
���������	�
��

��������	�
	�

8QLYHUVLW\ RI :HVW %RKHPLD
8QLYHU]LWQt �� %2; ���

��� �� 3O]H�� &]HFK 5HSXEOLF

�������������

��������
	
�

8QLYHUVLW\ RI :HVW %RKHPLD
8QLYHU]LWQt �� %2; ���

��� �� 3O]H�� &]HFK 5HSXEOLF

���������������

ABSTRACT

Several techniques of implementing DirectX functionality into C# application will be presented. Their common
attribute is an idea of component object model (COM) because DirectX is based on component technology. This
paper will be focused on use of DirectX graphical capabilities within the C# code of the Microsoft .NET
Framework. Three main techniques will be described. First, COM interoperability which allows us to decide what
specific functionality to use. There will be also mentioned some basic principles like memory management and
garbage collector (GC) and some approaches based on wrapper classes. Second, Visual Basic type library that
includes all the functionality, and third, the complete solution known as DirectX 9.0. Each technique will be
supported with a code snippet and with several reasons stating its suitability. Nowadays, the need for security can
be more important than for the efficiency. This also gives a right answer for the question of how good is solution
provided by use of DirectX and .NET Framework.

Keywords
Computer graphics, DirectX, Direct3D, DirectDraw, C#, .NET Framework, COM, implementation, interface,
wrapper class, security, efficiency, Microsoft.

��� �����	
������
The purpose of this paper is to provide a basic idea
about implementation of DirectX graphical interface
in the code of C# language in the .NET Framework.
A goal is to have such an environment where the code
for C# looks similar to the C++ one. This work is a
part of project ROTOR, more detailed information is
placed at [Her03]. DirectX version 8.1 and above is
assumed, if not said explicitly. Complete information
on DirectX and .NET Framework can be found in

electronic resources [MSDN02].

��������������
The .NET Framework Environment where the C#
code is executed. It uses Garbage Collector (GC) for
system memory management, which automates such
tasks as a memory allocation, release, fragmentation,
etc. No pointers are allowed here (managed code) but
if necessary, the unmanaged code can be entered. In
this mode pointers are allowed but GC doesn't work -
it is a developer responsibility to manage the
memory. Therefore the managed code should be used
but there is a problem: DirectX is using pointer
parameters to pass data into its functions. How to
face this pointer-problem will be shown later in the
paragraph “COM Benefits”.

�������������	������	��
DirectX was originally prepared for game and
multimedia developers and it is a set of application
interfaces (APIs). It provides a low-level access to
hardware functionality of available peripheral
hardware devices like a graphical adapter, sound card
and so on. Very important fact is that all this
technology is based on a Component Object Model

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1st Int. Workshop on C# and .NET Technologies on
Algorithms, Computer Graphics, Visualization, Computer
Vision and Distributed Computing

February 6-8, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press
ISBN 80-903100-3-6

Project supported by the Ministry of Education of The Czech Republic - Project MSM 235200005 and Microsoft Research Ltd. (UK).

(COM). In other words, DirectX is a set of COM
components, each providing some interfaces which
can be divided into subsets with a similar
functionality. One of the subsets does all about the
graphics and is called DirectX Graphics. It combines
previous 3D and 2D graphic components (Direct3D
and DirectDraw) into one and the name Direct3D
remained for both. (Now, the entire planar graphic
must be done via 3D component.)

�������� ����
The runtime of .NET Framework has some features
like memory management based on garbage collector
(GC). It automatically controls the lifetime of existing
objects, their location in a memory to prevent
fragmentation and removes them from memory since
there is no reference to them. A code written for this
managed environment can be called safe code and no
pointers are allowed. Having a reference to an object,
GC can shift the object in memory and the reference
is still referencing it. But once the pointer is
initialized to some address, GC must keep away from
the object lying there to avoid its possible shifting
and invalidating the pointer.
To switch to this unmanaged
mode, where pointers are used,
the unsafe code has to be used.

To pass data into DirectX
methods, pointers should be
necessary as well as the
unmanaged mode. But the
managed one is the preferred
one.

Wrapping task can be defined
as a process when migrating
some functionality from
foreign development
environment into ours without
changes at the origin source
code. In other words, it can be
also named as porting as in
[Han03]. To create a port of some dynamically linked
library (.dll) means to somehow provide headers of
all necessary functions and to do all the necessary
steps for the .dll import [Han03]. But having the
original functionality in a COM, it is simple to let the
.NET Framework runtime to do everything
automatically. The runtime has methods for handling
components written in an unmanaged

The advantage that DirectX is a COM based is highly
welcome. The .NET Framework runtime environment
can save a lot of work to developer in a wrapping
task because of its runtime callable wrappers feature.
The functionality of GC can be used although the

pointers are needed as well. Each time the method of
a COM is called, the runtime callable wrapper
(RCW) is automatically created for accessing the
unmanaged code of that COM. It is created every
time that the call occurs. This could seem to be
unacceptably high overhead cost, but, if considering
the fact that for e.g. rendering 10 or 10 billions facets
takes only one call and one RCW build, it is feasible.

All that developer has to do is a COM interfaces
registration. Therefore the problem of wrapping is not
as difficult as in [Han03] and it is not necessary to
deal with some specific problems. In the following
paragraphs, important procedures of how to do it will
be described.

!�� �������"#$$�$�
This is the first general approach that uses the COM
interoperability. Essentials about COM
interoperability can be found in [Vis03]. At first, a
list of all component interfaces is taken and for each
interface is done registration as in the Figure 1.
example for an IDirect3D.

Immediately after this declaration, the COM object is
ready for initialization and use.

Instantiating an IDirect3D instance causes a
corresponding COM instantiation and all its methods
are called via the reference iDirect3D.
The list of necessary GUIDs (Globally Unique
IDentifiers) can be retrieved from header files of
DirectX SDK, downloadable from [MSDN02].

This is the most general way of obtaining DirectX
functionality in the sense that only necessary parts of
the interface are included.

Figure 1: COM registration.

Figure 2: Sample code snippet demonstrating DX7 surface initialization.

Another significant reason for this strategy can be
higher level of freedom while mixing components
from several versions. However, it is not possible to
combine different versions of one component, but it
is possible to mix different components, each one
from only one version. If, for some reason, a
developer needs graphical capabilities of Direct3D
version 9.0 and sound from DirectX 6.0, the
instructions given above will help him to solve this
task efficiently.

��� �%&��"�'�#�%�	()'"�'�
Compared to previous approach, this solution gives a
complete functionality of DirectX by a single
command. All to do here is to add a reference to
Visual Basic DirectX Type Library named
DxVBLib.dll and since it is done, the whole
functionality is available through instantiating the
needed objects and their references.

In the following example it is shown on creating a
Direct3D8 object that supports enumeration and
allows the creation of Direct3DDevice8 objects
(Figure 3.).

Until the version DirectX 9.0 was released, this was
the simplest method how to implement DirectX in
.NET Framework.

In the next example (Figure 2.) is shown similar use
of a type library.

*�� 	�����(+�,�-�#�#.�	/�
In this last section the following significant graphic
namespaces will be shortly described:
Microsoft . DirectX, Microsoft . DirectX.Direct3D
and Microsoft.DirectX.DirectDraw.

The namespace Microsoft.DirectX provides utility
operations and data storage for DirectX application
programming, including exception handling, simple
helper methods, and structures used for matrix,

clipping plane, quaternion, vector manipulation and
so forth. Microsoft.DirectX.Direct3D enables to
manipulate visual models of 3-D objects and take

Image 1: Tested sample Lighting.

advantage of hardware acceleration and
Microsoft.DirectX.DirectDraw that provides
functionality across display memory, the hardware

blitter, hardware overlay support, and flipping
surface support. It seems that small
inconsistency appeared because Direct
Graphics 8.1 should combine both D3D and
DDraw into one, but in the version 9.0 it is
formally divided again.

This is the best solution, which provides a
complete DirectX functionality in the style of
.NET Framework. Code snippets are attached
to illustrate the air of object oriented
programming with DirectX 9.0 (Figure 4. and
5.).

0�� ���&#��$���
To provide some information about speed
performance, the sample codes of
DirectX8.1b in C++ had been compared to

DirectX9.0 C# version. The machine configuration
was as follows: two Intel Pentium III / 500MHz, 1GB
ECC SDRAM, Diamond Fire GL1 Video Accelerator
PCI, OS Windows2000, 400x300x32 window mode
(See Image 1.).

The method of measurement was done via
determining the number of rendered frames per
second and from the average for each test was
calculated the time in milliseconds with precision
provided by number of decimal digits.

See results in Table 1.

Figure 3: snippet for type library use.

C# C++ Sample type

27,9 23,2 billboarding

10,3 9,4 clipping

15,6 14,0 vertex shader

9,1 6,6 enhanced mesh

17,0 23,4 lights

7,2 6,3 vertex shader

Table 1: Time [ms] to render the tested scene.

Plotted to Graph 1, it is obvious that some overhead
of C# is acceptable with less except of the
billboarding and enhanced mesh tests, where the
results points to better C++ compiler.

1�� ����"
$����
Three methods of DirectX implementation in C#
were introduced and described. Until a version 9.0
has been released in December, the only suitable way
for C# developers was the second method based on
type library import. Since it has been released, the
only recommended way is the third one, DirectX9.0
(managed version). With C# and this version can be
reached all features of managed runtime .NET

Framework environment and OOP even with
reasonable overhead compared to C++.

During the tests even some MS SDK samples
crashed, some presented error exception and quitted
immediately, some deadlocked the machine without
any notice and some of them rebooted the machine
automatically, so the data were lost several times and
it had to be backed up every minute. Maybe there was
a problem with SDK installation for Visual C++,
which was not installed correctly. Finally, about 60%
of samples worked well and it was surprising that
DirectX in C# was faster at the lighting test.

2��
�
������3�
In the future work, authors of this paper would like to
answer the following questions: Was the incorrect
installation of MS SDK for Visual C++ the reason
why several crashes occurred?

Compared to OpenGL, there exist a lot of online
books for academic staff, which are primarily
targeted to computer graphics science, and they use a
rich OpenGL sample source code support, like e.g.
OpenGL Super Bible. Tutorials provided by
Microsoft Corp. are targeted more for game
developers, thus we will try to find such a resources
as mentioned above.

Graph 1: 1: Time [ms] to render scene. Lower means better.

Figure 4: DirectX9.0.

Figure 5: DirectX9.0.

4�� ��������$�

>&6&��@ &� &RUQHU�

KWWS���ZZZ�F�VKDUSFRUQHU�FRP�'LUHFW[�DVS

>+DQ��@ +DQiN� ,��)UDQN� 0�� 6NDOD� 9�� 2SHQ*/ DQG

97. LQWHUIDFH IRU �1(7� $FFHSWHG IRU SXEOLFDWLRQ

LQ &� DQG �1(7 7HFKQRORJLHV
���� SURFHHGLQJV�

81,21 $JHQF\� 6FLHQFH 3UHVV� 3O]H�� �����

>0LF��@0LFURVRIW &20 7HFKQRORJLHV�

KWWS���ZZZ�PLFURVRIW�FRP�FRP�

>06'1��@06'1 �0LFURVRIW 'HYHORSHU 1HWZRUN�

/LEUDU\�

KWWS���PVGQ�PLFURVRIW�FRP�OLEUDU\�

>+HU��@ &HQWUH RI &RPSXWHU *UDSKLFV DQG 'DWD

9LVXDOLVDWLRQ�

KWWS���KHUDNOHV�]FX�F]�UHVHDUFK�SKS

>9LV��@ 9LVXDO 6WXGLR �1(7 'RFXPHQWDWLRQ�

KWWS���PVGQ�PLFURVRIW�FRP�OLEUDU\�GHIDXOW�DVS"XUO
 �OLEUDU\�HQ�XV�YVLQWUR��KWPO�YVVWDUWSDJH�DVS

