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Today, a great opportunity is becoming available for content creators interested in near cinematic quality 
interactive 3D rendering.  With the recent introduction of floating point calculations in graphics hardware, the 
functionality required to approach the capabilities of Pixar’s Renderman shading language in real time are just 
now starting to become achievable.  The mechanism being used to attain this goal is multi-pass rendering 
techniques enabled through compilation technology.  A key player in this arena is Microsoft with their DirectX 
9.0 API, which for the first time introduces many new real time capabilities which were once exclusively in the 
realm of high-end offline software renderers.   
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“Delivery is not the problem, movies are not 
interactive today.  Generating a high quality feature 
film in real time is not doable in the next 2-3 films.” 

Dana Batali 

Pixar Animation Studios 

1. INTRODUCTION 
This paper will begin by taking the perspective of a 
computer animated production company interested in 
introducing micro-programmable graphics hardware 
into the animated production process.  The aim will 
be to take a pragmatic view of how micro-
programmable graphics hardware can actually be 
used practically, what some of the current limitations 
are, and what needs to be addressed to make micro-
programmable solutions truly useful in a animated 
production setting.  Throughout the paper concrete 
production scenarios will be used to illustrate the 
technical issues involved. 

 

Figure 1. Aurora Borealis's "Elfin Song" 

The aim will to explain the key technical issues 
involved in the micro-programmable approach to 
graphics.  I will then illustrate how the DirectX API 
to a certain extent “virtualizes”, these graphics 
hardware solutions, through a standard graphics 
instruction set.  Finally, I will explore some issues 
that I believe will become important as graphics 
hardware evolves to more fully abstract the graphics 
pipeline.  
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2. A PRODUCTION SCENARIO 
Production Elements 
A typical computer animated production, can be 
broken down into its constituent elements.  These 
elements may include the number of shots, the 
characters per shot including hero and non-hero 
characters, the scenes as well as the elements of the 
scene.  Additionally, an animated production can 
have anywhere from 10 to 100 hero models and up to 
1000 non-hero models.  Furthermore a single 
character can have anywhere from 10 to 100 texture 
maps. 

For example, In Disney’s Dinasaur, there were 42 
different characters belonging to 19 different 
dinosaur species.  Each character model was built 
using 400-800 NURBS patches.  To address the 
heavy weight nature of these models, Disney did a 
combination of modeling the essential features with 
geometry and then adding detail with Pixar’s 
Photorealistic Renderman displacement shaders.  

Production Authoring Issues 
When creating animated productions, one must 
accept that all that matters is that the generated image 
looks good, not by what means that image was 
generated.  Apodaca illustrates an important tradeoff 
in choosing a strategy to create a particular shot:  
“The question that art directors and modeling 
supervisors must answer is what’s the cheapest way 
to get a look that is good enough, given the size, 
importance and screen time of the prop, and the 
relative complexity of one side’s requirements on the 
other.”  

Today, in an animated production studio, the 
authoring process, like the rendering process is 
typically organized into a pipeline.  Different 
individuals are responsible for different tasks.  These 
tasks include modeling, texturing, lighting, and 
animation.  In larger production companies, there 
generally are multiple individuals specializing in each 
task, thus requiring an army of individuals to 
complete a production or in some cases even a single 
shot.  Consequently one must also realize that this 
army of “specialists” process used by the majority of 
the production studios is inherently costly. 

Production Deployment Issues 
Recently there has been much excitement in 
deploying an animated production over the Internet.  
Although eventually this scenario will be a reality, 
today few consider it a serious option for the near 
future.  The fundamental roadblock is the bandwidth 
and memory requirements needed for the massive 
amounts of data that can be generated even for a 
single frame.  For example on Toy Story 2, each 

frame required anywhere from 500 MB to 1GB of 
storage space.  Perhaps minimizing the data created is 
a solution. 

3. DATA AMPLIFICATION 
A tangible opportunity that GPUs enable are the 
emphasis they place on tools for algorithmic or 
“procedural” modification and generation of content.  
While today’s GPUs do not provide the data 
amplification required to handle a photorealistic 
computer animated production in real time, it is quite 
reasonable to expect this to change in the near future.  

Proceduralizing Production Content 
3.1.1 Procedural Geometry 
Procedural geometry generation techniques have been 
utilized in computer animations for some time now.  
In the past their primary usage has been for creating 
secondary scene objects such as buildings, trees, 
rocks etc. [JAC95].  Recently, Reflex3D has created 
a procedural human modeler.  Reflex3D’s character 
models are generated from the inside out, and have 
parametrically driven descriptions for the skeleton, 
muscle, fatty tissue, skin, hair, and clothing.   

To address the bandwidth issue discussed earlier, one 
approach could be to execute solutions such as 
Reflex3D directly on the GPU.  In this scenario, 
rather than sending massive amounts of pre-generated 
geometry to the GPU, we just send a procedural 
description of a primary character to the GPU, and let 
the GPU demand generate and amplify the data as 
needed.  To achieve this goal, the ability to generate 
vertices in a micro-coded GPU program is required. 

3.1.2 Procedural Texturing 
Many of the benefits of procedural geometry also 
apply to procedural texture generation.  First and 
foremost is the compactness of a procedural texture 
representation, which can be KBs in size as opposed 
to MBs, which are required for images [EBE94].  
Another important GPU capability, which could be 
considered an enabler for real-time cinematic 
productions, is the ability to algorithmically generate 
pixels.  As in the procedural geometry scenario, 
having the ability to send a program to the GPU 
which when executed generates pixels would 
essentially demand generate texture values as needed.  

3.1.3 Procedural Animation 
A key aspect of Pixar’s competitive advantage is due 
to their proprietary animation language ML [LEF90]. 
ML has been used for numerous productions such as 
Toy Story, Bugs Life, etc. as well as commercials 
including the “Listerine Arrows” [JAC95].  ML has 
numerous domain specific language constructs 
including a time-based articulated variable referred to 
as an avar.  In the future, targeting a language like 



ML to a modern GPU will not only increase 
productivity but also performance due to the higher 
data amplification capabilities enabled through ML. 

4. THE DX9 VIRTUAL MACHINE 
Execution Models 
A fundamental challenge for a hardware accelerated 
graphics API is to enable developers to utilize the 
rapid advancements in 3D hardware, while allowing a 
certain amount of compatibility and uniformity across 
hardware solutions.  In Direct X9, a programmer can 
either rely on a “fixed-function pipeline” or on an 
extensible “programmable pipeline”.  

4.1.1 Fixed Function Pipeline 
The fixed-function pipeline itself relies on existing 
algorithms standardized by Microsoft Direct3D.  
These “fixed functions” are exposed through a set of 
enumeration values like OpenGL.  This implies that 
the ‘fixed-function” pipelines of both Direct3D and 
OpenGL utilize internal conceptual switch 
statements, where some of the cases corresponding to 
the enumeration values are hardware accelerated 
based on the capabilities of the graphics card on 
which the runtime relies.   

4.1.2 Programmable Pipeline 
The other more interesting approach to the hardware 
software co-evolution problem is what is referred to 
as the “programmable pipeline”.  In the 
programmable pipeline, the programmer, rather then 
picking a predefined enumeration value and asking 
Direct3D to perform the algorithm, can define their 
own algorithm and supply it to the Direct3D runtime, 
which can dynamically compile to whatever the 
underlying graphics hardware happens to be.  In this 
case, the Direct3D runtime has a just-in-time (JIT) 
compiler, which is an explicit part of the hardware 
device driver.   
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Figure 2 DX9 Programmable Architecture 

Hardware vendors are responsible for providing a JIT 
compiler for their particular graphics hardware.  
Figure 1 illustrates the fundamental elements of the 
DX9 programmable architecture. 

Virtual Processor Model 
4.2.1 Vector. Register Processor Model 
The Direct X processor model like preceding SIMD 
based vector processors is based on a vector register 
processor model.  Although using a register model as 
opposed to a stack model places the complexity of 
register allocation to the language implementer, there 
are a few advantages.  For example, since registers 
are a part of the GPU, data access in a register system 
can be much faster.  Finally, register systems can 
have better code density since a memory address 
requires a larger representation then a register does.  

Consequently the tradeoffs are very difficult to make. 
Often times it’s a toss up, since the first thing many 
JIT compilers do is translate to an internal register 
format anyways.  Although a register model was 
considered for .NET, a stack model was chosen to 
make building third party compilers for .NET easier1.  

4.2.2 Instruction Set Architecture 
Currently the DirectX architecture includes two 
separate but related instruction sets explicitly 
designed for 3D graphics, one for vertex processing 
and the other for pixel processing.  Microsoft has 
publicly stated that it is their intent to merge these 
two instruction sets in the near future. 

Another interesting aspect of the DirectX instruction 
set is that like the .NET Common Intermediate 
Language, it is also typeless, with all values based on 
a IEEE float[4] vector.  A typeless instruction set can 
reduces the total number of instructions dramatically.  
Instead of encoding the datatype into the instruction 
as in the JVM, in DirectX instructions operate on a 
float[4].  A GPUs memory limits makes packing 
instructions important.  Making the instruction set 
typeless is one technique for increasing code density. 

4.2.2 Extensibility Issues 
As graphics hardware advances to support more 
colors, textures, and vertex streams, the DirectX 
virtual machine will need to evolve to support these 
new hardware features [Tay00].  Through the use of a 
programmable model, these new capabilities can then 
be accommodated through additional instructions, 
data inputs, as well as increasing the current resource 
environment a Direct X9 micro-coded program is 
currently constrained by.   These constraints include 

                                                           
1 Personal communication, George Bosworth co-architect 

Microsoft .NET Common Language Infrastructure. 



elements of the virtual processor model such as the 
available registers, allowable max instruction count.  
Since the DirectX instruction set is encoded using 
DWORDs there is plenty of room for new 
instructions. 

Algorithmic Logic Units 
4.1.3 Vertex Shaders 
Vertex shaders are micro-coded programs that 
execute on the GPU.  Vertex shaders enable user 
programmable transform; lighting and texture 
coordinate modification algorithms.  Functionally 
they replace the transform and lighting portion of the 
Direct3D fixed function pipeline.   

Vertex shaders can be used for many things from 
custom lighting models to geometry deformation, to 
animation.  For example, in the “Elfin Song” 
production from Figure 1, I am exploring a 
ubiquitous use of vertex shaders for things such as the 
movement of “Yvarinth’s hair and clothes from the 
wind.  The bulging of her muscles as she dances, and 
her shadow from the moonlight.  Additional examples 
include the motion and deformation of the magical 
bubbles of light, the swaying of the grass from the 
wind as well as the movement of the aurora borealis 
across the sky.  

Figure 3 illustrates the underlying vertex shader 
architecture.  A vertex program can only modify the 
values of vertex components, one vertex at a time.  A 
vertex shader cannot create vertices.  A vertex shader 
can be used to modify the elements of a vertex such 
as position, normal, color, texture coordinates, etc. 
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Figure 3. Vertex Shader Architecture 

The vertex shader listing below declares the version 
followed by a position and texture coordinate 
register.  The def instruction initializes the constant 
c4.  Next vertices are transformed by the view and 
projection matrix.  Finally the diffuse and texture 
colors are moved to the output color and texture 
registers. 
 

vs_1_1 

dcl_position v0  

dcl_texcoord v8  

def c4, 1, 1, 1, 1 

m4x4 oPos, v0, c0       

mov oD0, c4             

mov oT0, v8 

4.1.4 Pixel Shaders 
Like vertex shaders, pixel shaders are also mico-
coded programs that execute on the GPU.  Pixel 
shaders enable per-pixel shading and lighting.  Pixel 
shaders can take their input from data calculated by a 
vertex shader.  Functionally pixel shaders replace the 
fixed function pixel-blending portion of the Direct3D 
pipeline. 

Again, from Figure1, I am exploring the use of pixel 
shaders to create the aurora borealis effect.  This 
effect will utilize the texture and alpha blending on 
several different aurora borealis shapes, which would 
then be blended together to create a real-time 
dynamic aurora borealis.  Additionally, the shininess 
of “Yvarinth’s” hair and eyebrows can be simulated 
with an anisotropic pixel shader.    

Figure 4 illustrates the underlying pixel shader 
architecture.  A pixel program can only modify the 
value of a single pixel, one pixel at a time.  A pixel 
shader takes a texture coordinate and using the pixel 
shader program, coverts it into a color value.  Since 
not all parts of the Direct3D pipeline is 
programmable, elements of pixel processing 
including stencil operations, fog blending and render 
target blending execute after a pixel shader executes. 
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The pixel shader listing below declares the version.  
Next the texture registers t0 and t1 are loaded from 
stages 0 and 1.  Then the texture t1 is moved into the 
output register r1.  Finally, a linear interpolation is 
performed between to and r1 using the proportion 
defined in v0. 
 



ps_1_1 

tex t0 

tex t1 

mov r1, t1 

lrp r0, v0, t0, r1 

 

 

5. Future Challenges 
Language Interoperability 
A key aspect of the DirectX architecture is it’s 
instruction set, as the DirectX instruction set 
stabilizes, a key opportunity that will arise will be the 
opportunity for production specific programming 
languages with their own higher level language 
constructs.  The question that remains will be how do 
you interoperate amongst all these graphics modeling, 
shading, and animation languages?  

Reuse 
Currently the pervasive reuse model in shading 
languages is source based.  This implies that as 
complexity of shaders increases, our shader reuse 
strategy of C, essentially cutting and pasting shader 
code will become a roadblock.  In order to address 
code factoring issues more directly with object 
oriented programming techniques, we will need a 
polymorphic call instruction.  Interestingly the HLSL 
has a keyword called virtual thus in the future we are 
sure to see a callVirtual instruction in the DirectX 
processor architecture. 

Targeting Alternative Languages 
As graphics hardware evolves to a more fully 
functional processor with it’s own hardware stack and 
sufficient memory, languages that target that platform 
will also grow with complexity.  Managing that 
complexity will be a key challenge.  Languages that 
choose to target DirectX intermediate language 
would have to build their primitives and data 
structures on top of the DirectX instruction set.  

6. CONCLUSION 
In conclusion, given the fact that high-end computer 
animated productions are bandwidth limited, the 
fundamental problems that need to be addressed is 
better support for data amplification.  The obvious 
follow on after vertex and pixel processing is to 
support a “primitive” processor that can procedurally 
generate geometry.  Additionally we need to be able 
to procedurally generate textures as well.   
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