The correctness of
the definite assignment analysis in C#

Nicu G. Fruja
Computer Science Department, ETH Zirich
8092 Zirich, Switzerland
fruja@inf.ethz.ch

ABSTRACT

In C# the compiler guarantees that each local variable is initialized before an access to its value occurs at runtime.
This prevents access to uninitialized memory and is a crucial ingredient for the type safety of C#. We formalize
the definite assignment analysis of the C# compiler with data flow equations and we prove the correctness of the
analysis.

Keywords
definite assignment, C#, type safety, static analysis

1 INTRODUCTION the C# compiler infers that might not be assigned in
Let us suppose that an attacker wants to fool the C#one execution path to the accessapf] . The anal-
type system. His idea is expressed by the next block: Ysis states tha is not definitely assigned at the be-

ginning of thecatch block since it is not definitely

{ assigned at the beginning of ttrg statement.
int[] a; A necessary condition for C# to be a type safe lan-
try {a = (int[))(new object());} guage is the following: whenever an expression is
catch(InvalidCastException) evaluated, the resulting value is of the type of the ex-
{Console.WriteLine(a[7]);} pression. If we suppose that a local variable is unini-
} tialized when its value is required, the execution pro-

ceeds with the arbitrary value which was at the mem-
ory position of the uninitialized local variable. Since
this value could be of any type, we would obviously
violate the type safety of C# and we could easily pro-
duce unpredictable behavior.

Since local variables are not initialized with de-
fault values like static variables or instance variables
of class instances, a C# compiler must carry out a spe-
cific conservative flow analysis to ensure that every
local variable isdefinitely assigneavhen any access
to its value occurs. This definite assignment analysis
-’ which is a static analysis (see [Nie99, Grli00] for other
this static analyses) has to guarantee that there is an initial-
feejzation to a local variable on every possible execution
provided that copies are not made or distributed for profit Ofpath before the variable is read. Since the problem
commercial advantage and that copies bear this notice angk ,ndecidable in general, the C# Language Specifica-
the full citation on the first page. To copy otherwise, of re- tjgn [Wil03, §5.3] contains a definition of a decidable
publish, to post on servers or to redistribute to lists, requiresspclass. So far, the definite assignment analysis of
prior specific permission and/or fee. the Java compiler has been formalized with data flow
.NET Technologies'2004vorkshop proceedings, equations in the work of &tk et al. [Sta01] and re-
ISBN 80-903100-4-4 lated to the problem of generating verifiable bytecode
Copyright UNION Agency - Science Press, Plzen, Czech Republic from legal Java source code programs. A formaliza-
tion of the analysis for Java which uses type systems

A pureobject is type casted into an array of inte-
gers. The attacker thinks the following will work: after
the InvalidCastException which is thrown at
runtime is caught, thebject can be used in the han-
dler of thecatch clause, as an array to generate un-
predictable behavior. Some people might think that a
NullReferenceException is thrown at runtime
whena[7] is accessed and thus the attacker will not
succeed. Actually, his idea does not work since the
block is rejected already at compile time due to the
definite assignment analysis. Through this analysis,
Permission to make digital or hard copies of all part of
work for personal or classroom use is granted withou

is presented i [Sch03]. Since in our case, the analy- _“€xP the data flow equations

. . i . . true true(a) = beford o)
sis involves a fixed point iteration, the presentation as false(a) — vars(a)
type systems does not appear to be a feasible solution.

The formalization of the C# definite assignment false false(a) = beforga)
analysis we provide, sheds some light in particular on trug(a) = varsa)
the complications generated by theto andbreak (1 Be) beforg3) = beforg)
statements (incompletely specified [in [Wil03]) and by true(a) = falsg(3)
the method calls withef /out parameters - these are false(a) = true(3)
crucial differences with respect to Java. We also use s B
the idea of data flow equations (see [Sia01]) but due to (Peo?er : Pez) E§§§I§f§ _ t?ﬁfe(zg()a)
thegoto statement, the formalization cannot be done beforgs) = false(3)
like in Java. For a method body withogoto , how- true(c) = true(y) N true(d)
ever, the equations that characterize the sets of defi- false(a) = false() N false(9)
nitely assigned variables can be solved inasingle pass. (8¢, g&7e,) before(3) = beforea)
If goto statements are present, then the equations de- beforgy) = true(3)
fined in our formalization do not specify in a unique true(e) = true(y)
way the sets of variables that have to be considered false(a) = false() N false()
definitely assigned. For this reason, a fixed point com- (Ber || Vez) beforg3) = beforg)
putation is performed and the greatest sets of variables beforg~) = false(3)
that satisfy the equations of the formalization are com- falsg(a) = false(y)

puted. Another difference with respect to Java is the true(a) = true(B) N true(y)

presence of structs. Regarding the correctness of the
analysis, we prove that, these sets of variables repre-Table 1: Definite assignment for boolean expressions
sent exactly.the sets of variables_ assigned on all pos-agim We will often refer to expressions and state-
sible execution paths and in particular they asaé ments using their labels. In order to precisely spec-
approximation ify all the cases of definite assignment, static func-
A series of bugs in the Mono C# compiler were de- tions before after, true, falseandvars are computed
tected during the attempt to build the formalization of at compile time. Note thatue andfalseare only for
the definite assignment analysis (see [Fru03b] for de- poolean expressions. These functions assign sets of
tails). This is the reason we refer here only to .NET variables to each expression or statememind have
and Rotor C# compilers. A bug in the assignment anal- the following meanings. beforga) contains the lo-
ysis of the Rotor C# compiler is mentioned also here. ca| variables definitely assigned before the evaluation
The rest of the paper is organized as follows. Sec- of o andafter(«) the variables definitely assigned af-
tion[J introduces the data flow equations which for- ter the evaluation ofv when « completes normally.
malize the C# definite assignment analysis while Sec- true(«) andfalsg«) consist of the variables definitely
tion[3 shows that there always exists a maximal fixed assigned after the evaluation®@fvhena evaluates to
point solution for the equations. In order to define true andfalse |, respectivelyvarga) contains the
the execution paths in a method body, the control flow local variables in the scope of whichis.
graph is introduced in Secti¢h 4. The paper concludes We skip those language constructs (dageach ,
in Section b with the proof of the correctness of the for , do, switch , ++, --) whose analysis is similar
analysis, Theorefn| 1. Due to space limitations we do to the one of the constructs dealt with explicitly in our
not make here the proofs in detail. We focus on illus- framework. Note that the definite assignment analy-
trating how we deal with the jump statements and their sis for variables of a struct type is a little bit different:

complications in the presence &hally blocks. such a local variable is considered definitely assigned

The full details, as well as further examples can be iff all its instance fields are definitely assigned. The

found in the full technical report [Fru03b]. structs are not considered here but their detailed anal-
ysis is included in the full technical repoirt [Fru03b].

2 THE DATA FLOW EQUATIONS A equation is given by initial conditions: for the

In this section, we formalize the rules of definite as- method bodymb of methwe havebeforémb) = 0.
signment analysis from the C# Specification [WII03, Actually we should consider the set of value and ref-
§5.3] by data flow equations. Since this analysis is erence parameters afethbut there is no worry that
an intraprocedural analysis, we restrict our formaliza- an access to any of them could cause troubles since
tion only to a given methodneth We use labels in whenmethis invoked they are supposed to be defi-
order to identify the expressions and the statements.nitely assigned [Wil03§5.1].

Labels are denoted by small Greek letters and are dis- For the other expressions and statementslnin-
played as superscripts, for example, as'@xpor in stead of explaining how the functions are computed,

>exp the data flow equations astm the data flow equations

loc after(a) = beforga) ; after(a)) = beforg)

lit after(a) = beforga) (Pexg) beforg 3) = beford o)
after(«) = after(3)

(loc = Be) beforg) = beforg)

after(a) = after(8) U {loc} {Prstmy ... Bnstm,} before3;) = beford)

after(a) = after(8,) N vars(a)

(locop= Pe) beforg3) = beforda) beforg3;+1) = after(8;)N

(Beo?"’el : 5eg)

after(«) = after(3)

beforg 3) = beford «)
before~) = true(B)
before§) = false(3)

after(«) = after(y) N after(d)

if (Pexp Ystmy
else Jstmy

Nngoto(Bi+1),i =1,n—1

beforg3) = beforda)
beforg~y) = true(s)
beforg§) = false(3)

after(a)) = after(vy) N after(d)

c.f after(cr) = beforga) while (Pexp) Vstm before3) = beforga)
beforg~y) = true(3)
ref Fexp beforg3) = beforga) after(c) = falsg(3) N break(«)
after(«) = after(3)
goto L; after(a)) = vars(a)
out Pexp before3) = beforg o)
after(or) = after(g) break; after(or) = vars(a)
em(Parg,... karg,) | beford;) = beforga) continue; after(e) = vars(a)

before3;11) = after(3;),

i=1,k—1 return; after(o) = vars(ca)
after(a) = after(5y) U
U OutParamgarg, , . . ., argy) return Bexp beforg3) = beford«)

after(a) = vars(a)

Table 2: Definite assignment for arbitrary expressions throw; after(or) = vars(a)

we simply state the equations they have to satisfy. Ta- throw Pexp
ble[] contains the equations for boolean expressions
(see [Eru03b] for details). In addition, we have for
all expressions in Tablg| 1 the equatiafter(a) =
true(a) N falsglar). For a boolean expressienwhich
is not an instance of one of the expressions in Teble 1,
we havetrue(«) = after(a) andfalsga) = after(a).
Table[2 lists the equations specific to arbitrary ex-
pressions wherkc stands for a local variable arid
for a literal. Note that following a method invoca-
tion, theout parameter©utParamgarg, , ..., arg;,)
are definitely assigned. In cases not stated in Ta-
bles[],2, if*expis an expression witldirect subex-
pressions’e,, ... P~ e,, then the left-to-right evalu-
ation scheme vyields thgeneral data flow equations
beforg3,) = beforda), beford3;,1) = after(s;), ments in the innermost to outermost order frem
i =1,n — 1 andafter(a) = after(5,). to B. Then we define the seloinFin(a, 3) of def-
The equations specific to every statement can beinitely assigned variables after the execution of all
found in TablelB. We assume thay statements thesefinally blocks: U, cfin(a,) after(y). Fur-
are eithetry-catch ortry-finally statements ther, we define the segjoto for a statemengi. For a
(see [Bor0B] for a justification of this assumption). labeled statemeritL : stm the setgota(3) is given
Special attention is paid to the labeled statement. Theby .y, . (beforga) U JoinFin(a, 3)) where we
set of variables definitely assigned before executing atake only thegoto statements in the scope 6f For
labeled statement consists of the variables definitely all the other statements, as well for a labeled state-
assigned both after the previous statement and beforement with nogoto statementsgoto(/3) is the univer-
each correspondingoto statement or after any of sal setvarg3). Now we are able to state the equation
the finally blocks of try-finally statements before3;;1) = after(3;) N gota(5;+1) from Tableg 3.
in which thegoto is embedded (if any). This can In case of a labeled statement, the equation formalizes
be formalized as follows. For two statementsand the above stated idea while for a non-labeled statement
3, we considerFin(«,) to be the list[yy, ...,] becomedeford 8;,1) = after(3;).

beforg 3) = beford)
after(a) = vars(«)

try Ablock
catch (Fp z1) 7tblock

beforg3) = beforda)
beforgv;) = beforda) U {z;}

i=1n
after(«) = after(8)N
NN, after(y;)

catch (Ep zrn) 7mblock,

try Sblock
finally Tblocky

beforg3) = beforda)
beforg~) = before«)
after(a) = after(8)U

U after(y)

Table 3: Definite assignment for statements

of finally blocks of all try-finally state-

The following example is a simplification of an ex-
ample from the C# Specification [WilD85.3.3.15]:

int i;

Stry {~goto L; }

finally i =3}

#L:Console.WriteLine(i);
The C# Specification states thatis definitely as-
signed befored , i.e. i € beforg3). Our equation
beforg3) = after(d) N gota(s) led us to the same
conclusion sincgoto(3) = beforda) U after(y) and
i € after(y) C after(d) (see the equations for a
try-finally in Table[3). Surprisingly, the exam-
ple is rejected by the C# compilers of .NET Frame-
work 1.0 and Rotor: we get the error thatis unas-
signed. This problem was fixed in .NET Framework
1.1 but still exists in Rotor.

The following explanation holds for the equation
after(a) = after(5,) N varga) corresponding to a
block of statements: the local variables which are def-

3 THE MAXIMAL FIXED POINT

The computation of the sets of definitely assigned
variables from the data flow equations described in
Section[2 is relatively straightforward. The key dif-
ference with respect to Java is tgeto statement
which brings more complexity to the analysis. Since
thegoto statement makes loops possible, the system
of data flow equations does not have always a unique
solution. Here is an example: if we consider a method
which takes no parameters and has the following body

{*int i = 1; AL 7goto L; }
then we have the following equatioafter(«) = {i },
beforg3) = after(a) N beford~y) and beforey)
beford3). After some simplification we find that
beforg3) = {i } Nbefore3) and therefore we get two
solutions forbeforg 3) (and also fobeforgy)): () and
{i }. This is the reason we perform a fixed point itera-
tion - which is not the case in Java. The set of variables
definitely assigned after is {i } and since3 does not
‘unassign’i , i is obviously assigned when we enter

initely assigned after the normal execution of the block 3. Consideration of the example and the definition of
are the variables which are definitely assigned after thedefinitely assignedhow that the most informative so-
execution of the last statement of the block. However, lution is {i } and therefore the solution we require is

the variables must still be in the scope of a declaration.

Thus, let us consider the example:

{Mint i = 1, }{intiji=2* fi; 1)
The variablei is not in after(a) since at the end
of «, i is not in the scope of a declaration. Thus
i ¢ beford3) and the block is rejected.

The idea for the equation which computgter(«)
of a while statementy, is similar with that for a
labeled statement. Similarly with the sgobto we
define the setreak«) to be the set of variables
definitely assigned before all correspondibiggak
statements (and possibly after appropriétally
blocks). This means that the sSeteak'«) is given
bY Noprea: (PefOr€3) U JoinFin(3,«)) where we
take only thebreak statements for whiclw is the
nearest enclosingvhile . If the while statement
does not have angreak statements, then we define
break'a)) = vars(«). With this definition oforeak),
we have the equation fafter(«) as stated in Tablg 3.

There is one more technical detail to be decided.
Suppose we want to state the equationdtier of a
jump statements. Let be the following statement:

ifl) {i = 1; }else °‘return;

Itis clear that, the variables definitely assigned after
are the variables definitely assigned after then

the maximal fixed poinMFP.

In the rest of this section we show that there al-
ways exists a maximal fixed point for our data flow
equations. In order to prove the existence, one needs
first to define the functiorf” which encapsulates the
equations. For the domain and codomain of this func-
tion, we need the se¥arsmeth of all local vari-
ables from the method bodyph We define the func-
tion F : D — D with D = P(Vargmeth)" such
that F(Xq,...,Xr) = (Y1,...,Yr), wherer is the
number of equations and the séfsare defined by
the data flow equations. For example in the case of
an if-then-else statement, if the equation for
the after set of this statement is theth data flow
equation, then the set of variablés is defined by
Y; = X; N X, wherej andk are the indices of the
equations for thafter sets of thehen and theelse
branch, respectively. Note that the se#ss are inter-
preted as constants.

We define now the relatior on D to be the point-
wise set inclusion relation: ifX;,...,Xr) € D and
(Xy,...,Xy) € D, then we have(Xy,..., Xr)C
(X,...,Xp)if X; C X, foralli = 1,r. We are
now able to prove the following result:

Lemmal (D, L) is afinite lattice.

Proof. D is finite since for a given method body we
have a finite number of equations and local variables

branch and since our equation takes the intersectionand on the other hand) is a lattice since it is a prod-

of after(y) andafter(¢), it is obvious that one has to
require the set-intersection identity fafter(¢). That
is why we adopt the convention thafter(«) is the
universal sevars«) for any jump statement.

uct of lattices:(P(Vars(meth), C) is aposetsince the
set inclusion is a partial order and for every two sets
X,Y € P(Vargmeth) there exists a lower bound
(X NY) and an upper bound{(U Y). O

The following result will help us conclude the exis- “exp edges
tence of the maximal fixed point. true (B(a), T(a))
Lemma 2 The functionF is monotonic oD, C). false (B(a), F(a))
1B B(), B(B)), (F(8), T
Proof. In ord_er to prove the monotonicity aff = . ET((%))J”(&))))(8), T ()}
(Fy,..., Fr), it suffices to remark that the compo-
nents F; are monotonic functions. This holds since (Pe0 ?7er = Pea) | (B(a), B(B)), (T(B), B(v)),
they consist only of set intersections and unions which EJTEE?))’?.EZ))))’ ((77—(&)’ 7;(2))))’
are monotonic (see the form of the equations). O (F(5), F(a)) ’ ’
The next result guarantees the existence of the max- (Pe1 &&Ve) (B(a),B(8)), (T(8), B(7)),
imal fixed point solution for our data flow equations: ggg;gz)g (T(), T(a)),
Lemma 3 The functionF” has a unique maximal fixed ’
point MFP € D. (Perll 7e2) (B(), B(B)), (T(8), T (a)),
(F(B), B(1): (T(7), T (),
(F(v), F(e)

Proof. (D, C) is a finite lattice (Lemmp]1) and there-

fore a complete lattice. But in a complete lattice, every

monotonic function has a unique maximal fixed point ~ Table 4: Control flow for boolean expressions
(known also ashe greatest fixed poiht In our case,

F is monotonic (Lemm&]2) and the maximal fixed _€xP edges
point MFP is given by, F*)(1p). Herelp, is the loc (B(e), Ala))
r-tuple (Vargmeth, ..., Vargmeth), i.e. the top ele- lit (B(e), A(e))
ment of the latticeD. ad

(loc = Fe) (B(), B(B)), (A(B), A(a))
From now on, for an expression or statemente de-
note by MFR(«), MFP, (a), MFP, () and MFP; (a) (loc op= ") (B(e). B(8)). (A(B). Ale))
the components dIFP corresponding tdoeford a), (Beg? ey : %es) (B(a), B(B)), (T(B),B(7))
after(«), true(«) andfalsga), respectively. (F(8), B(8)), (A7), A(a)),

(A(3), A(e))
4 THE CONTROL FLOW GRAPH
_ _ c.f (B(a), A(a))
The main result we want to prove is that, for an ar-

bitrary expression or statement, the sets of local vari- ref Sexp (B(a), B(B)), (A(B), A())
ablesMFP;, MFP,, (andMFP;, MFP; for boolean ex- 5
pressions) correspond indeed to setslefinitely as- out “exp (B(@), B(B)), (A(B), Ale))

signedvaria_lbles, ie. _/ariables which are ass_igned ON com(Prarg,,...,Prarg,) | (B(a),B(51)), (ABy), A(Q)),
every possible execution path to the appropriate point. (A(B:), B(Biz1)),i =1,k — 1
The considered paths are based on the control flow
graph. The nodes of the graph are actually points as-
sociated with every expression and statement. We sup-
pose that every expression or statemeig character- which connect the boolean points@to the end point

Table 5: Control flow for arbitrary expressions

ized by anentry point B(«) and anend point A(«). of a. These edges are necessary for the control transfer
Beside these two points, a boolean expressidms in cases when it does not matter whetheevaluates
two more points: &ruepoint7 («) (used wheny eval- totrue orfalse . For example, if5 is the method
uates tatrue) and afalsepoint F(«) (used whenxy invocationc.m(true) anda is the argumentrue ,

evaluates tdalse). The edges of the graph are given then the control is transferred from the end point of the
by the control transferdefined in the C# Specifica- last argument - that isl(«) - to the end point of the
tion [Wil03, §8]. We show in Tablels|4 arjd 5 the edges method invocation - that isl(3). But since in Tablg}4
specific to each boolean and arbitrary expression, re-we have no edge leading 14(«), we need to define
spectively. If the expressiamis not an instance of one also the supplementary edf&(«), A(«a)).
expression in these tables (e.gxp | exp,) and has For a boolean expressiom which is not an in-
the direct subexpressions,, . .., 3,, then the left-to- stance of any expression from Taple 4, we add to the
right evaluation scheme adds to the flow graph also thegraph the edge6A(«a), 7 («)), (A(«w), F(a)). They
following edges: (B(«a), B(51)).,(A(5n), A(a)) and are needed if control is transferred from a boolean ex-
(A(B:), B(Bix1)),i=1,n— 1. pression to different points depending on whether
For each boolean expressionin Table[4, we have evaluates tdrue orfalse . For example, ifx is of
supplementary edges(7 (), A(«@)), (F(«a), A(a)) the formexp | exp, and occurs if (!(exp| exp,)) ,

then the control is transferred frofi(a) to 7(5) “stm edges

(if o evaluates tdalse) or from 7 («) to F(3) (if i (B(a), A(a))
a evaluates tdrue). The necessity of the edges (seyy) (B(a), B(8)), (A(B), A(a))
(A(e), T (o)), (A(a), F(x)) arises since, so far we
have defined foexp | exp, only edges tod(«). {Prstmy ... Prstm,} (B(@), B(B1)), (A(Bn), A(a)),
_ (A(Bi), B(Bit1)),i=1,n—1
Table[6 introduces the edges of the control flow
graph for each statement. Note that we assume that the if (Béexm sty (B(e), B(B)), (T (8), B(7)),
boolean constant expressions are replaceugy or else °stm (F(8), B(5)), (A7), A(e)),
: (A(9), A(a))
false in the abstract syntax tree. For example, we
consider thatrue||b is replaced bytrue in the while (Pexp) 7stm (B(a), B(8)), (T(B), B(7)),
following if statement: (F(8), A@)), (A(7), A(a))
“if C(ruelp) i =1 L: Pstm (B(a), B(B)), (A(8), A(a)
else "{intj=1i }
Although the new considered test (iteue) cannot goto L; ThroughFin, («,), where

BL: stmis the statement to

evaluate tdalse , we still add to the graph the edge which points

(F(6),B(v)) since anyway the false point tfue

is not reachable (see Tall¢ 4). In the presence of break; ThroughFin, (o, 3), where
finally blocks, the jump statemergsto , break f is the nearest enclosinhile
andcontinue bring more complexity to the graph. wrt o

Whenever such a jump statement exits one or more continue; ThroughFin, (a,), where
try blocks with associatedinally blocks, the 3 is the nearest enclosinghile
control is transferred first to théinally block wrt o

(if any) of the innermostry statement. Further, if
the control reaches the end point of tfieally

then it is transferred to the next (with respect to the retum Fexp (B(a), B(8))
innermost to outermost order of thy statements)

return; no edges

finally block and so on. If the control reaches throw; no edges

the end point of the ladinally block, then it is throw Pexg (B(), B(8))

transferred to the target of the jump statement. For 5

these control transfers we have special edges in our v "block (B(a), B(5)), (A(B), A(e))
graph. But one needs to take care to some detail: _CatCh (Bv 1) mblock) (B(a), B(3i)), (A(i), Ale),
these special edges cannot be used for paths other : i=1,n

than those which connect the jump statement with catch (En za) 7 block,

its target. In other v_vords, if a path uses such an try Bblock, (B(a), B3)), (B(a), B()),
edge, then necessarily the path contains the entry finaly 7block (A(B), B(v)) and(A(7), A(a))
point of the jump statement. For this reason, we conditioned byA(8)

say that an edge is conditionedby a pointi with
the meaning that can be used only in paths that
containi. If we do not make this restriction, then)
[B(mb)B(Oq)6(02)6(03)6(04)6(05).A(Oé5)B(Oé6)} B(OZ) and the Set-l—hroughFlrL(Oé,ﬁ) has the ngeS
would be a possible execution path to the labeled (B(a), B(71)), (A(yn), A(B)), (A(7i) B(yi1)), i =

statement in the following method body 1,n —1 all conditioned byB(a). If Fin(a, () is
empty, then the sethroughFin(a, 3) has only the

Table 6: Control flow for statements

O”‘[}g :;2 i{— 1)- edge(B(«), B(3)) while ThroughFin,(«, 5) refers to
oo b the edge5(a), A(9)).
} finally as {} Note that in Tabl¢ 6, fogoto and continue ,

the set of edge3hroughFin, is added to the graph,

since after executing tHaally blocks the control

is transferred to the entry point of the labeled statement

andwhile statement, respectively, while in case of

break the sefThroughFin, is considered, since at the
The following sets introduce the above described end, the control is transferred to the end point of the

edges. Ifa and g are two statements arfen(«, 3) while statement.

is the list[y1, . .., 7], then the seThroughFin (a, 3) There are two more remarks concerning the

consists of the edged3(«), B(11)), (A(vn), B(B)), statement. Since in &y block can anytime occur

(A(v),B(vix1)), ¢+ = 1,n—1 all conditioned by a reason for abruption (e.g. an exception), we should

@s|_:Console.WriteLine(i);
in the theoretical case when the evaluation cof
would throw an exception. But this does not match
the control transfer described in the C# Specification.

have edges from every point intey block to: ev- which loc is anout parameter or a&atch clause

ery associateatch block, everycatch of enclosing whose exception variable isc. We prove actually

try statements (if theatch clause matchesthetype more than the correctness. We show that the compo-
of the exception) and to every associditgally nents of the maximal fixed point are exactly (not only a
block (if nocatch clause matches the type of the ex- safe approximatiomf) the sets of variables for which
ception). We do not consider all these edges, sincethere is aninitialization on every path to the appro-
from the point of view of the definite assignment anal- priate point. To formalize this, we define the follow-
ysis which is in particular an ‘over all paths’ analysis, ing sets. Ifa is an arbitrary expression or statement,
it is equivalent to consider only one edge to the entry then AR («) and APR,(«) denote the sets of variables
points of thecatch andfinally blocks - from the in varg «) (the variables in the scope of whichis)

entry point of thetry block (see TablE]6). for which there exists an initialization on every path in
The next remark is concerning the end pait(i) path,(«) and inpath, («), respectively. For a boolean
of a try-finally statementy. The C# Specifica- expressiony, we have two more sets: ARy) and
tion states in §8.10] that.A(«) is reachable only if =~ APs(«a) are defined similarly as above, but with re-
both end points of théry block g and finally spect to paths ipath, (o) andpath; («), respectively.
block v are reachable. The only edge #(«) is The following lemma is proved by induction over

(A(7), A(e)) and we know that thénally block the abstract syntax tree, starting from the root of the
can be reached either through a jump or through a nor-method body. It claims that, the MFP sets of an expres-
mal completion of théry block. In case of ajump, if sion or statement, consist of variables in the scope
control reaches the end poidt(y) of thefinally of which « is (seel[Fru03b] for details).

then it is transferred further to the target of statement L emma 4 For every expression or statementwe
which generated the jump and not #(«). This haveMFP,(a) C vars«) andMFP,(a) C vars(a).
means that all paths td(«) contain also the end point Moreover, if« is a boolean expression, then we have
A(B) of thetry block._ That i_s_why we require that alsoMFP,(«) C vars(a) andMFP;(a) C varga).

the edge(A(v), A(«)) is conditionedby A(5) (se€ The correctness of the definite assignment analysis in

Table[6) - otherwise in the following examplel(a) C# is proved in the next theorem, which claims that
would be reachable in our graph (under the assump-ie analysis is aafe approximation

t|02thatBéa) 'S reac?hable_). Theorem 1 (safe approximatiof For every expres-
try {goto L; } finally Rt sion or statement, the following relations are true:
We define now the sets oflid paths to all points in \MFP, () C AP,(«) andMFP,(a) C AP, (a). More-
the method body. We will not consider all the paths in gyer, if o is a boolean expression, then we have
the graph but only thealid paths - that is the paths MFP, () C AP, (a) andMFP; (o) C APf(«).
for which the following is true: ifp uses aonditioned
edgethen it contains also the point which conditions Proof. We consider the following definitions. The set
the edge. Ifa is an expression or a statement, then APy («) is defined in the same way as /B), except
path, (o) andpath, (o) are the sets of all valid paths that we consider only the paths of length less or equal
from the entry point of the method bod3(mb) to the thann. Similarly, we define also the sets ARy),
entry point3(«) and to the end point(«) of «, re- AP} (a), AP} (a) (analogously, we have definitions
spectively. Moreover, it is a boolean expression, for the sets of pathgath™). According to these defini-
then path, (o) and path;(a) are the sets of all valid tions, the following set equalities hold for an arbitrary
paths fromB(mb) to the true point7 (o) and to the — a: APy(a) = (), APy (), APy () =), APy ()

false pointF(«) of a, respectively. and if o is a boolean expression, then AR) =
N, AP} (a) and AP (o) = (1, AP}(a). Therefore

5 THE CORRECTNESS OF THE to complete the proof, it suffices to show for every
ANALYSIS if « is an expression or statement, then MEP C

We prove that, when a C# compiler relies on the APy (a) and MFR,(a) C AP; () and in addition, if
setsMFP,, MFP,, MFP, andMFP; derived from the ~ a iS & boolean expression, Mi) < AP}(«) and
maximal fixed point of the equations in Sect[gn 2, the MFP¢(a) C AP}(a). This is done by induction on.
risk of accessing the value of an unassigned variable Basis of induction{B(mby)] is the only path of lengtt
does not exist. The correctness means that, if the anal{the entry point of the method body). There is no
ysis infers a variable as definitely assigned at a certaininitialization of any local variable on this path and
program point, then this variable will actually be as- therefore we have APmb) = § which satisfies
signed at that point during every execution of the pro- MFP,(mb) C AP;(mb) since from the equations
gram, i.e. on every path. A variablec is assigned =~ MFP,(mb) = (. From the definition of AP, we get
on a path if the path contains amitialization of loc: APl (mb) = vargmb) = () and from the equations
a simple assignment tioc, a method invocation for of a block, we derive also MERmb) C vargmb)

and implicitly MFP,(mb) € AP.L(mb). If a # mb
then AR (a) = APl(a) = varga) and AP (a) =
AP}(a) = varg«) (if a is a boolean expression) and
the basis of induction is complete (see Lenjra 4).

Induction step:we prove here only MFRS; 1) C
AP (B;11) for a labeled statemenB;;; in a
block (see Tabl¢]3). Leloc be a local variable in
MFP,(8;+1). If there are nggoto statements point-
ing to 3,11, then the proof is the same as fowaile
statement with no associatedntinue statements
(see [Fru03b]). If there argoto statements which
point to 3,11, we prove that there exists an initial-
ization of loc on every path ta3(5;+1) of length at
mostn + 1 that passes through goto statement
and possibly througfiinally blocks of enclosing
try statements. Lep be such a path containing a
goto statementw. The equations in Tablg] 3 im-
ply loc € goto(3;+1) and furtherloc € MFP,(«) U
JoinFin(a, B;11). If there are ndinally blocks in
Fin(a, Bi+1), thenJoinFin(a, 8;+1) = 0 and implic-
itly loc € MFP,(«). Using the induction hypothesis,
we obtainloc € APy («) and therefore should con-
tain at least one initialization dbc. If Fin(«, 8;4+1)

is non-empty, i.e.Fin = [y1,...,v], then from the
definition of the setloinFin(«, 8;+1), we getloc €
MFP,(0)UUJS_; MFP, (v;). The caséoc € MFP, ()
has been previously analyzed. If there ifrally

block v; such thatloc € MFP,(v;), then we get
loc € AP;(v;) from the induction hypothesis. And
since necessarily contains.A(v;), we are sure that
p has one initialization ofoc. Thus, we showed that
each path t&#(3;,1) of length at most. + 1, contains
an initialization ofloc, i.eloc € APZ“(@-H). a

We can prove actually more: tidFP solution is not
only an approximation oAP but it is perfect (Theo-
rem[3). For this, we need also the following theorem
which states that th®IFP solution contains the local
variables which are initialized oveail possible paths

Theorem 2 For every expression or statememnt the

following relations are true AP, («) C MFP,(«) and

AP, (o) € MFP,(«). Moreover, ifa is a boolean ex-
pression, then we have aléd®;(a) € MFP;(«) and

APf(O[) - MFPf(a).

Proof. Tarski’s fixed point theorem states thdEP is

the lowest upper bound (with respectd of the set
Ext(F) = {X € D | X C F(X)}. Itsuffices to
show that ther-tuple consisting of thé\P sets is an
element ofExt(F’) sinceMFP is in particular an upper
bound of this set. Sincg is the pointwise subset rela-
tion, the idea is to prove, for the data flow equations in
Tabled 1[P[B, the left-to-right subset relations where
instead of the setsefore after, true andfalsewe have
the setsAP,, AP, AP, andAP;, respectively. For the
complete proof we refer the reader to [Fru03b]. O

The following result is then an obvious consequence
of TheorenilL and Theore 2:

Theorem 3 The maximal fixed point solution of the
data flow equations in Tablgg 1.R,3 represents the sets
of local variables which are assigned over all possible
execution paths.

6 CONCLUSION

In this paper, we have formalized the definite as-
signment analysis of C# by data flow equations. Since
the equations do not always have a unique solution, we
defined the outcome of the analysis as the solution of
a fixed point iteration. We proved that there exists al-
ways a maximal fixed point solution MFP. We showed
the correctness of the analysis, i.e. MFP saée ap-
proximationof the sets of variables assigned over all
possible paths. This is a key property for the type
safety of C#. This paper is part of a research project fo-
cusing on formalizing and verifying important aspects
of C#. So far, we have an ASM model for the opera-
tional semantics of C# in [Bor(03]. During the attempts
to build this model, there were discovered(in [Fru03a]
a few discrepancies between the C# Specification and
different implementations of C#.

References

[Bor03] E. Borger, N. G. Fruja, V. Gervasi, R. F.
Stark. A High—Level Modular Definition of the
Semantics of C#. Accepted for publication in jour-
nal Theoretical Computer Science, 2003

[Fru03a] N. G. Fruja. Specification and Implementa-
tion Problems for C#. In B. Thalheim and W. Zim-
mermann, editors, Abstract State Machines 2004,
LNCS. Springer, 2004.

[Fru03b] N. G. Fruja. The correctness of the definite
assignment analysis in C#. Technical Report, ETH
Zurich. http://www.inf.ethz.ch/"fruja

[Gou02] J. Gough. Compiling for the .NET. Common
Language Runtime (CLR). Prentice Hall, 2002.

[Gru00] D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Lan-
gendoen. Modern Compiler Design. Wiley, 2000

[Nie99] F. Nielson, H.R. Nielson, C. Hankin. Princi-
ples of Program Analysis. Springer—Verlag, 1999.

[Sta0l1] R. F. Sirk, J. Schmid, E. Brger. Java and
the Java Virtual Machine—Definition, Verification,
Validation. Springer—Verlag, 2001.

[Sch03] N. Schirmer. Java Definite Assignment in Is-
abelle/HOL. ECOOP Workshop on Formal Tech-
nigues for Java—like Programs, 2003.

[Wil03] S. Wiltamuth and A. Hejlsberg. C# Language
Specification. MSDN, 2003

http://www.inf.ethz.ch/~fruja

	INTRODUCTION
	THE DATA FLOW EQUATIONS
	THE MAXIMAL FIXED POINT
	THE CONTROL FLOW GRAPH
	THE CORRECTNESS OF THE ANALYSIS
	CONCLUSION

