
An Agent Programming Framework Based on 
the C# Language and the CLI 

 
A. Grosso, A. Gozzi, M. Coccoli, A. Boccalatte 

University of Genova, DIST 

Via Opera Pia, 13 – 16145 Genova, Italy 

grosso@email.it {gozzi, coccoli, nino}@dist.unige.it 
 

ABSTRACT 

The aim of this paper is that of describing the software architecture designed for the implementation of an agent 
programming framework. Contrary to the widely adopted use of the Java platform in most agent-based solutions 
and related research activity, the present work has been entirely carried on in the novel .NET framework 
(Microsoft Corp.) which offers technological solutions able to cope with common problems which often arise 
when working in other enterprise platforms (both J2EE and Microsoft DNA). In particular this work is based on 
the C# language and the Common Language Infrastructure. One solution is described to make management of 
agents easier from a programmer’s point of view. As result an agent programming framework is presented, fully 
exploiting the above concepts. 

Keywords 
“Agent”, “Multi-Agents”, “Agent Programming Framework”, “Microsoft.NET platform”. 

 

1. INTRODUCTION 
Agent-based applications and agent systems represent 
a very robust and theoretically well funded 
technological paradigm. Despite this, they are not yet 
widespread at all due to many reasons, one of which 
is the heavy programming work that still has to be 
done in order to get efficient and effective agent 
systems in particular from the point of view of the 
performance and integration with other applications. 
In this paper, the authors assume that the reader is 
familiar with the basic concepts of software agents 
[Nwa96a][Woo95a] and multi agent systems 
[Woo99a] for the present work is mainly focused on 
topics related to internals of the programming tools 
for such systems. Much attention is dedicated to the 
software architecture of agent themselves rather then 
to the architecture of agent systems to be developed. 

Distributed systems and distributed programming 
appear to be the natural field of application for agent 
technology, due to intrinsic characteristics of agents 
and multi-agent systems but, on the other hand, 
modern distributed applications require a very high 
degree of availability, reliability, and security thus, 
the development of enterprise solutions will be based 
on an agent system only in the case it meets all of 
these basic requirements. After this short 
introduction, the paper is organized as follows. In the 
forthcoming Section 2 work already done on agent 
construction tools will be presented together with 
problems related to programming agent systems. 
Basics on the .NET framework will be introduced 
and discussed in Section 3; relevance will be given to 
the features exploited in developing this work. Based 
on the contents of both Section 2 and Section 3, an 
analysis of the software architecture which 
implements agents in the proposed environment will 
follow in Section 4 where the model proposed by the 
authors will be described; it will also be shown how it 
can override most common problems which arise 
with different solutions.  

2. AGENT DEVELOPMENT TOOLS 
In the recently past years a lot of work has been done 
related to agent applications both by research 
institutes and, more and more, by commercial 
organizations [App02a]. The activity of analysis and 
evaluation of such software tools is out of the scope 
of this paper; moreover compiling an up to date list of 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 

1st Int.Workshop on C#  and .NET Technologies on 
Algorithms, Computer Graphics, Visualization, Computer 
Vision and Distributed Computing 
 

February 6-8, 2003, Plzen, Czech Republic. 
Copyright UNION Agency – Science Press 
ISBN 80-903100-3-6 



existing agent development environments can be a 
very hard work, continuously subject to change. Up 
to date surveys of available software products for 
agent systems can be found on many web sites. For 
example you can refer to the “European Network of 
Excellence for Agent-Based Computing” [The 
European Network of Excellence for Agent-Based 
Computing http://www.agentlink.org] where much 
information is available. Different tools offer 
different ability, also depending on the definition of 
an agent which has been considered while developing 
the tool. In fact, the definition of an agent is still very 
discussed in the scientific community and many 
different, though almost equivalent, definitions can be 
found (see Section 2.1). The main differentiation can 
be done based on the observation of different choices, 
in particular relevant to the specification of the 
mechanism of communication and the conversation 
rules as well as the adoption of a standard 
communication language. Following the adoption of 
a particular definition, then different models arise. 

Agent Definitions 
In the agent community, it cannot be found a unique 
definition of what an agent is or it should be. 
Different research groups have given different 
interpretations depending on their research interest 
and their past experience with software engineering 
and cultural/technical background. As an example, 
some widely accepted definitions follow. Pattie Maes 
(software agents research group at MIT) gives her 
own definition of the term. She says, “an agent is a 
computational system that inhabits a complex, 
dynamic environment. The agent can sense, and act 
on, its environment, and has a set of goals or 
motivations that it tries to achieve through these 
actions”. A slightly different point of view comes 
from Hyacinth S. Nwana [Nwa96b] which, in 
defining the term agent, says, “when we really have 
to, we define an agent as referring to a component of 
software and/or hardware which is capable of acting 
exactingly in order to accomplish tasks on behalf of 
its user. Given a choice, we would rather say it is an 
umbrella term, meta-term or class, which covers a 
range of other more specific agent types, and then go 
on to list and define what these other agent types are. 
This way, we reduce the chances of getting into the 
usual prolonged philosophical and sterile arguments 
which usually proceed the former definition, when 
any old software is conceivably recastable as agent 
based software”. FIPA (Foundation for Intelligent 
Physical Agents) uses a different definition of agent 
for all their specifications [FIPA (Foundation for 
Intelligent Physical Agents), http://www.fipa.org] that 
is, “an entity that resides in environments where it 
interprets "sensor" data that reflect events in the 
environment and executes "motor" commands that 

produce effects in the environment. An agent can be 
purely software or hardware. In the latter case a 
considerable amount of software is needed to make 
the hardware an agent”. On the other hand H. Van 
Dyke Parunak defines an agent as an “active object 
with initiative”. According to this definition [Par97a], 
no agent can be independent of its environment, from 
which it receives inputs to be processed, and it 
produces output feeding the environment itself. A 
further point of view is that of researcher groups in 
the Artificial intelligence community for whom the 
lemma agent assumes a more peculiar meaning. An 
agent is meant to be a computer system showing all 
of the above properties, yet implemented through a 
human reasoning approach. Terms such as 
knowledge, belief, intention, and obligation 
[Min85a][Rao95a] are commonly used in AI. 
Moreover, some AI researchers also consider 
emotional agents [Bat94a]. 

Programming Agent Systems 
A number of development tools exist for the 

design and realization of agent systems, which 
provide the developer with a model of an agent and 
some agent prototypes based on the considered 
model. Easy modeling and programming of a multi 
agent system is then possible by composing some of 
the pre-defined agent models. Every complete 
environment also offers a reliable communication 
infrastructure enabling interoperability among agents 
which can rely on the well known agent 
communication language KQML or can be realized 
according to some international standards (i.e. FIPA). 
Actually a huge number of such tools can be found; 
many of them are distributed with an open-source 
licensing policy and for the other ones evaluation 
versions can easily be obtained through the relevant 
web-sites download areas. Depending on many 
factors, despite they show similar functionality, the 
literature offers many different naming for such 
products which have been, in different times, 
classified as agent platforms as well as agent 
construction kit or agent systems building toolkit as 
well as agent infrastructure or environment. The 
authors are convinced that talking about an Agent 
Programming Framework is the best appropriate 
decision and that describing the whole infrastructure 
as a framework can clearly express the underlying 
concepts. Therefore, in this paper, everything will be 
related to an agent framework. After a preliminary 
evaluation of the available tools the feeling is that it 
will be hard to get a highly efficient and really re-
usable agent system due to the fact that each platform 
offers a few specific agent architectures which 
uniquely can be exploited to build up every other 
agent in the system. A typical example is the case in 
which a very trivial agent is needed in the system, and 



it has to be created on a very complex skeleton while 
a very simple task has to be performed and a very 
light structure would be sufficient and appreciated. 
Moreover, custom applications cannot guarantee an 
adequate level of reliability, security, performance, 
and scalability which are naturally expected to be 
fundamental features of any distributed enterprise 
application. Consider, as an example, the case in 
which an agent-based solution has to be developed in 
a very typical industrial automation scenario that is 
decision making in a control system. Such an 
application must show high availability since the 
efficiency of a plant must be guaranteed twenty-four 
hours a day, seven days a week. Standard solutions 
provide redundancy, both hardware and software, 
thus the considered application must make available 
both a replication mechanism and full 
synchronization functionality. In the event of a crash, 
the state of the system must be preserved as well as 
the configuration and state of every agent involved. 
Transparency to the user is necessary in making all of 
these tasks. From the point of view of performance, 
in terms of the execution time for some operations, 
the redundancy of the architecture can be profitably 
exploited through a load balancing service for 
distributed computing. For the sake of security of 
data in the system, transactional operations should 
always be executed. Last but not least administration 
issues must be considered too; a fully integrated 
agent system will interact with system services and 
with other operational environments or software 
solutions. An authentication mechanism can provide 
the agent system with different roles for different 
agents with different responsibilities and rights. From 
the above example, the main features that an agent 
system should offer appear to be reliability and a 
deep integration with the operating system services in 
such a way that a high standard quality level of 
performance can be guaranteed. At the actual stage, 
existing agent frameworks do not cover all of the 
above topics and even some of them do not consider 
any one of those. Such a lack is depending on a 
technological matter that is the fact that the evaluated 
agent platforms are open source products whose first 
aim is that of being portable on any operating systems 
as well as multiple hardware configurations. On the 
contrary, the scenario which has been introduced in 
the above example described a system strongly 
dependent on the operating environment, and fully 
exploiting its advanced functionality in terms of 
services. By considering and comparing available 
tools and technology devoted to the realization of 
distributed enterprise applications, it immediately 
emerges that platform independency leads to an 
abstraction from the underlying operating system 
which can only be accepted when services are 
implemented within the application itself, which 

results in more than duplicating development time 
and cost. In a few words, the more complex the 
application aims to be, the higher the level of 
integration has to be.  

In this work portability issues are only 
marginally addressed (see Section 4.3) and a primal 
decision has been taken enabling the realization of an 
agent programming framework for non-trivial 
applications rather than a portable one. The adopted 
solution is that of working exclusively in a Microsoft 
.NET environment due to some observations done on 
possible exploitation of the novel concept of 
Application Domain introduced with the .NET 
framework (Microsoft Corp.). A more detailed 
description of such feature in the .NET framework 
follows in Section 3. An alternative solution to the 
proposed one can be the use of the J2EE (Java2 
Enterprise Edition) platform. The J2EE platform also 
can offer a wide variety of services and integration 
capability but proprietary solutions are to be 
implemented in this case toot as soon as the needed 
degree of integration grows over a minimum relevant 
to a reduced set of services which can be used on any 
platform.  

3. THE .NET FRAMEWORK 
The Microsoft .NET framework (just .NET in the 
following) can be considered a support infrastructure 
enabling the development of distributed applications 
[Pla01a]. It is also commonly defined as a 
component-oriented programming platform 
[Min01a]. 

The .NET Architecture and CLI 
The core of the .NET platform is the so called CLI 
(Common Language Infrastructure). Any .NET 
application can be run on any operating system or 
hardware platform where the CLI is implemented. 
Above the CLI a rich collection of libraries is 
implemented and they will be referred to as 
frameworks. Such libraries provide application 
programming interfaces or programming abstractions 
for a wide range of application development tasks. 
The adoption of .NET also enables language 
interoperability: components developed by using 
different languages can interoperate as long as they 
conform to some rules provided by the Common 
Language Specification (CLS). Apart these general 
considerations relevant to the framework, the 
Common Language Infrastructure will be examined 
more in details. At the heart of the CLI lies the 
Common Type System (CTS) which supports all the 
types and associated operations expected in modern 
programming languages. This unique set of type 
definitions is enforced across all languages targeting 
.NET; this uniform view of primitives, enables cross-



language interoperability. Source code is compiled 
into an intermediate format consisting of Common 
Intermediate Language (CIL) and metadata. In 
contrast to the COM and CORBA models where 
programmers were forced to explicitly generate 
component interfaces and they had to do that by using 
complex APIs and Interface Definition Languages, in 
.NET the metadata is automatically generated and 
persisted in a language-independent format. The final 
building block of the CLI is the Virtual Execution 
System (VES) implementing and enforcing the 
previously discussed CTS. Metadata provides a 
standard description of every component available in 
the run-time, and is thus a common interchange 
mechanism between application programs, system 
tools, and the run-time itself. This is made possible 
because every type defined and compiled in the CLI 
is based on this CTS; the execution engine can verify 
the type safety of every data element presented for 
layout in memory and every piece of code to be 
executed. For compiling and executing tasks, the 
source code is translated by front-end compilers into 
a mix of both Common Intermediate Language (CIL) 
and metadata. The generated intermediate code 
carries with it all the information necessary for it to 
be compiled into native code. Run-time byte-code 
interpretation is not directly supported by the CLI. 
The CIL is usually verified and compiled just-in-time 
(JIT-compiler), method by method, by back-end 
compilers. Then applications are packaged and 
deployed in assemblies, a collection of files 
containing types as well as resources. Both 
assemblies and their enclosed types are self-
describing, and are deployed simply by placing them 
in a specified application directory.  

The Application Domain 
The application domain is a particular construct in 
the CLR that is the unit of isolation for an 
application. The isolation guarantees the following: 

• An application can be independently stopped 

• An application cannot directly access code or 
resources in another application 

• A fault in an application cannot affect other 
applications. 

• Configuration information is scoped by 
application. This means that an application 
controls the location from which code is loaded 
and the version of the code that is loaded. 

With respect to a process, an application domain is 
lighter. Application domains are appropriate for 
scenarios that require isolation without the heavy cost 
associated with running an application within a 
process. A process runs exactly one application. In 
contrast the CLR allows multiple applications to be 

run in a single process by loading them into separate 
application domains. Additionally the CLR verifies 
that the user code in an application domain is type 
safe. 

The C# Language 
A short introduction to the language used along all of 
the presented work is presented, focusing on 
novelties introduced by such a language with respect 
to other object-oriented programming languages 
(Java and C++). Common Language Infrastructure 
and C# provide the developer with tools and facilities 
[Mic01a] enabling new functionality in the presented 
agent software. C# is introduced as a simple, object-
oriented, and type-safe programming language clearly 
derived from C and C++. It is promoted as the natural 
choice for programming in the .NET platform which 
includes a common execution engine and a rich class 
library. In the platform a Common Language Subset 
(CLS) is defined in such a way that, even using C# 
which is a new language, complete access to the rich 
class library already defined with other languages in 
many past years of development activity is 
guaranteed. C# itself does not include a private class 
library. It is claimed that C# encourages good object-
oriented programming as well as design practices. C# 
is similar to Java and to C++ in many concepts and 
solutions, yet it is different in some fundamental ways 
and behaviors [Wil02a]. For example, the C# 
language does not permit functions to exist outside of 
class declarations, which is, on the contrary, allowed 
in C++. It has a unified type system, and it utilizes 
garbage collection to free the programmer from the 
low-level details of memory management. As with all 
object-oriented languages, C# obviously promotes re-
use through classes. 

4. SOFTWARE ARCHITECTURE 
Most available development tools offer facilities for 
the implementation of software agents and for 
communication among agents within the system, yet 
they do not implement software architecture able to 
cope with common problems of synchronization and 
parallel computing in such a way that an agent cannot 
perform concurrent actions and only can have a very 
low level of interaction with other agents in the 
systems, should they need to modify the world they 
have been created in. Another key point of the actual 
software architecture that most common agents 
developed with some of the above cited tools show, is 
the one to one correspondence between operating 
system threads and agents. The software architecture 
proposed in this paper is alternative to existing 
solutions. 



The Proposed Agent Model 
Based on the above review of agent characteristics, a 
detailed description of the agent model proposed by 
the authors follows. The structural model that is being 
considered in this work corresponds to an agent both 
autonomous and multi-behavior. For the sake of 
clarity, it is necessary to immediately define the 
meanings of the terms autonomous and multi-
behavior in this context.  

Autonomous means that “computational activity is 
independent on other agents”. The only mean for an 
agent to interact with other agents is performing a 
communication through an asynchronous messaging 
system.  

Multi-behavioral refers to “an agent with many tasks 
to be accomplished, all of them to be concurrently 
executed”.  

Agents Software Implementation 
From a programmer’s point of view, two solutions 
are possible for the implementation of an agent: 
processes or threads. In the first case one agent is 
associated to the execution of one process while, in 
the second of the two cases, one process is shared 
among multiple agents, each one of which is one 
thread or even more. The two different scenarios 
relevant to these solutions are sketched. 

Agent-Process. From the point of view of autonomy, 
this one appears to be the best solution: every agent 
(process) is completely independent from any other 
agents (processes) in the system. Some agent 
platforms exist based on such a solution. Different 
programming languages and technologies lead to the 
implementation of agents like operating system 
processes (instances of executable programs) or code 
managed by a suited run-time environment (i.e. Java 
in a Java Virtual Machine on any operating system). 
In both cases, coordination and management of 
agents are only possible at an operating system level. 

Agent-thread. Recently threads have overcome 
processes in multi tasking programming. A thread can 
be seen as a light process and a process can be 
thought as a multi-thread application with a common, 
shared memory. The activity of managing threads 
within a process (e.g. activate, suspend, …) can be 
made easier than managing processes in the operating 
system environment. In this case, agents are not 
intrinsically independent, since they are able to share 
some resources in the same process, hence they also 
could be non-autonomous. It is responsibility of the 
(good) programmer to prevent agents from accessing 
shared resources thus maintaining autonomy 
characteristics. 

Depending on some operating system services, and 
on how they are implemented, some further 
disadvantages given by this solution arise, in 
particular when related to security issues. In the 
Microsoft Windows NT/2000 architecture for 
example an authentication mechanism is present, at a 
process level, therefore all the threads in the same 
process will be known through the same identity and 
they will have equal privileges and authorizations.  In 
the case in which different agents are to be associated 
to different users with different capabilities of 
intervention on the system (and on the operating 
system facilities), agent profiles and policies have to 
be managed and this cannot be done exploiting 
operating system view of security mechanism, yet it 
has to be explicitly programmed. 

Most agent platforms are developed in and rely on an 
object-oriented programming language (typically 
Java). Then developers are provided with a basic 
abstract class (maybe the class AgentClass) to be 
extended in order to define more and more 
specialized classes that is agents with well defined, 
diverse functionality. Agents inherit from the base 
class AgentClass the ability to live in the agent 
platform (facilities and services for elementary 
operations such as naming, messaging, …) and they 
can then be specialized by defining a set of personal 
resources (private data structures) and their behaviors 
(methods). In this case data structures become the 
attributes of the class which has been derived from 
the base one. 

In order to implement multi-behavior functionality of 
the agent in the framework, two different solutions 
can be adopted: 

1. Every agent uses one and only one thread. 
Behaviors are defined through an extension of a 
base class overriding an entry point method. 
Agent executes each entry point method for all 
active behaviors with a round-robin schedule in 
its thread, without pre-emption. 

2. Every agent uses one thread for each behavior. 
Behaviors are defined through extensions of a 
base class overriding an entry point method. An 
agent creates and starts a new thread for each 
behavior; the thread executes the entry point of 
its associated behavior concurrently with other 
threads. 

Solution 1. With the adoption of this first solution, 
no race-conditions or dead-locks occur since 
behaviors are in execution one at a time as they are 
scheduled sequentially. On the other hand, because of 
the non-preemptive multi-tasking model which has 
been adopted, agent programmers must avoid using 
endless loops, and must not perform “long” 



operations within the entry point method. The 
programmer should split the behavior action in 
several sub-activities which only require small 
computation time. Sometimes this could be a difficult 
task. 

Solution 2. With this second solution, behavior 
actions can be as long as necessary because behaviors 
are executed in multi-tasking, under a preemptive 
scheduling policy. In this case state information 
should be kept as local as possible in order to keep 
behaviors as decoupled as possible, and to prevent 
problems such as race-conditions and dead-locks 
occurring. When agent programmers use resources 
shared among several behaviors they must use the 
synchronization functionality provided by the 
programming language in order to cope with 
concurrency problems. In both cases, functionality 
and performance which can be obtained from an 
agent system result to be strongly dependent on the 
skills of the programmers. 

Proposed Solution 
In the proposed solution a slightly different approach 
to the definition of the Agent class has been adopted. 
It follows the thought of an agent as a software entity 
whose state is defined by a particular set of data. 
Other data exist in the agent but they do not compose 
the agent state and they are used only by a particular 
behavior in order to perform some local activity. The 
data composing the agent state have to be accessible 
from every behavior but they are collected in specific 
data structures and they are protected by the risk of 
race-conditions and dead-lock.        

In the following it will be described how this model 
of the agent has been implemented, and how the 
programmers should use the classes they have been 
provided with by the framework. 

In order to be hosted in the platform an agent has to 
be an instance of the unique class Agent that cannot 
be extended. Hence, the programmer of a new agent 
should define a new class, extended from another 
class called AgentTemplate which offers a set of 
methods and attributes suitable for the definition of 
private data and behaviors of the agent. Although an 
object-oriented programming language (C#) has been 
used, the programmers must not define the agent 
private data as attributes of the extended 
AgentTemplate class, but they have to use the 
exposed method which allows adding generic object 
as item of the agent private data collection.  

Once the agent template has been defined, the 
programmers can deploy the new template in the 
platform and every time a new agent is required, 
always based on the same agent template, the 
platform crates a new instance of the Agent class 

binding it with the template. The agent class executes 
the behaviors and manages the agent data defined in 
the template.  

To give more details about the framework class 
library, an agent template is composed by a set of 
behavior objects that, of course, defines the various 
activities that an agent can perform, and a set of 
knowledge objects that represent groups of private 
data logically connected. A knowledge object 
contains a set of Object, the base class in the CTS 
from which any instance of any class is derived. With 
such a model, a behavior can define and use as many 
its own private data as necessary without problems of 
race-conditions or dead-locks since data are not 
shared with other behaviors. Every shared among 
behaviors data have to be a data representing the 
agent state, so it has to be defined in a knowledge 
object of the agent template. Items in the knowledge 
are not directly accessible from others classes since 
they are stored in a private collection. In order to 
access an item of a knowledge, a behavior have to ask 
the knowledge for the particular item using an 
exposed method and the behavior have to signal to 
the knowledge the begin and the end of a section of 
code which use one or more knowledge objects. 

With this solution, the programmer has not to care 
about synchronization problems while accessing data 
shared among various behaviors. The solution, in 
fact, imposed the use of the specific method for the 
access to the knowledge objects and the knowledge 
class cares about synchronization transparently. 
Should a programmer try to access a knowledge item 
without signaling the knowledge the section of the 
code in which he/she wants to access the item, an 
exception will be raised. 

The programmer can not define a section of code that 
use a knowledge object nested in another section that 
use a different knowledge object but he/she can 
define a section of code that access a list of 
knowledge objects. With these assumptions the 
knowledge class can perform synchronization check 
adopting dead-lock avoidance algorithms and provide 
a simple but effective mechanism for the safe access 
to shared data of the agent.   

Furthermore, the proposed model allows the platform 
to perform any type of control on the state of the 
agent and allows the development of advanced 
features of the platform. For instance, this idea is 
exploited in order to provide the platform with a 
transparent mechanism of persistence for agents. 
Such a service, knowing and managing the data of 
each agent perform, check every time an agent state 
change and save the new agent state in a suitable way 
that could be made with different solutions as 



serialization, mapping in relational data base or using 
object oriented data base. 

Another advanced feature of the platform which is 
achievable because of the proposed agent model, is 
the functionality of enroll the modification to the state 
of an agent in a transaction with other actions as 
message transmission. 

System Integration and Services 
All of the agents in the proposed agent programming 
framework, are executed in the so called Application 
Domains, hence they can exploit all of the discussed 
characteristics (see Section 3.2) coming with the 
application domain itself. By means of the adoption 
of this technological solution, results achieved are the 
following: 

• easy management for life-cycle of the agents,  

• agents can have different rights/denials or 
privileges within the same process. 

Thanks to the adoption of the .NET technology for 
the development of the discussed Agent 
Programming Framework, a strict interaction is 
achieved with both the operating system and the run-
time environment. Moreover, services can be easily 
developed in such a way that applications can take 
advantage of replication mechanism from the 
operating system (e.g. Network Load Balancing, 
Component Load Balancing). Transactional 
operations on data coming from non-agent-based 
applications (RDBMS) are supported as well as 
messaging systems, both synchronous and 
asynchronous (e.g. MSMQ Message queuing) 
flexible, reliable, and safe. Agents developed within 
the proposed agent programming framework can be 
integrated with the Microsoft Windows operating 
system (Server Family) at the Active Directory level. 
In such a way, the directory facilitator mechanism 
that every agent platform is provided with, is the 
same of all of the others components in the system 
(agent-system and everything else), thus it can be 
easily accessed from all the applications which can 
share information on the agents for their own 
advantage. Moreover agents are directly connected to 
the Internet through the standard operating system 
communication facility. Agent mobility is guaranteed, 
within the boundaries of the domain administered by 
the server which is hosting the agent framework, 
without any additional cost in terms of programming. 
It comes naturally that integration can be easily 
achieved towards the vast suite of Microsoft server 
products, from which agents can take much 
advantage for development of enterprise applications 
such as e-commerce, workflow management, and 
application interoperability. 

Portability Issues 
The present solution is entirely based on the .NET 
technology and on the use of the Microsoft Windows 
platform which offers services and facilities which 
have revealed to be very useful within an agent 
framework (e.g. directory facilitator, message 
queuing, and more). Nevertheless the concept of 
Application Domain is also available in BeOS and 
Linux hence portability to other operating systems 
can be foreseen in a next future. Moreover the .NET 
framework is open to a wide variety of languages and 
developers will not be tied to the use of the C# 
language (Microsoft Corp.) if they do not like it. 
Corel is implementing the .NET CLI as shared source 
for FreeBSD enabling .NET to move to other 
platforms and open source implementations are 
underway in a couple of research projects. 

5. CONCLUSIONS 
As result, a novel architecture has been presented for 
software agents development in an agent based 
system that is an Agent Programming Framework. 
The work has demonstrated good quality of .NET 
programming platform applied to agent technology. 
In particular, using the Application Domains coupled 
with the language C# has made it possible to have an 
efficient, reliable, and easy to program agent 
framework for the development of enterprise agent-
based applications. Moreover the integration of agent 
technology with other systems or the re-use of 
existing software (e.g. decision algorithm, control 
techniques) is made possible thanks to the definition 
of the Agent class has been adopted. An agent-
oriented programming paradigm has also been 
introduced within this agent programming 
framework.  

6. REFERENCES 
[App02a] Review of software products for Multi-

Agent Systems by Applied Intelligence (UK) Ltd. 
on behalf of  AgentLink, the European Network 
of Excellence for Agent-Based Computing (IST-
1999-29003), June 2002. 

 
[Bat94a] Bates, J., “The Role of Emotion in 

Believable Characters,” Communications of the 
ACM 37 (7), pp. 122-125, 1994. 

[Mic01a] “Microsoft C# Language Specification”, 
Microsoft Press, Redmond, Washington, 2001. 

[Min85a] Minsky, M. (ed.), The Society of Mind, 
New York: Simon & Schuster, 1985. 

[Min01a] Mingins, C. & Nicoloudis, N., “.NET: a 
new Component-oriented Programming Platform, 
Journal of Object-oriented Programming, 
October/November, 48-51, 2001. 



[Nwa96a] Nwana, H.S., “Software Agents: an 
Overview”, Knowledge Engineering Review, Vol. 
11, No 3,1-40, September. Cambridge University 
Press, 1996  

[Nwa96b] Nwana, H.S. & Wooldridge, M., 
“Software Agent Technologies,” British 
Telecommunications Technology Journal 14 (4), 
pp. 16-27, October 1996. 

[Par97a] Parunak, H.Van Dyke, “Go to the Ant: 
Engineering principles from Natural MultiAgent 
Systems,” Annals of Operations Research 75 
(1997) 69-101 (Special Issue on Artificial 
Intelligence and Management Science). 

[Pla01a] Platt, D.S., “Introducing Microsoft .NET”, 
Microsoft Press, Redmond, Washington, 2001. 

[Rao95a] Rao, A. S. & Georgeff, M. P., “BDI 
Agents: From Theory to Practice,” In Proceedings 

of the 1st International Conference on Multi-
Agent Systems (ICMAS-95), San Francisco, 
USA, June, pp. 312-319, 1995. 

 [Wil02a] Williams, M., “Microsoft Visual C# 
.NET”, Microsoft Press, Redmond, Washington, 
2002. 

[Woo95a] Wooldridge, M., Jennings, N.R., 
“Intelligent agents: Theory and practice”, The 
Knowledge Engineering Review 10, 2,115-152, 
1995. 

[Woo99a] Wooldridge, M., “Multiagent Systems: A 
Modern Approach to Distributed Artificial 
Intelligence”, G. Weiss (Ed.), MIT Press, 
Cambridge, MA, 1999. 

 
 

 


