
Cross-platform Communication Using Custom

Channel Sinks

RNDr. Tibor Hrnko
Vero Partners, s.r.o.

Italská 13
 120 00, Prague, Czech Republic

Thrnko@veropartners.com

Mgr. Jan Kašpar
Vero Partners, s.r.o.

Italská 13
120 00, Prague, Czech Republic

Jkaspar@veropartners.com

ABSTRACT

The paper discusses the design of a distributed application that consists of a connection to independent provider
of message transport and logic based on text messages. It is scalable, extendable and its communication is
based on remote method calls. Due to the dominance of WIN32 based systems on the computer market and due
to the remarkable extension of the possibilities of its development environment provided by introduction of the
.NET platform, this particular environment is very suitable for the creation of an effective solution. C#
language is appropriate for easy code porting to other object oriented standards (e.g. J2EE).
The general data flow of the solution can be described in four main steps:

• The application logic receives and writes data asynchronously using application queues. Queue
messages are serialized application specific objects. Scalability is implemented by the possibility of
multiple application instances.

• An arbitrary number of connectors to service providers can access the queues picking only the
appropriate messages. The object model on the connector level is uniform with regard to application
objects.

• Method calls of the connectors are translated into individual data streams crossing the domain
boundaries using the custom channel sink mechanism of the .NET platform. The other end of the
communication can be totally independent from the originating platform.

• Arbitrary specialized functionality can be introduced into individual connectors through the insertion
of specialized sinks. Unrestricted manipulation of the received data on the application level can be
introduced by the modification of the application queue data.

Keywords
WIN32; .NET; C#; Cross-platform; GSM; SMS; Remoting; Application queues; Custom sinks

APPLICATION DESCRIPTION

SMS application platform
The goal of application platform creation was to

prepare a base for text oriented games with an
arbitrary connection to transport service provider.
This specification covers a wide range of trivia type
quiz games, chats and information services.
Individual applications should differ only in their
specialized functionality. Common communication
object at the application level was defined as SMS
message with the properties specified by ETSI
standards [ETSI SMS]:

• SmsDateTime
• SmsMessage
• SmsMsgStatus
• SmsPhoneBookEntry
• SmsReferenceId
• SmsSenderId
• SmsTimeZone

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

1st Int.Workshop on C# and .NET Technologies on

Algorithms, Computer Graphics, Visualization,

Computer Vision and Distributed Computing

February 6-8, 2003, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

ISBN 80-903100-3-6

Apart from GSM specific SmsPhoneBookEntry, all

Cell phone

Internet

LH communication

server

Queue Server

LH server

Remote

procedure

call

XML,

HTTP

Custom

sink chain

Application

Message

queuing

Application

Message

queuing

SQL

Database

Access

SMSC Oskar Zone

Server

Unix Zone

SMS

XML

XML

GSM SMS

Picture 1 General View of the Application

other properties are general, concerned with
transferred information status and reference.

Any platform application receives objects of this type
from application queues. The objects are pushed to a
queue by individual connectors.

Connection to a service provider
This part of the system should provide connection to
arbitrary individual protocols on the provider side,
create a common SMS object and store it to proper
application queue on the application side.

Applying widespread approach of writing
specialized communication for each provider would
mean an object mess, as the objects of those
providers are as far appart from each other as are the
individual providers’ approaches. It would mean a
lot of overhead in maintaining this code too.

Channel based connections have much more
common code and provide an extra feature of
masking the connection complexity behind single
method call. This approach is detailed in section 3.

1. USE OF APPLICATION QUEUES

Scalability Issues
Generaly accepted rule of today‘s application is to
keep interprocess communication down to
minimum. This is argumented by overhead imposed
by serialization and deserialization of the objects,
transported between the processes. It may be wise
approach for computation intensive processes, but
we consider it not so well founded in communication
between high level objects transferring messages that
contain a lot of computational effort in a command
that contains limited data amount or is not time
critical. Typical example of such message is a
communication of an application with human user.

In-process manipulation of objects is generically
quick but self-contained. Inter-process manipulation
tends to be slower, but is distributed by its nature. It
provides for both the scalability introduced by
distributed computation and the implementation of
functionality provided by any computer with access
rights for the queue.

Up Time And Application Monitoring
We take it for granted, that there is no complex
application that is uncrashable. Commercial
applications with a short lifetime are even more
prone to this problem, as they tend to be created
quickly.

Use of queue lessens this problem by providing easy
means of monitoring the queue state and staling of

the messages that are stored. It can be achieved on
the system level by setting the properties of the
queue or by a code monitoring the arrival time of the
queue messages. The monitoring code can even
dynamically spawn new instances of the code
according to the queue length.

Exception handling does not have to be so bullet
proof; as the crush does not mean necesarily the loss
of arrived data and new instances of the same
functionality can work well with the rest of the
queue messages. It is necessary only to spawn the
new process by an independent agent.

Figure 1 is a code snippet that checks inbound queue
and sends messages to application users notifying
them about the service problems.

Security Considerations
Queued solution is easy to implement on computers
located behind a firewall, but separated from the rest
of the domain. Individual connectors should have
only a limited access to the queue server. Thus the
malicious attack chances are rather reduced with
respect to the internal workstations and servers.

Strict typing of queue data almost excludes
possibility of running outsider code as all the
messages are deserialized by individual data
consumers. That means that even inherently insecure
practice of calling selects into database by dynamical
construction of the clause is separated from the
arrived data and is invisible from outside world.

Independent Data Storage
It is possible to store all data in a queue itself or use
more sophisticated mechanisms like SQL database.
This choice depends solely on the application needs.

Let us pinpoint, that queuing concept incorporates
even transactional processing and referencing of the
managed messages. C# objects implement
IEnumerable interface so implementation of in
memory indices and sorts is straightforward.

2. CHANNEL AND SINK

DEFFINITIONS

Predefined .NET Channels
There are two channel types shipped with .NET.
Http channel formats its messages according to the
SOAP standard. TCP channel formats them into
binary messages. The later is useful for remoting
based on .NET framework applications sitting on
both sides of the communication channel. The
former is convenient for writing applications using
web services. Further information on the channel

concept can be found in a number of books. We have
found [Advanced Remoting] a very instructive one.

Channel processing
Channel starts processing once a method call is
invoked on object that is a local proxy for a remote
object. First sink in a chain of client side sinks
serializes data of a local object, rest of the sinks adds
its own data, but can not change the stream created
by formatter sink. Last sink on the client side, called
a transport sink, generates appropriate transport
streams and sends data to a remote server. Server
side sinks are responsible for recreation of the
original object, execution of its functionality and
returning result to the caller.

Sink chains are arbitrary on both the client and the
server side. Any user sink can be inserted into it at
any point, if it adheres to the basic rules of the chain:

• Any object change is done prior to calling
formatter sink method. Changes to object
properties are not propagated to the server
if made in later stages of the processing

• Formatter sink has to serializes object data
to an existing stream or create a new one if
none is available

• No client side sink called after formatter
sink changes serialized properties.

• Server side sink is responsible for
deserialization of the provided data.

In common language the implictions are these:

• Data encryption or any other object
modification prior to call has to be done
before serialization takes place.

• When implementing a custom client side
sink, custom server side sink is likely to be
needed.

Creation of Custom Sinks
The task of creation the custom sinks is presented by
examples. Code is based on Vero Partners company
connection to Český Mobil GSM provider. Servers
on the operator side run a JSP application on UNIX
servers, accepting custom XML stream, defined by
their IT division. Servers on Vero side run .NET
channel application. The Figure 2 is a simplified
code for client side formatter sink. The Figure 3 is a
simplified code for server side sink.

3. EXCEPTIONS, AND TIMEOUTS
Fortunately enough, there are not too many beasts
hidden in the implementation apart from
understanding the channel mechanism. Exception
handling can be simply expressed by the fact, that no
sink could throw an exception. Easiest way to
achieve this is to bracket all custom sink code into
try catch block. Timeouts are slightly more difficult
because they are not described in the documentation.
But once you know that it is only necessary to
change properties of the transport sink (provided by
the framework for commonly used http and TCP
channels), it is quite straightforward. The simple
code for a custom channel sink that is a predecessor
of the transport sink is:

_nextChanelSink.Properties["timeout"]=10000;

4. CONCLUSIONS
Channel sinks are suitable for handling inter process
communication. They are flexible and offer seamless
integration into object model of an application. Use
of application queues is a good way to introduce
scalability, monitoring and safety features with a
minimal amount of programming effort.

5. REFERENCES
[1] [ETSI SMS] ETSI TS 127 005 v4.0.0 (2001-

2003)
[2] [Advanced Remoting] Ingo Ramirez, Advanced

.NET Remoting, Apress 2002, ISBN (pbk): 1-
59059-025-2

Figure 1 Monitoring inboud queue

// Defined outside the presented code
// System.Messaging.MessageQueue inQueue;
// System.Messaging.XmlMessageFormatter ftr
// System.MarshalByRefObject marshallObj
// SMSClass and Ucp51 proprietary classes
// used for the connection to Oskar
private void checkInQueueLh()
{
 System.Messaging.Message m;
 SmsGame.SMSClass lhm;

 while(isProgramRunning())
 {
 Thread.Sleep(5000); //milliseconds
 IEnumerator e=inQueue.GetEnumerator();
 while (e.MoveNext())
 {
 try
 {
 m = ((Message)e.Current);
 if((isTooOld(m))&&(isNotDelayMsg(m))
 {
 m.Formatter = ftr;
 lhm = new SMSClass(m);
 Ucp.Ucp51 u = new Ucp.Ucp51();
 u.to = lhm.SmsSenderId;
 u.message=MESSAGE_STILL_QUEUE;
 marsahllObj.sendUCP(u));
 m = inQueue.ReceiveById(m.Id);
 inQueue.Send(m,LH_DELAYED_MSG);
 }
 catch(Exception e1)
 {
 Debug.WriteLn (el.StackTrace());
 }
 }
 }
}

namespace XmlConnector
{
 public class OskarClientFormatterSink : IClientFormatterSink
 {
 ListDictionary _properties = new ListDictionary();
 IClientChannelSink _nextChanelSink;
 Stream _stream;
 IMessageSink _nextSink = null;
 ITransportHeaders _responseHeaders;
 Stream _responseStream;

 public OskarClientFormatterSink(
 IClientChannelSink nextSink)
 {
 _nextChanelSink = nextSink;
 }
 public IDictionary Properties
 {
 get{return _properties;}
 }
 public IClientChannelSink NextChannelSink
 {
 get{return _nextChanelSink;}
 }
 public void AsyncProcessRequest(
 IClientChannelSinkStack sinkStack,
 IMessage msg,
 ITransportHeaders headers,
 Stream stream)
 {
 //todo: add async code here
 }
 public void AsyncProcessResponse(
 IClientResponseChannelSinkStack sinkStack,
 object state,
 ITransportHeaders headers,
 Stream stream)
 {
 //todo: add async code here
 }
 public Stream GetRequestStream(
 IMessage msg,
 ITransportHeaders headers)
 {
 Stream s;
 if (_stream == null)
 {
 if ((s = NextChannelSink.GetRequestStream(msg,headers))==null)
 return _stream = new MemoryStream();//no stream from predecessor sink
 else
 return s;
 }
 else
 return _stream; //subsequent calls return stream set by first call
 }
 public void ProcessMessage(
 IMessage msg,
 ITransportHeaders requestHeaders,
 Stream requestStream,
 out ITransportHeaders responseHeaders,
 out Stream responseStream)
 {
 responseHeaders = requestHeaders;//No modification during message processing
 responseStream = requestStream;
 }
public IMessageSink NextSink
 {
 get
 {
 return _nextSink;
 }
 }

Figure 2 Custom client side formatter sink

public IMessageCtrl AsyncProcessMessage(
 IMessage msg, IMessageSink replySink)
 {
 return null; //todo: add async code here
 }

 public IMessage SyncProcessMessage(
 IMessage msg)
 {

 try
 {
 TransportHeaders requestHeaders = new TransportHeaders();//New transport headers
 IMethodCallMessage m = (IMethodCallMessage) msg;//cast msg to what it actually is
 Stream stream = GetRequestStream(msg, requestHeaders);//obtain a request stream
 // Handling of application specific data
 if (m.InArgs[0].GetType() == typeof(Ucp.Ucp51))
 {
 ((Ucp.Ucp51)m.InArgs[0]).WriteXml(stream);
 }
 // \Handling of application specific data

 //Forward for processing using ProcessMessage. Never TimesOut
 NextChannelSink.ProcessMessage(
 msg, requestHeaders, stream,
 out _responseHeaders,
 out _responseStream);

 //clean-up stuff
 stream.Close();
 _stream = null;
 byte[] buf = new byte[1000];
 _responseStream.Read(buf,0,1000);
 _responseStream.Close();
 string inputStr = new System.Text.ASCIIEncoding().GetString(buf);
 string resultStr;
 if (inputStr.IndexOf("result=\"ACK\"")>=0)
 resultStr = "ACK";
 else
 {
 resultStr = "NACK";
 EventLog eventLog = new EventLog();
 eventLog.Source = "XMLConnector";
 eventLog.WriteEntry("NACK for message");
 }
 // \handling of debug messages and event logs
 return new ReturnMessage(resultStr,null,0,null,m);
 }
 catch (Exception e)// No exception possible in channel processing
 {
 Debug.WriteLine("Exception in syncProcessMessage");
 Debug.WriteLine(e.Message);
 try
 {
 _stream.Close();
 }
 catch(Exception){}
 _stream = null;
 return new ReturnMessage("ERROR",null,0,null,null);
 }
 }
}

Figure 2 Custom client side formatter sink (continued)

namespace XmlConnector
{
 public class OskarServerFormatterSink:IServerChannelSink
 {
 private const int OK = 1;
 private const int ERR = -1;
 private ListDictionary _properties = new ListDictionary();
 private IServerChannelSink _nextChanelSink;

 public OskarServerFormatterSink(IServerChannelSink nextSink)
 {
 _nextChanelSink = nextSink;
 }
 public IDictionary Properties
 {
 get{return _properties;}
 }
 public IServerChannelSink NextChannelSink
 {
 get{return _nextChanelSink;}
 }
 public void AsyncProcessResponse(
 IServerResponseChannelSinkStack sinkStack,
 object state,
 IMessage msg,
 ITransportHeaders headers, Stream stream)
 {//add async handling here
 }
 public Stream GetResponseStream(
 IServerResponseChannelSinkStack sinkStack,
 object state,
 IMessage msg,
 ITransportHeaders headers)
 {//should test sink chain !
 return null;
 }
 public ServerProcessing ProcessMessage(
 IServerChannelSinkStack sinkStack,
 IMessage requestMsg,
 ITransportHeaders requestHeaders,
 Stream requestStream,
 out IMessage responseMsg,
 out ITransportHeaders responseHeaders,
 out Stream responseStream)
 {
 Object result;
 responseMsg = null;
 responseHeaders = new TransportHeaders();
 responseStream = new MemoryStream();
 result = new Object();
 try
 {
 switch (validateInput(requestStream))
 {
 case ERR: //invalid should handle proper response
 Debug.WriteLine("NACK for batch");break;
 case OK://valid any useful code for validated input here
 Debug.WriteLine("ACK for batch ");break;
 }
 responseMsg = new ReturnMessage(result, null, 0, null, null);
 }
 catch(Exception e)
 {
 }
 return ServerProcessing.Complete;
 }
 private int validateInput(Stream stream)
 {
 return OK//any validation goes here OK, ERR
 }
}

Figure 3 Custom server side sink

