
��������������	
���������	���	������������������

���
��������	������������
���	
����	����	�����
�

����������	
���
$XURUD %RUHDOLV 6RIWZDUH

���� ���
WK
$YH� 1(

5HGPRQG� :$� ����� 86$

������	
�������	�����

�

���������

Today, a great opportunity is becoming available for content creators interested in near cinematic quality
interactive 3D rendering. With the recent introduction of floating point calculations in graphics hardware, the
functionality required to approach the capabilities of Pixar’s Renderman shading language in real time are just
now starting to become achievable. The mechanism being used to attain this goal is multi-pass rendering
techniques enabled through compilation technology. A key player in this arena is Microsoft with their DirectX
9.0 API, which for the first time introduces many new real time capabilities which were once exclusively in the
realm of high-end offline software renderers.

Keywords
Cinematic Productions, Micro-programmable graphics hardware, DX9, High Level Shading Language, Shader
Effects, Procedural Rendering, Open GL2.0, Open GL Shading Language, C# and .NET.

“Delivery is not the problem, movies are not
interactive today. Generating a high quality feature
film in real time is not doable in the next 2-3 films.”

Dana Batali

Pixar Animation Studios

1. INTRODUCTION
This paper will begin by taking the perspective of a
computer animated production company interested in
introducing micro-programmable graphics hardware
into the animated production process. The aim will
be to take a pragmatic view of how micro-
programmable graphics hardware can actually be
used practically, what some of the current limitations
are, and what needs to be addressed to make micro-
programmable solutions truly useful in a animated
production setting. Throughout the paper concrete
production scenarios will be used to illustrate the
technical issues involved.

Figure 1. Aurora Borealis's "Elfin Song"

The aim will to explain the key technical issues
involved in the micro-programmable approach to
graphics. I will then illustrate how the DirectX API
to a certain extent “virtualizes”, these graphics
hardware solutions, through a standard graphics
instruction set. Finally, I will explore some issues
that I believe will become important as graphics
hardware evolves to more fully abstract the graphics
pipeline.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.
1st Int.Workshop on C# and .NET Technologies on Algorithms,
Computer Graphics, Visualization, Computer Vision and
Distributed Computing

February 6-8, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press
ISBN 80-903100-3-6

2. A PRODUCTION SCENARIO
Production Elements
A typical computer animated production, can be
broken down into its constituent elements. These
elements may include the number of shots, the
characters per shot including hero and non-hero
characters, the scenes as well as the elements of the
scene. Additionally, an animated production can
have anywhere from 10 to 100 hero models and up to
1000 non-hero models. Furthermore a single
character can have anywhere from 10 to 100 texture
maps.

For example, In Disney’s Dinasaur, there were 42
different characters belonging to 19 different
dinosaur species. Each character model was built
using 400-800 NURBS patches. To address the
heavy weight nature of these models, Disney did a
combination of modeling the essential features with
geometry and then adding detail with Pixar’s
Photorealistic Renderman displacement shaders.

Production Authoring Issues
When creating animated productions, one must
accept that all that matters is that the generated image
looks good, not by what means that image was
generated. Apodaca illustrates an important tradeoff
in choosing a strategy to create a particular shot:
“The question that art directors and modeling
supervisors must answer is what’s the cheapest way
to get a look that is good enough, given the size,
importance and screen time of the prop, and the
relative complexity of one side’s requirements on the
other.”

Today, in an animated production studio, the
authoring process, like the rendering process is
typically organized into a pipeline. Different
individuals are responsible for different tasks. These
tasks include modeling, texturing, lighting, and
animation. In larger production companies, there
generally are multiple individuals specializing in each
task, thus requiring an army of individuals to
complete a production or in some cases even a single
shot. Consequently one must also realize that this
army of “specialists” process used by the majority of
the production studios is inherently costly.

Production Deployment Issues
Recently there has been much excitement in
deploying an animated production over the Internet.
Although eventually this scenario will be a reality,
today few consider it a serious option for the near
future. The fundamental roadblock is the bandwidth
and memory requirements needed for the massive
amounts of data that can be generated even for a
single frame. For example on Toy Story 2, each

frame required anywhere from 500 MB to 1GB of
storage space. Perhaps minimizing the data created is
a solution.

3. DATA AMPLIFICATION
A tangible opportunity that GPUs enable are the
emphasis they place on tools for algorithmic or
“procedural” modification and generation of content.
While today’s GPUs do not provide the data
amplification required to handle a photorealistic
computer animated production in real time, it is quite
reasonable to expect this to change in the near future.

Proceduralizing Production Content
3.1.1 Procedural Geometry
Procedural geometry generation techniques have been
utilized in computer animations for some time now.
In the past their primary usage has been for creating
secondary scene objects such as buildings, trees,
rocks etc. [JAC95]. Recently, Reflex3D has created
a procedural human modeler. Reflex3D’s character
models are generated from the inside out, and have
parametrically driven descriptions for the skeleton,
muscle, fatty tissue, skin, hair, and clothing.

To address the bandwidth issue discussed earlier, one
approach could be to execute solutions such as
Reflex3D directly on the GPU. In this scenario,
rather than sending massive amounts of pre-generated
geometry to the GPU, we just send a procedural
description of a primary character to the GPU, and let
the GPU demand generate and amplify the data as
needed. To achieve this goal, the ability to generate
vertices in a micro-coded GPU program is required.

3.1.2 Procedural Texturing
Many of the benefits of procedural geometry also
apply to procedural texture generation. First and
foremost is the compactness of a procedural texture
representation, which can be KBs in size as opposed
to MBs, which are required for images [EBE94].
Another important GPU capability, which could be
considered an enabler for real-time cinematic
productions, is the ability to algorithmically generate
pixels. As in the procedural geometry scenario,
having the ability to send a program to the GPU
which when executed generates pixels would
essentially demand generate texture values as needed.

3.1.3 Procedural Animation
A key aspect of Pixar’s competitive advantage is due
to their proprietary animation language ML [LEF90].
ML has been used for numerous productions such as
Toy Story, Bugs Life, etc. as well as commercials
including the “Listerine Arrows” [JAC95]. ML has
numerous domain specific language constructs
including a time-based articulated variable referred to
as an avar. In the future, targeting a language like

ML to a modern GPU will not only increase
productivity but also performance due to the higher
data amplification capabilities enabled through ML.

4. THE DX9 VIRTUAL MACHINE
Execution Models
A fundamental challenge for a hardware accelerated
graphics API is to enable developers to utilize the
rapid advancements in 3D hardware, while allowing a
certain amount of compatibility and uniformity across
hardware solutions. In Direct X9, a programmer can
either rely on a “fixed-function pipeline” or on an
extensible “programmable pipeline”.

4.1.1 Fixed Function Pipeline
The fixed-function pipeline itself relies on existing
algorithms standardized by Microsoft Direct3D.
These “fixed functions” are exposed through a set of
enumeration values like OpenGL. This implies that
the ‘fixed-function” pipelines of both Direct3D and
OpenGL utilize internal conceptual switch
statements, where some of the cases corresponding to
the enumeration values are hardware accelerated
based on the capabilities of the graphics card on
which the runtime relies.

4.1.2 Programmable Pipeline
The other more interesting approach to the hardware
software co-evolution problem is what is referred to
as the “programmable pipeline”. In the
programmable pipeline, the programmer, rather then
picking a predefined enumeration value and asking
Direct3D to perform the algorithm, can define their
own algorithm and supply it to the Direct3D runtime,
which can dynamically compile to whatever the
underlying graphics hardware happens to be. In this
case, the Direct3D runtime has a just-in-time (JIT)
compiler, which is an explicit part of the hardware
device driver.

Vertex Shader

Pixel Shader

Vec0 Vec1 Vec2 Vec3

Position Color TC1 TC2

Primitive Operations

Vertex
Buffer

Tex0

Tex2

Tex1

Image
Surface

Pixel
Operations

Vertex
Components

Output PixelsSamplers

Geometry
Operations

Vertex
Data

Figure 2 DX9 Programmable Architecture

Hardware vendors are responsible for providing a JIT
compiler for their particular graphics hardware.
Figure 1 illustrates the fundamental elements of the
DX9 programmable architecture.

Virtual Processor Model
4.2.1 Vector. Register Processor Model
The Direct X processor model like preceding SIMD
based vector processors is based on a vector register
processor model. Although using a register model as
opposed to a stack model places the complexity of
register allocation to the language implementer, there
are a few advantages. For example, since registers
are a part of the GPU, data access in a register system
can be much faster. Finally, register systems can
have better code density since a memory address
requires a larger representation then a register does.

Consequently the tradeoffs are very difficult to make.
Often times it’s a toss up, since the first thing many
JIT compilers do is translate to an internal register
format anyways. Although a register model was
considered for .NET, a stack model was chosen to
make building third party compilers for .NET easier1.

4.2.2 Instruction Set Architecture
Currently the DirectX architecture includes two
separate but related instruction sets explicitly
designed for 3D graphics, one for vertex processing
and the other for pixel processing. Microsoft has
publicly stated that it is their intent to merge these
two instruction sets in the near future.

Another interesting aspect of the DirectX instruction
set is that like the .NET Common Intermediate
Language, it is also typeless, with all values based on
a IEEE float[4] vector. A typeless instruction set can
reduces the total number of instructions dramatically.
Instead of encoding the datatype into the instruction
as in the JVM, in DirectX instructions operate on a
float[4]. A GPUs memory limits makes packing
instructions important. Making the instruction set
typeless is one technique for increasing code density.

4.2.2 Extensibility Issues
As graphics hardware advances to support more
colors, textures, and vertex streams, the DirectX
virtual machine will need to evolve to support these
new hardware features [Tay00]. Through the use of a
programmable model, these new capabilities can then
be accommodated through additional instructions,
data inputs, as well as increasing the current resource
environment a Direct X9 micro-coded program is
currently constrained by. These constraints include

1 Personal communication, George Bosworth co-architect

Microsoft .NET Common Language Infrastructure.

elements of the virtual processor model such as the
available registers, allowable max instruction count.
Since the DirectX instruction set is encoded using
DWORDs there is plenty of room for new
instructions.

Algorithmic Logic Units
4.1.3 Vertex Shaders
Vertex shaders are micro-coded programs that
execute on the GPU. Vertex shaders enable user
programmable transform; lighting and texture
coordinate modification algorithms. Functionally
they replace the transform and lighting portion of the
Direct3D fixed function pipeline.

Vertex shaders can be used for many things from
custom lighting models to geometry deformation, to
animation. For example, in the “Elfin Song”
production from Figure 1, I am exploring a
ubiquitous use of vertex shaders for things such as the
movement of “Yvarinth’s hair and clothes from the
wind. The bulging of her muscles as she dances, and
her shadow from the moonlight. Additional examples
include the motion and deformation of the magical
bubbles of light, the swaying of the grass from the
wind as well as the movement of the aurora borealis
across the sky.

Figure 3 illustrates the underlying vertex shader
architecture. A vertex program can only modify the
values of vertex components, one vertex at a time. A
vertex shader cannot create vertices. A vertex shader
can be used to modify the elements of a vertex such
as position, normal, color, texture coordinates, etc.

Vertex
ALU

Const1

Const3

Const2

TC1 TC2 TC3 Color0TC0Hpos Color1

Const0

Const95

A0

R1

R3

R2

R0

R11

Vec1 Vec2 Vec3 Vec4Vec0 Vec15. . .

.

Figure 3. Vertex Shader Architecture

The vertex shader listing below declares the version
followed by a position and texture coordinate
register. The def instruction initializes the constant
c4. Next vertices are transformed by the view and
projection matrix. Finally the diffuse and texture
colors are moved to the output color and texture
registers.

vs_1_1

dcl_position v0

dcl_texcoord v8

def c4, 1, 1, 1, 1

m4x4 oPos, v0, c0

mov oD0, c4

mov oT0, v8

4.1.4 Pixel Shaders
Like vertex shaders, pixel shaders are also mico-
coded programs that execute on the GPU. Pixel
shaders enable per-pixel shading and lighting. Pixel
shaders can take their input from data calculated by a
vertex shader. Functionally pixel shaders replace the
fixed function pixel-blending portion of the Direct3D
pipeline.

Again, from Figure1, I am exploring the use of pixel
shaders to create the aurora borealis effect. This
effect will utilize the texture and alpha blending on
several different aurora borealis shapes, which would
then be blended together to create a real-time
dynamic aurora borealis. Additionally, the shininess
of “Yvarinth’s” hair and eyebrows can be simulated
with an anisotropic pixel shader.

Figure 4 illustrates the underlying pixel shader
architecture. A pixel program can only modify the
value of a single pixel, one pixel at a time. A pixel
shader takes a texture coordinate and using the pixel
shader program, coverts it into a color value. Since
not all parts of the Direct3D pipeline is
programmable, elements of pixel processing
including stencil operations, fog blending and render
target blending execute after a pixel shader executes.

Pixel
ALU

c1

c3

c2

oC1 oC2 oC3oC0

c0

c31

R1

R3

R2

R0

R11

.

t1 t2 t3 t4v0 t7. . .t0v1

Figure 4. Pixel Shader Architecture

The pixel shader listing below declares the version.
Next the texture registers t0 and t1 are loaded from
stages 0 and 1. Then the texture t1 is moved into the
output register r1. Finally, a linear interpolation is
performed between to and r1 using the proportion
defined in v0.

ps_1_1

tex t0

tex t1

mov r1, t1

lrp r0, v0, t0, r1

5. Future Challenges
Language Interoperability
A key aspect of the DirectX architecture is it’s
instruction set, as the DirectX instruction set
stabilizes, a key opportunity that will arise will be the
opportunity for production specific programming
languages with their own higher level language
constructs. The question that remains will be how do
you interoperate amongst all these graphics modeling,
shading, and animation languages?

Reuse
Currently the pervasive reuse model in shading
languages is source based. This implies that as
complexity of shaders increases, our shader reuse
strategy of C, essentially cutting and pasting shader
code will become a roadblock. In order to address
code factoring issues more directly with object
oriented programming techniques, we will need a
polymorphic call instruction. Interestingly the HLSL
has a keyword called virtual thus in the future we are
sure to see a callVirtual instruction in the DirectX
processor architecture.

Targeting Alternative Languages
As graphics hardware evolves to a more fully
functional processor with it’s own hardware stack and
sufficient memory, languages that target that platform
will also grow with complexity. Managing that
complexity will be a key challenge. Languages that
choose to target DirectX intermediate language
would have to build their primitives and data
structures on top of the DirectX instruction set.

6. CONCLUSION
In conclusion, given the fact that high-end computer
animated productions are bandwidth limited, the
fundamental problems that need to be addressed is
better support for data amplification. The obvious
follow on after vertex and pixel processing is to
support a “primitive” processor that can procedurally
generate geometry. Additionally we need to be able
to procedurally generate textures as well.

7. ACKNOWLEDGMENTS
I would like to acknowledge Henry DaCosta for our
recent exploration into Managed DirectX. Dana
Batali from Pixar for insight into the production
process. In addition, special thanks go to Jason

Schellenberg of ATI developer relations for
providing Radeon 9700 hardware, and Mark Lewin
from Microsoft Research for providing travel
sponsorship to present this paper. Finally my
gratitude goes to Phillip Taylor formerly of Microsoft
and now at ATI, for guiding me while I was learning
DirectX.

8. REFERENCES
[Lef90] Leffler, Samuel J., Reeves, William T., and

Ostby, Eben F., “The Menv Modeling and
Animation Environment", 1990.

[Jac95] Jacob, Oren, Television Commercial
Production at Pixar, Using Renderman in
Animation Production, Siggraph 1995 Course.

 [Pee00a] Peercy., Mark. S., Olano., Mark., Airey.,
John., and Ungar., Jeffrey., Interactive Multi-Pass
Programmable Shading.

[Ref00b] Reflex3D Corporate Site,
www.reflex3d.com

[Tay00] Taylor, Philip, “Programmable Shaders for
DirectX 8.0”, Microsoft Corporation, 2000.

[Pro01a] Proudfoot., K., Mark W. R., Svetoslav T.,
and Hanrahan, P., A Real-Time Procedural
Shading System for Programmable Graphics
Hardware, Siggraph Conference Proceedings, pp
159-170, 2001.

[Lin01b] Lindholm., E., Kilgard., M., and Moreton.,
Henry., A User-Programmable Vertex Engine.
Siggraph Conference Proceedings, pp 149-158,
2001.

[Mal01] Mallinson, Dominic, “Benefits Of A Micro-
programmable Graphics Architecture”,
Gamasutra, 2001. www.gamasutra.com/features/

 20010214/mallinson_01.htm
[Qin01c] Qung., Han Da., Tool Postmortem: Ubi Soft

Entertainment’s GL for Playstation 2., Gamasutra,
pp 1-9, 2001.

 [Pee02a] Peeper, Craig, Microsoft Meltdown UK
Presentation: “DirectX High Level Shading
Language”, Microsoft Corporation, 2002.

[Pee02b] Peeper, Craig, Microsoft Meltdown UK
Presentation: “DirectX Shader Management”,
Microsoft Corporation, 2002.

[Asa03] Asanovic, Krste, “Vector Processors”,
Department of Electrical Engineering and
Computer Science, MIT, 2003.

