

From now on, for an expression or statementα we de-
note by MFPb(α), MFPa(α), MFPt(α) and MFPf (α)
the components ofMFP corresponding tobefore(α),
after(α), true(α) andfalse(α), respectively.

4 THE CONTROL FLOW GRAPH
The main result we want to prove is that, for an ar-

bitrary expression or statement, the sets of local vari-
ablesMFPb, MFPa (andMFPt, MFPf for boolean ex-
pressions) correspond indeed to sets ofdefinitely as-
signedvariables, i.e. variables which are assigned on
every possible execution path to the appropriate point.
The considered paths are based on the control flow
graph. The nodes of the graph are actually points as-
sociated with every expression and statement. We sup-
pose that every expression or statementα is character-
ized by anentry point B(α) and anend pointA(α).
Beside these two points, a boolean expressionα has
two more points: atruepointT (α) (used whenα eval-
uates totrue) and afalsepointF(α) (used whenα
evaluates tofalse). The edges of the graph are given
by the control transferdefined in the C# Specifica-
tion [Wil03, §8]. We show in Tables 4 and 5 the edges
specific to each boolean and arbitrary expression, re-
spectively. If the expressionα is not an instance of one
expression in these tables (e.g.exp1| exp2) and has
thedirect subexpressionsβ1, . . . , βn, then the left-to-
right evaluation scheme adds to the flow graph also the
following edges: (B(α),B(β1)),(A(βn),A(α)) and
(A(βi),B(βi+1)), i = 1, n− 1.

For each boolean expressionα in Table 4, we have
supplementary edges:(T (α),A(α)), (F(α),A(α))

αexp edges
true (B(α), T (α))

false (B(α),F(α))

(! βe) (B(α),B(β)), (F(β), T (α))
(T (β),F(α))

(βe0 ? γe1 : δe2) (B(α),B(β)), (T (β),B(γ)),
(F(β),B(δ)), (T (γ), T (α)),
(T (δ), T (α)), (F(γ),F(α)),
(F(δ),F(α))

(βe1 &&γe2) (B(α),B(β)), (T (β),B(γ)),
(F(β),F(α)), (T (γ), T (α)),
(F(γ),F(α))

(βe1 || γe2) (B(α),B(β)), (T (β), T (α)),
(F(β),B(γ)), (T (γ), T (α)),
(F(γ),F(α))

Table 4: Control flow for boolean expressions

αexp edges
loc (B(α),A(α))

lit (B(α),A(α))

(loc = βe) (B(α),B(β)), (A(β),A(α))

(loc op= βe) (B(α),B(β)), (A(β),A(α))

(βe0 ? γe1 : δe2) (B(α),B(β)), (T (β),B(γ))
(F(β),B(δ)), (A(γ),A(α)),
(A(δ),A(α))

c.f (B(α),A(α))

ref βexp (B(α),B(β)), (A(β),A(α))

out βexp (B(α),B(β)), (A(β),A(α))

c.m(β1arg1, . . . ,βk argk) (B(α),B(β1)), (A(βk),A(α)),

(A(βi),B(βi+1)), i = 1, k − 1

Table 5: Control flow for arbitrary expressions

which connect the boolean points ofα to the end point
of α. These edges are necessary for the control transfer
in cases when it does not matter whetherα evaluates
to true or false . For example, ifβ is the method
invocationc.m(true) andα is the argumenttrue ,
then the control is transferred from the end point of the
last argument - that isA(α) - to the end point of the
method invocation - that isA(β). But since in Table 4
we have no edge leading toA(α), we need to define
also the supplementary edge(T (α),A(α)).

For a boolean expressionα which is not an in-
stance of any expression from Table 4, we add to the
graph the edges(A(α), T (α)), (A(α),F(α)). They
are needed if control is transferred from a boolean ex-
pressionα to different points depending on whetherα
evaluates totrue or false . For example, ifα is of
the formexp1| exp2 and occurs inβ(!(exp1| exp2)) ,

then the control is transferred fromF(α) to T (β)
(if α evaluates tofalse) or from T (α) to F(β) (if
α evaluates totrue). The necessity of the edges
(A(α), T (α)), (A(α),F(α)) arises since, so far we
have defined forexp1| exp2 only edges toA(α).

Table 6 introduces the edges of the control flow
graph for each statement. Note that we assume that the
boolean constant expressions are replaced bytrue or
false in the abstract syntax tree. For example, we
consider thattrue||b is replaced bytrue in the
following if statement:

αif β(true||b) δ i = 1;
else γ{int j = i; }

Although the new considered test (i.e.true) cannot
evaluate tofalse , we still add to the graph the edge
(F(β),B(γ)) since anyway the false point oftrue
is not reachable (see Table 4). In the presence of
finally blocks, the jump statementsgoto , break
andcontinue bring more complexity to the graph.
Whenever such a jump statement exits one or more
try blocks with associatedfinally blocks, the
control is transferred first to thefinally block
(if any) of the innermosttry statement. Further, if
the control reaches the end point of thefinally ,
then it is transferred to the next (with respect to the
innermost to outermost order of thetry statements)
finally block and so on. If the control reaches
the end point of the lastfinally block, then it is
transferred to the target of the jump statement. For
these control transfers we have special edges in our
graph. But one needs to take care to some detail:
these special edges cannot be used for paths other
than those which connect the jump statement with
its target. In other words, if a path uses such an
edge, then necessarily the path contains the entry
point of the jump statement. For this reason, we
say that an edgee is conditionedby a point i with
the meaning thate can be used only in paths that
contain i. If we do not make this restriction, then
[B(mb)B(α1)B(α2)B(α3)B(α4)B(α5)A(α5)B(α6)]
would be a possible execution path to the labeled
statement in the following method body

α1 try α2 {
α3(α4(i = 1);)
goto L;

} finally α5{}
α6L:Console.WriteLine(i);

in the theoretical case when the evaluation ofα4

would throw an exception. But this does not match
the control transfer described in the C# Specification.

The following sets introduce the above described
edges. Ifα andβ are two statements andFin(α, β)
is the list[γ1, . . . , γn], then the setThroughFinb(α, β)
consists of the edges(B(α),B(γ1)), (A(γn),B(β)),
(A(γi),B(γi+1)), i = 1, n− 1 all conditioned by

αstm edges
; (B(α),A(α))

(βexp;) (B(α),B(β)), (A(β),A(α))

{β1stm1 . . . βn stmn} (B(α),B(β1)), (A(βn),A(α)),
(A(βi),B(βi+1)), i = 1, n− 1

if (βexp) γstm1 (B(α),B(β)), (T (β),B(γ)),
else δstm2 (F(β),B(δ)), (A(γ),A(α)),

(A(δ),A(α))

while (βexp) γstm (B(α),B(β)), (T (β),B(γ)),
(F(β),A(α)), (A(γ),A(α))

L: βstm (B(α),B(β)), (A(β),A(α))

goto L; ThroughFinb(α, β), where
βL: stmis the statement to
whichα points

break; ThroughFina(α, β), where
β is the nearest enclosingwhile
wrt α

continue; ThroughFinb(α, β), where
β is the nearest enclosingwhile
wrt α

return; no edges

return βexp; (B(α),B(β))

throw; no edges

throw βexp; (B(α),B(β))

try βblock (B(α),B(β)), (A(β),A(α))
catch (E1 x1) γ1block1 (B(α),B(γi)), (A(γi),A(α)),
... i = 1, n
catch (En xn) γn blockn

try βblock1 (B(α),B(β)), (B(α),B(γ)),
finally γblock2 (A(β),B(γ)) and(A(γ),A(α))

conditioned byA(β)

Table 6: Control flow for statements
B(α) and the setThroughFina(α, β) has the edges
(B(α),B(γ1)), (A(γn),A(β)), (A(γi),B(γi+1)), i =
1, n− 1 all conditioned byB(α). If Fin(α, β) is
empty, then the setThroughFinb(α, β) has only the
edge(B(α),B(β)) while ThroughFina(α, β) refers to
the edge(B(α),A(β)).

Note that in Table 6, forgoto and continue ,
the set of edgesThroughFinb is added to the graph,
since after executing thefinally blocks the control
is transferred to the entry point of the labeled statement
andwhile statement, respectively, while in case of
break the setThroughFina is considered, since at the
end, the control is transferred to the end point of the
while statement.

There are two more remarks concerning thetry
statement. Since in atry block can anytime occur
a reason for abruption (e.g. an exception), we should

have edges from every point in atry block to: ev-
ery associatecatch block, everycatch of enclosing
try statements (if thecatch clause matches the type
of the exception) and to every associatefinally
block (if nocatch clause matches the type of the ex-
ception). We do not consider all these edges, since
from the point of view of the definite assignment anal-
ysis which is in particular an ‘over all paths’ analysis,
it is equivalent to consider only one edge to the entry
points of thecatch andfinally blocks - from the
entry point of thetry block (see Table 6).

The next remark is concerning the end pointA(α)
of a try-finally statementα. The C# Specifica-
tion states in [§8.10] thatA(α) is reachable only if
both end points of thetry block β and finally
block γ are reachable. The only edge toA(α) is
(A(γ),A(α)) and we know that thefinally block
can be reached either through a jump or through a nor-
mal completion of thetry block. In case of a jump, if
control reaches the end pointA(γ) of the finally ,
then it is transferred further to the target of statement
which generated the jump and not toA(α). This
means that all paths toA(α) contain also the end point
A(β) of the try block. That is why we require that
the edge(A(γ),A(α)) is conditionedby A(β) (see
Table 6) - otherwise in the following example,A(α)
would be reachable in our graph (under the assump-
tion thatB(α) is reachable):

αtry β {goto L; } finally γ{}
We define now the sets ofvalid paths to all points in
the method body. We will not consider all the paths in
the graph but only thevalid paths - that is the pathsp
for which the following is true: ifp uses aconditioned
edgethen it contains also the point which conditions
the edge. Ifα is an expression or a statement, then
pathb(α) andpatha(α) are the sets of all valid paths
from the entry point of the method bodyB(mb) to the
entry pointB(α) and to the end pointA(α) of α, re-
spectively. Moreover, ifα is a boolean expression,
then patht(α) and pathf (α) are the sets of all valid
paths fromB(mb) to the true pointT (α) and to the
false pointF(α) of α, respectively.

5 THE CORRECTNESS OF THE
ANALYSIS

We prove that, when a C# compiler relies on the
setsMFPb, MFPa, MFPt andMFPf derived from the
maximal fixed point of the equations in Section 2, the
risk of accessing the value of an unassigned variable
does not exist. The correctness means that, if the anal-
ysis infers a variable as definitely assigned at a certain
program point, then this variable will actually be as-
signed at that point during every execution of the pro-
gram, i.e. on every path. A variableloc is assigned
on a path if the path contains aninitialization of loc:
a simple assignment toloc, a method invocation for

which loc is an out parameter or acatch clause
whose exception variable isloc. We prove actually
more than the correctness. We show that the compo-
nents of the maximal fixed point are exactly (not only a
safe approximationof) the sets of variables for which
there is aninitialization on every path to the appro-
priate point. To formalize this, we define the follow-
ing sets. Ifα is an arbitrary expression or statement,
then APb(α) and APa(α) denote the sets of variables
in vars(α) (the variables in the scope of whichα is)
for which there exists an initialization on every path in
pathb(α) and inpatha(α), respectively. For a boolean
expressionα, we have two more sets: APt(α) and
APf (α) are defined similarly as above, but with re-
spect to paths inpatht(α) andpathf (α), respectively.

The following lemma is proved by induction over
the abstract syntax tree, starting from the root of the
method body. It claims that, the MFP sets of an expres-
sion or statementα, consist of variables in the scope
of whichα is (see [Fru03b] for details).

Lemma 4 For every expression or statementα we
haveMFPb(α) ⊆ vars(α) andMFPa(α) ⊆ vars(α).
Moreover, ifα is a boolean expression, then we have
alsoMFPt(α) ⊆ vars(α) andMFPf (α) ⊆ vars(α).
The correctness of the definite assignment analysis in
C# is proved in the next theorem, which claims that
the analysis is asafe approximation.

Theorem 1 (safe approximation) For every expres-
sion or statementα, the following relations are true:
MFPb(α) ⊆ APb(α) andMFPa(α) ⊆ APa(α). More-
over, if α is a boolean expression, then we have
MFPt(α) ⊆ APt(α) andMFPf (α) ⊆ APf (α).

Proof. We consider the following definitions. The set
APn

b (α) is defined in the same way as APb(α), except
that we consider only the paths of length less or equal
than n. Similarly, we define also the sets APn

a(α),
APn

t (α), APn
f (α) (analogously, we have definitions

for the sets of pathspathn). According to these defini-
tions, the following set equalities hold for an arbitrary
α: APb(α) =

⋂
n APn

b (α), APa(α) =
⋂

n APn
a(α)

and if α is a boolean expression, then APt(α) =⋂
n APn

t (α) and APf (α) =
⋂

n APn
f (α). Therefore

to complete the proof, it suffices to show for everyn:
if α is an expression or statement, then MFPb(α) ⊆
APn

b (α) and MFPa(α) ⊆ APn
a(α) and in addition, if

α is a boolean expression, MFPt(α) ⊆ APn
t (α) and

MFPf (α) ⊆ APn
f (α). This is done by induction onn.

Basis of induction:[B(mb)] is the only path of length1
(the entry point of the method body). There is no
initialization of any local variable on this path and
therefore we have AP1b(mb) = ∅ which satisfies
MFPb(mb) ⊆ AP1

b(mb) since from the equations
MFPb(mb) = ∅. From the definition of AP1a, we get
AP1

a(mb) = vars(mb) = ∅ and from the equations
of a block, we derive also MFPa(mb) ⊆ vars(mb)

and implicitly MFPa(mb) ⊆ AP1
a(mb). If α 6= mb,

then AP1b(α) = AP1
a(α) = vars(α) and AP1t (α) =

AP1
f (α) = vars(α) (if α is a boolean expression) and

the basis of induction is complete (see Lemma 4).

Induction step:we prove here only MFPb(βi+1) ⊆
APn+1

b (βi+1) for a labeled statementβi+1 in a
block (see Table 3). Letloc be a local variable in
MFPb(βi+1). If there are nogoto statements point-
ing toβi+1, then the proof is the same as for awhile
statement with no associatedcontinue statements
(see [Fru03b]). If there aregoto statements which
point to βi+1, we prove that there exists an initial-
ization of loc on every path toB(βi+1) of length at
most n + 1 that passes through agoto statement
and possibly throughfinally blocks of enclosing
try statements. Letp be such a path containing a
goto statementα. The equations in Table 3 im-
ply loc ∈ goto(βi+1) and furtherloc ∈ MFPb(α) ∪
JoinFin(α, βi+1). If there are nofinally blocks in
Fin(α, βi+1), thenJoinFin(α, βi+1) = ∅ and implic-
itly loc ∈ MFPb(α). Using the induction hypothesis,
we obtainloc ∈ APn

b (α) and thereforep should con-
tain at least one initialization ofloc. If Fin(α, βi+1)
is non-empty, i.e.Fin = [γ1, . . . , γk], then from the
definition of the setJoinFin(α, βi+1), we get loc ∈
MFPb(α)∪

⋃k
j=1 MFPa(γj). The caseloc ∈ MFPb(α)

has been previously analyzed. If there is afinally
block γj such thatloc ∈ MFPa(γj), then we get
loc ∈ APn

a(γj) from the induction hypothesis. And
since necessarilyp containsA(γj), we are sure that
p has one initialization ofloc. Thus, we showed that
each path toB(βi+1) of length at mostn + 1, contains
an initialization ofloc, i.e loc ∈ APn+1

b (βi+1). ut

We can prove actually more: theMFP solution is not
only an approximation ofAP but it is perfect (Theo-
rem 3). For this, we need also the following theorem
which states that theMFP solution contains the local
variables which are initialized overall possible paths.

Theorem 2 For every expression or statementα, the
following relations are true:APb(α) ⊆ MFPb(α) and
APa(α) ⊆ MFPa(α). Moreover, ifα is a boolean ex-
pression, then we have alsoAPt(α) ⊆ MFPt(α) and
APf (α) ⊆ MFPf (α).

Proof. Tarski’s fixed point theorem states thatMFP is
the lowest upper bound (with respect tov) of the set
Ext(F) = {X ∈ D | X v F (X)}. It suffices to
show that ther-tuple consisting of theAP sets is an
element ofExt(F) sinceMFP is in particular an upper
bound of this set. Sincev is the pointwise subset rela-
tion, the idea is to prove, for the data flow equations in
Tables 1, 2, 3, the left-to-right subset relations where
instead of the setsbefore, after, trueandfalsewe have
the setsAPb, APa APt andAPf , respectively. For the
complete proof we refer the reader to [Fru03b]. ut

The following result is then an obvious consequence
of Theorem 1 and Theorem 2:

Theorem 3 The maximal fixed point solution of the
data flow equations in Tables 1,2,3 represents the sets
of local variables which are assigned over all possible
execution paths.

6 CONCLUSION
In this paper, we have formalized the definite as-

signment analysis of C# by data flow equations. Since
the equations do not always have a unique solution, we
defined the outcome of the analysis as the solution of
a fixed point iteration. We proved that there exists al-
ways a maximal fixed point solution MFP. We showed
the correctness of the analysis, i.e. MFP is asafe ap-
proximationof the sets of variables assigned over all
possible paths. This is a key property for the type
safety of C#. This paper is part of a research project fo-
cusing on formalizing and verifying important aspects
of C#. So far, we have an ASM model for the opera-
tional semantics of C# in [Bor03]. During the attempts
to build this model, there were discovered in [Fru03a]
a few discrepancies between the C# Specification and
different implementations of C#.

References
[Bor03] E. Börger, N. G. Fruja, V. Gervasi, R. F.

Sẗark. A High–Level Modular Definition of the
Semantics of C#. Accepted for publication in jour-
nal Theoretical Computer Science, 2003

[Fru03a] N. G. Fruja. Specification and Implementa-
tion Problems for C#. In B. Thalheim and W. Zim-
mermann, editors, Abstract State Machines 2004,
LNCS. Springer, 2004.

[Fru03b] N. G. Fruja. The correctness of the definite
assignment analysis in C#. Technical Report, ETH
Zürich. http://www.inf.ethz.ch/˜fruja

[Gou02] J. Gough. Compiling for the .NET. Common
Language Runtime (CLR). Prentice Hall, 2002.

[Gru00] D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Lan-
gendoen. Modern Compiler Design. Wiley, 2000

[Nie99] F. Nielson, H.R. Nielson, C. Hankin. Princi-
ples of Program Analysis. Springer–Verlag, 1999.

[Sta01] R. F. Sẗark, J. Schmid, E. B̈orger. Java and
the Java Virtual Machine–Definition, Verification,
Validation. Springer–Verlag, 2001.

[Sch03] N. Schirmer. Java Definite Assignment in Is-
abelle/HOL. ECOOP Workshop on Formal Tech-
niques for Java–like Programs, 2003.

[Wil03] S. Wiltamuth and A. Hejlsberg. C# Language
Specification. MSDN, 2003

http://www.inf.ethz.ch/~fruja

	INTRODUCTION
	THE DATA FLOW EQUATIONS
	THE MAXIMAL FIXED POINT
	THE CONTROL FLOW GRAPH
	THE CORRECTNESS OF THE ANALYSIS
	CONCLUSION

