
Replicated Distributed Shared Memory For The .NET
Framework

Thomas Seidmann
Department of Computer Science and Engineering

Faculty of Electrical Engineering and Information Technology
Slovak University of Technology

seidmann@dcs.elf.stuba.sk ∗

Abstract

This paper introduces a software-only object based
Distributed Shared Memory (DSM) implementation
designed as an extension to the Microsoft .NET frame-
work. This implementation is facilitated by a previ-
ously described memory coherence protocol, which
uses group communication by multicasting on IP net-
works. The described DSM implementation allows the
construction of distributed applications with a simple
programming model.

Keywords: Object-based distributed shared mem-
ory, object replication, causal consistency, IP multi-
casting, .NET Framework, .NET Remoting.

1 Introduction

The .NET Framework represents a platform for
building applications by providing an infrastructure
commonly described as ‘middleware’. It consists
of several layers, the lower-most being a virtual
machine called Common Language Runtime (CLR)
with a Just-In-Time (JIT) compiler for Intermedi-
ate Language (IL) code. Applications running on
top of the CLR, called Managed Applications, use
the .NET Framework Class Library (FCL).This
approach is not unlike the Java Virtual Machine

ISBN 80−903100−3−6

this work for personal or class use is granted without
fee provided that copies are not made or distibuted for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy

to lists, requires prior specific premission and/or a fee.

Permission to make digital or hard copies of all part of

otherwise, or republish, to post on servers or to redistribute

1st Int.Workshop on C# and .NET Technologies on
Algorithms, Computer Graphics, Visualization, Computer
Vision and Distributed Computing

February 6−8, 2003, Plzen, Czech Republic.
Copyright UNION Agency − Science Press

∗Postal address: Baumacher 12, 6244 Nebikon, Switzerland, Tel.
+41 62 7563203

(JVM) one, although there are several differences,
the main one being the availability of the framework
exclusively on Windows platforms. However a subset
of the CLR, the Shared Source Common Languange
Infrastructure (SSCLI), is available for the FreeBSD,
MacOS X and Windows operating systems, which
can be (in fact has been) ported to other systems as
well. Another key difference is also the availability
of multiple programming languages (compilers being
delivered by Microsoft and third parties), all sharing
a Common Type System (CTS) and the same set of
class libraries. Microsoft delivers among others a
compiler for C#, a Java-inspired C-spin-off.

For the purpose of building distributed applica-
tions the CLR can be viewed as a component acti-
vation platform, facilitating the deployment of soft-
ware components in both local and remote locations.
The class library provides several means of commu-
nication, ranging from lower-level socket-layer pro-
gramming to high-level .NET Remoting and Web
Services, the latter two forming a real-life middle-
ware for distributed objects. From the communica-
tion point of view are Web Services a subset of .NET
Remoting, limiting to RPC-style of invocation via an
XML-centric protocol Simple Object Activation Pro-
tocol (SOAP). .NET Remoting provides more univer-
sal communication means than Web Services; how-
ever, most of the documented usage of it still goes the
direction of RPC-style client/server relationship.

The .NET Framework thus leaves a developer, who
wants to create distributed applications, solely with re-
mote access to objects shared between application in-
stances. Besides the data (attributes) contained in the
object instance also its functionality (methods) is ac-
cessed remotely. The scenario, where several .NET
peer applications collaborate on a set of shared objects,
which would be replicated among the application in-
stances in order to provide local access to both data
and functionality is not directly supported.

Our aim was to develop a distributed shared objects
runtime based on the .NET Framework that provide



distributed applications with replicated shared objects,
while still utilizing existing facilities of .NET Remot-
ing. Contrary to the notion of remote objects being
provided by a server, we wanted to adapt .NET Re-
moting to handle objectsshared amongpeer .NET
applications. Instead of remote method invocation the
focus is on replication of shared objects and keeping
the replica coherent according to an agreed consis-
tency model.

2 Architectural Elements of .NET
Remoting

The basic building blocks of .NET Remoting are run-
time serialization and channel services.

Runtime serialization is used for transporting ob-
ject instances across communication channels; it is
customizable by the use of Serialization Formatters,
which encode and decode messages between .NET
applications. Two of them are present in the .NET
Framework: the Binary and the SOAP Serialization
Formatters, the latter utilizing XML.

Channel services provide the actual transport mech-
anism (channels) for messages between .NET appli-
cations. Serialization Formatters can be plugged into
channels. The .NET Framework supplies the HTTP
and TCP channels. By default the HTTP channel uses
SOAP, whereas the TCP channel uses the Binary Seri-
alization Formatter.

The programming model of .NET Remoting em-
ploys a singleton object named Activator for activat-
ing remote objects. The terminology of .NET Remot-
ing heavily leans toward the client/server paradigm
by classifying remote objects as server-activated and
client-activated. In both cases the focus is on method
invocation of remote objects, facilitated through two
kinds of proxy classes provided by the .NET Frame-
work, one of which can be extended (for details refer
to Section 4). The configuration of .NET Remoting ap-
plications can be done internally in the program code
or externally in XML-formatted files.

3 Consistency Model and Coher-
ence Protocol

We have previously developed a coherence protocol,
which provides causally consistent Distributed Shared
Memory (DSM) and utilizes group communication in
the form of IP multicasting [1]1.

The protocol is basically a Multiple Reader Multi-
ple Writer (MRMW) protocol with write-update us-
ing multicast transfer ofdiffs between the involved

1The paper is available at http://www.cdot.ch/thomas/

processes. The causality relationship between shared
memory operations is achieved by means ofvector
logical clocks [2], which represent the basic build-
ing block in the algorithm. Every process maintains
for every shared object a vector logical clock value -
timestamp - consisting of:

• The process’s own logical (Lamport, monotonic)
clock value of the last write operation upon the
object.

• Other known processes’ logical timestamps of
write operations upon the object.

This vector logical timestamp is transmitted within ev-
ery message that concerns this particular object. The
vector logical timestamp values are represented as an
associative array consisting of pairs(PID, value),
wherePID denotes the process’ global ID composed
of the node’s global ID (in the case its IP address) con-
catenated with the node local PID.

Every shared object in the DSM must be uniquely
identified. The current implementation uses a Globally
Unique Identifier (GUID) for this purpose, which must
be agreed upon by all participating processes.

This coherence protocol was chosen as the founda-
tion of the envisioned distributed shared object frame-
work for .NET. Due to the nature of the protocol,
namely no special provisions by the communication
subnetwork except of the availability of IPv4 or IPv6
(unreliable) multicast, deployment within the world-
wide Internet is technically possible.

4 DSM Implementation for the
.NET Framework

4.1 Implementation Overview

To implement the coherence protocol described in
Section 3 the availability of three mechanisms is re-
quired:

1. Mechanism for obtaining the state of an object
suitable for transporting either in its entirety or as
adiff against a previous state.

2. Registration of every change of a shared object
by a local process in a database.

3. Listening to changes of an object made by a re-
mote process and to object state queries.

The first mechanism is delivered by runtime seri-
alization in .NET. Due to accessibility of type infor-
mation via reflection in the .NET Framework serial-
izability of objects is achieved easily by attaching the
[serializable] 2 attribute to the class definition.

2Syntax in C#



The Binary Serialization Formatter delivers content
suitable both for transport and for calculation of ob-
ject state diffs.

The second mechanism is achieved byIntercep-
tion, a built-in feature of the .NET Framework, which
provides means to intercept every call to an object’s
method and perform some additional action. Intercep-
tion is implemented in the form of two proxy classes:
TransparentProxyand RealProxy, the latter of them
being extendible by derivation. The DSM implemen-
tation does this by providing the classDSMProxy. On
entry to every method call on the shared object the
object diff storage is checked for updates from other
nodes. On exit from the method call the diff is cal-
culated and in case it is non-zero, an entry consisting
of the diff and the vector logical clock value is added
to the storage of object diffs and multicast to all other
nodes.

The third mechanism is provided by a coherence
thread which accesses the object diff storage and the
shared object itself via its DSMProxy instance to per-
form state changes according to remote write update
messages or provide its state to other processes, re-
spectively. The coherence thread is also responsible
for sending out object updates from the object diff stor-
age and requesting other nodes for sending of object
diffs upon the request of DSMProxy (for example af-
ter the creation of a new shared object at the node).

Figure 1 illustrates the main players in the DSM im-
plementation on one particular node. When an appli-
cation instance creates a shared object (by using the
new operator), the .NET Runtime uses Reflection to
get the object’s type information. After it detects that
the object must be created in another AppDomain, it
creates a TransparentProxy instance in the calling Ap-
pDomain instead. TransparentProxy has exactly the
same interface as the shared object, but the implemen-
tation of all methods and properties result in calling
theInvoke method of the specified RealProxy descen-
dant, DSMProxy. A request for object diffs is sent out
to other nodes via the coherence thread.

object diff +

creates new

Peer Application Shared Object

Is a

uses

RealProxy

call

AppDomain boundary

create by

Reflection

serialization

marshal callInvoke()

Network

Coherence thread

vector logical clock
storage

TransparentProxy

Is a

ContextBoundObject

DSMProxy

Diff object

Figure 1: DSM implementation overview

4.2 The Multicast Channel Service

Since both built-in channels of the .NET Framework
are TCP-based, none of them is multicast enabled. To
implement the coherence protocol for shared objects a
multicast-able channel is needed. A class becomes a
.NET Remoting channel by implementing theIChan-
nel interface. The channel implementation is con-
tained in the classUdpChannel, and as the name in-
dicates, it uses UDP as its transport protocol. This
channel is usable not only for the presented scenario,
but also anywhere reliable and order-guaranteed com-
munication (which provides TCP) is not needed or is
implemented elsewhere (like in the application layer).

4.3 Programming Model for Distributed
Shared Objects in .NET Applications

For a class to be usable as shared object type in the pre-
sented DSM, the following three requirements must be
met:

1. The class must be descendant ofContextBound-
Object.

2. The class must be serializable.

3. The class must be annotated with theProxyAt-
tribute attribute specifyingDSMProxy as the at-
tribute value.

An example written in C# would be:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Proxies;
using McastDSM;

[Proxy(DSMProxy)]
[serializable]
public class MySharedObject :

ContextBoundObject, ISharedObject
{

private Guid myGuid = null;
public Guid GuidProp
{

get {return myGuid;}
set {myGuid = value;}

}
public int myMethod(string)
{

//... do something with string
return 0;

}
}

The following code segment is an example of a
shared object instantiation:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using McastDSM;
using McastDSM.Channels;

public class App
{

public static int Main(string[] args)
{



ChannelServices.RegisterChannel (
new UdpChannel());

// Create an instance of a
// MySharedObject class
MySharedObject myObj = new MySharedObject;
myObj.GuidProp =

"478280B9-874E-4795-B3C7-05CFDD96CD2C";
myObj.myMethod("Hello World");
return 0;

}
}

Additionally, on assembly level, the value of the
DSMPort has to be specified, containing the multicast
address and port to be used by the application:

[assembly: DSMPort("udp://[ff05::1234:5678]:8888")]

In this example a IPv6 site-local, transient multicast
address with group ID 12345678 (hexadecimal) and
port 8888 are used.

5 Related Work

The use of group communication is not a new idea,
there are already DSM implementations which make
use of multicast.

Speight and Bennett reported in [3] about the use
of multicasting in the Brazos project. DSM in Bra-
zos is concentrated on scope consistency, that means
a memory consistency model using synchronization
variables; our approach is to provide causal consis-
tent DSM. Moreover Brazos relies implicitly on reli-
able multicast, whereas we do not.

The Orca distributed system [4] uses totally ordered
group communication for a MRMW write-update co-
herence protocol. The protocol employs a centralized
component - the sequencer - to achieve totally ordered
multicast on top of the potentially unreliable IP mul-
ticast. In our design this centralized component is
avoided.

The OpenMP implementation based on the Tread-
Marks system has been extended to use multicasting
by Honghui Lu [5] in some specific situations, namely
during the access to shared data in the (replicated) se-
quential part of a parallel program. In our system mul-
ticasting is the main means of communication between
processes.

6 Conclusions and Future Work

The implementation of the presented runtime has been
first tested on local area networks with two well-
known scientific applications, Barnes Hut (from the
SPLASH suite) and FFT-3D, later with two decen-
tralized financial domain applications. The most im-
portant parts of the testing process were, besides the

functionality, the amount of network traffic and re-
covery from lost multicast messages. Loss of mes-
sages was simulated with the help of FreeBSD-based
routers with traffic shaping abilities. Next the testing
has been successfully performed between two 6bone
(IPv6 testbed on the Internet) sites, which is a more
realistic environment for envisioned large-scale dis-
tributed applications.

The presented runtime has successfully proven its
functionality. All components of it are written in
the C# language and consist only of managed (that
means IL) code, since all needed base functionality
(like socket-level routines etc.) is available in the .NET
class libraries and thus no transition to native code or
direct access to the operating system is needed. It pro-
vides an agreeable programming model and a consis-
tency model suitable for most studied applications at
reasonable performance with a small communication
overhead thanks to group communication.

The use of other serialization formatters is being
considered, namely the Soap Serialization Formatter.
It might provide better means ofdiff calculation. In
conjunction with the XMill, an XML aware compres-
sion technique, the size of messages might be reduced
even compared to compressed binary messages [6].

References

[1] Thomas Seidmann. Multicast-based runtime
system for highly efficient causally consistent
software-only DSM. InLecture Notes in Com-
puter Science 1586, IPPS/SDSP’99 Workshops,
April 1999.

[2] Randy Chow and Theodore Johnson.Distributed
Operating Systems & Algorithms. Addison Wes-
ley Longman, Inc., 1997.

[3] W. E. Speight and J. K. Bennett. Using multi-
cast and multithreading to reduce communication
in software dsm systems. InProc. of the 4th IEEE
Symp. on High-Performance Computer Architec-
ture (HPCA-4), pages 312–323, February 1998.

[4] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman,
Ceriel Jacobs, Koen Langendoen, Tim Ruehl, and
M. Frans Kaashoek. Performance evaluation of
the orca shared object system.ACM Trans. on
Computer Systems, February 1998.

[5] Honghui Lu. OpenMP on Networks of Worksta-
tions. PhD thesis, Rice University, 2001.

[6] A comparison of alternative encod-
ing mechanisms for web services.
http://dblab.usc.edu/microsoft/.


