
PMPI: A multi-platform, multi-programming
language MPI using .NET

Mohammad M. El Saifi Edson Toshimi Midorikawa

Department of Computer Engineering and Digital Systems
Polytechnic School – University of São Paulo

Sao Paulo - SP - Brazil

{mohamad.saifi, edson.midorikawa}@poli.usp.br

ABSTRACT

Implementation of the MPI standard on heterogeneous platforms is desirable because it permits using resources
discarded by existing MPI implementations of homogenous systems. This paper describes PMPI, as partial
implementation of the MPI standard on a heterogeneous platform. Unlike other MPI implementations, PMPI
permits MPI processes written in different programming languages to run on multiplatform system. PMPI is built
on top of .NET framework. PMPI can span multiple administrative domains distributed geographically. To
programmers, the grid looks like a local MPI computation. The model of computation is indistinguishable from
that of standard MPI computation. This paper studies the implementation of PMPI with Microsoft .NET
framework and MONO to provide a common layer for a multiprogramming language multiplatform MPI
application. We show the obtained results using PMPI, and compare them to MPICH2. The obtained results will
show that the use of .NET framework for PMPI is feasible and can be optimized for performance.

Keywords
MPI, Parallel Computing, HPC, .NET Framework, MONO

1. INTRODUCTION

For many years, parallel computation was always
an attractive alternative for obtaining high-
performance computing [Dongarra et al. 2003]
[Foster 1995]. With the use of multiple
computational nodes interconnected by a high-
speed network, clusters of computers are the most
common platform of parallel machines. The recent
introduction of multi-core microprocessors will
result in parallel computers becoming available on
desktops.
MPI is perhaps the best known standard used in
parallel computation allowing nodes spread across
the network to collaborate to achieve a common
computational goal [Andrews 2000] [MPI Forum
1994].

The limitation of MPI is two fold. On the one side,
most existing MPI implementations, such as
MPICH2, execute only on homogeneous platforms
[MPICH2 2006]. Accordingly, idle cycles that are
spread across a variety of machine architectures and

operating systems across networked PCs, are
discarded because of the lack of an MPI that
executes on a heterogeneous platform. These idle
cycles are increasingly being recognized as a huge
and largely untapped source of computing power

On the other side, almost existing MPI
implementations use C, C++ or FORTRAN
programming language. Accordingly, researchers
and programmers who collaborate on the solution
of the same problem need to stick to one of the
languages that supports the MPI library they intend
to use.

The implementation of MPI that can tap into those
idle resources on heterogeneous platforms is
desirable because it allows researchers and
programmers, who need high performance
computing and have available heterogeneous
platforms around their campus, to use all available
resources [Kelly, Roe and Sumitomo 2002][Kelly
and Roe 2002][Kelly and Mason 2003]. Having the
ability to use MPI on heterogeneous systems
maximizes computational power resources.

mailto:@poli.usp.br

In addition to using MPI on a heterogeneous
platform, programmers want to use a variety of
programming languages in their computational
program. In the same MPI computation,
programmers want nodes to run applications written
in different programming languages simultaneously
using MPI standards. This becomes a merit when
we have multiple programmers participating in the
solution of a unique problem, where each
programmer is writing a program that runs on a
separate node such as same data multiple program
solutions. This permits programmers to explore
their abilities and skills in their preferred
programming language, and to use the
programming language that best suit the solution of
the problem.
This paper studies the feasibility of implementing
MPI standard on a heterogeneous platform by
implementing the component PMPI. PMPI aims to
provide programmers and researchers with a
framework that takes care of a transparent
communication infrastructure between the
heterogeneous nodes in a MPI computation in a
robust and secure manner. The programmer is left
to concentrate only on the application specific
computational aspects. We take advantage of the
.NET framework to provide application
programmers with a choice of the programming
language, all of which can use the same PMPI
framework classes.

There are different choices that can be made to
implement the PMPI component. We choose the
.NET framework [Ritchter and Balena 2002] for
this purpose as the first tentative and used .NET
Remoting [McLean 2003] [Rammer 2002] as the
communication infrastructure for PMPI. In this
implementation, PMPI acts as a remote-object
based framework for creating MPI parallel
applications. The framework is built using the
extensibility features of the .NET Remoting
framework.

Unlike the Java virtual machine, the .NET runtime
is designed to be language independent.
Accordingly, developers can create their
applications using any language that targets the
CLR such as: C#, Visual Basic, Visual C++ or one
of many other .NET languages such as Eiffel, Perl,
Cobol, Component Pascal, Smalltalk, or Fortran
[Ritchter and Balena 2002]. Today there are about
twenty six different programming languages that
target the .NET framework [Ritchter and Balena
2002]. PMPI enables programmers to program in a
normal MPI fashion, without being concerned what
platform or programming language other
participating nodes will run.

The main contribution of this paper is to study the
feasibility of implementing MPI on a virtual
machine and show performance results compared to
other existing MPI implementation. This offers
programmers who have heterogeneous systems with
a library that can reap the available computational
power on available machines.

The remainder of this paper is organized as follows.
Section 2 describes the architecture of PMPI.
Section 3 describes the programming model of
PMPI. Section 4 explains the sample application
used in the tests. Section 5 describes the results and
some preliminary performance figures. Finally,
section 6 concludes and discusses future and related
works.

2. ARCHITECTURE
PMPI architecture follows the standard
structure of a layered networking architecture.
PMPI is composed of three components. The first
component is PMPI which contains MPI
implementation. The second one is the agent that
runs on each node participating in the MPI
computation. The agent is responsible for starting
MPI programs on nodes, and offers administrative
information about nodes, in addition to information
about administrative domains. The third component
is PMPI Gateway, or PIP (Platform Interface
Portal). The PIP serves as a gateway to
administrative domains to overcome problems
raised by firewalls and NAT separating different
administrative domains.

Each administrative domain has a PIP known to all
agents. Inside PMPI component, there is an address
resolution layer that is transparent to programmers.
This layer decides on whether to direct MPI calls
directly to other nodes or to their corresponding
PIPs. This permits programmers the freedom to
concentrate on their problem rather than
communication implementation.

Figure 1: Four nodes using PMPI

Ethernet

Process

Node

PMPI Agent

Process

Node

PMPI Agent

Process

Node

PMPI Agent

Process

Node

PMPI Agent

Figure 1 shows a basic PMPI infrastructure. The
figure shows a structure with four nodes running on
one administrative domain connected by local
Ethernet network. The processes may be running on
different platforms, and each process may be
written in a different programming language.
PMPI communication infrastructure is constructed
on .NET Remoting, and in turn, is based on
TCP/IP. .NET Remoting can be customized to
support other protocols [Rammer 2002].

Figure 2: PMPI layered view

Figure 2 shows PMPI component layers. On the
top, we have the MPI interface that is available to
programmers. When a MPI call is made, it passes
through the address resolution module to check
which administrative domain the destination node
belongs to, and what communication method is to
be uses to reach the node that costs less. For
example, nodes behind firewalls may be reachable
only through port 80 using the SOAP protocol
which is firewall friendly in contrast to the binary
protocol. On the other hand, SOAP consumes more
network bandwidth and is less efficient than binary
formatting [McLean 2003].

Figure 3 shows a sketch of a MPI computation
spanning two administrative domains where each
administrative domain is located behind a firewall.
In this figure, MPI calls made from one
administrative domain to the other are done through
the PIPs of the administrative domain. The PIP will
serve as a proxy on behalf of nodes making the call.
The scenario in figure 3 assumes that we have
barriers in both administrative domains. In other
words, nodes in administrative domain 1 cannot
reach nodes in administrative domain 2 directly
using remote object calls. Instead, they should use
the PIP proxy service to exchange messages.

Figure 3: Using PMPI on two administrative
domains

To better understand the idea, let’s take an example
where node A in administrative domain one will
make MPI call to node B in administrative domain
two. The address resolution layer of PMPI running
on node A detects that node B is running on another
administrative domain and there is no way to reach
node B directly because of a firewall or NAT. The
address resolution layer directs the call to the PIP
node of administrative domain one. The PIP in turn
directs the MPI call to PIP of administrative domain
two. The PIP of administrative domain two receives
the call and directs it to node B of its domain. If the
call is synchronous, then the PIP of administrative
domain one block node A until it receives a
notification from PIP of the other administrative
domain that node B has received the call. The PIP
acts as proxy on behalf of the nodes in their
corresponding administrative domain.

The rest of this section is divided into two
subsections. The first describes MPI standard. The
second describes PMPI architecture and constructs.

Ethernet

Process

Node

PMPI Agent

Process

Node

PMPI Agent

Process

Node

PMPI Agent

PMPI
Gateway

Node

Ethernet

Process

Node

PMPI Agent

Process

Node

PMPI Agent

Process

Node

PMPI Agent

PMPI
Gateway

Node

F i r e w a l l

F i r e w a l l

2.1 MPI: Message Programming Interface
In the message-passing library approach to parallel
programming, a collection of processes executes
programs written in a standard sequential language
augmented with calls to a library of functions for
sending and receiving messages. MPI is a complex
system. In its entity, it comprises 129 functions,
many of which have numerous parameters of
variants [Foster 1995].

In the MPI programming model, a computation
comprises one or more processes that communicate
by calling library routines to send and receive
messages to other processes. In most MPI
implementations, a fixed set of processes is created
at program initialization, and one process is created
per processor. However, these processes may
execute different programs. Hence, the MPI
programming model is sometimes referred to as
multiple program multiple data (MPMD) to
distinguish it from SPMD model in which every
processor executes the same program.

Processes can use point-to-point communication
operations to send a message from one named
process to another; these operations can be used to
implement local and unstructured communications.
A group of processes can call collective
communication operations to perform commonly
used global operations such as summation and
broadcast. MPI’s ability to probe for messages
allows asynchronous communication. Probably
MPI’s most important feature from a software
engineering viewpoint is its support for modular
programming. A mechanism called a communicator
allows the MPI programmer to define modules that
encapsulate internal communication structures
[MPI Forum 1994].

2.2 PMPI Basic Architecture
PMPI is built on top of .NET framework. We are
using Microsoft .NET framework 1.1 for Microsoft
Windows and Mono 1.0.5 for Linux. Although
Mono can run on Power PC, BSD and other
operating systems and architectures, we based our
initial implementation on Windows and Linux
operating systems although this can be expanded to
other operating systems without any modification in
the code.

The initial implementation of PMPI was devoted to
implement functionality rather that performance.
Because of this, we selected higher level
implements of the .NET framework to implement
PMPI. For the communication layer, we used .NET
Remoting which is based on remote object
communication. The classes that make up the .NET

framework are layered, meaning that at the base of
the framework are simple types, which are built on
and reused by more complex types. .NET Remoting
is one such complex type which in turn is built as
layers where each layer can be customized to
programmer needs [Jones et al 2004]. This adds
extra overhead compared to using simple raw
classes such as socket class [Rammer 2002].

We used C# as the programming language. All
.NET programming language compilers targets the
CTS (common type system) of the framework. C#
compiler helps the programmer adhere to CTS
types by setting the “CLSCompliantAttribute”
attribute to true [Bock 2003]. In this way, the
compiler generates an error whenever you try to use
a non CTS type. This guarantees that the generated
code is accessed by all .NET programming
languages since all .NET programming languages
target the CTS [Ritchter and Balena 2002].

Each node participating in the MPI computation
should have the .NET framework installed. Nodes
running Windows operating systems should install
Microsoft Framework 1.1 on their machines. Nodes
running Linux should install Mono 1.0.5. Although
there are newer versions of the framework for both
platforms, PMPI has been tested on earlier
frameworks.

In addition to the framework installed on the
machines participating in the MPI computation, the
nodes should have PMPI installed on each node.
The initial implementation of PMPI needs to have
bidirectional communication between the nodes.
Accordingly, firewalls can cause problems. The
implementation of PIP is not yet implemented.
Initially, PMPI implemented 20 MPI functions.
Those functions cover basic, asynchronous,
collective and modular commands. When MPI
computation starts, each node registers PMPI object
at a known end point to other nodes using .NET
remote object. With .NET remoting, the framework
creates a thread pool to receive the calls made
against the remote object. When node A sends data
to node B within the same administrative domain,
node B’s PMPI will receive the data and releases
the calling object immediately, node A in this.
When node B calls MPI_Receive, PMPI will check
to see if there is a message with the corresponding
tag and source. If it finds a corresponding message,
then a pointer to the message is passed to
MPI_Receive, and the call returns immediately in
node B. If no corresponding message is found with
the requested tag-source, the call in node B is
blocked until node B receives the requested
message. If node A uses synchronous MPI_SSend,
then PMPI layer on node A blocks until node B

sends a release signal after the process in node B
makes a call to MPI_Receive.

PMPI uses a hash table data structure to control
received message. The key of the hash table is a
combination of the source, tag, and communicator
ID. The value of the hash table points to a queue
whose elements contains a data structure composed
of the received message, message size, message
type and synchronization objects that the receiving
thread will block on. When the node calls
MPI_Receive with a particular tag, source and
communicator, PMPI checks the hash table for
pending messages in the queue. If it finds a
message, it pops the message from the queue in a
FIFO manner and wakes up the thread using the
synchronization objects found in the read queue
element. When the waked thread terminates, the
message is passed to the MPI_Receive call. Note
that if the call is made using MPI_Ssend, which is a
synchronous send, the receiving thread will block
the sending thread until it is waked up again by
MPI_Receive in the manner explained above. If it
comes that MPI_Receive is called before a
MPI_Send and PMPI finds the queue empty, then it
blocks the call on synchrozination objects, enqueue
the call with the synchronization objects in the
queue whose pointer is stored in a hash table. Later,
when PMPI is invoked by MPI_Send, PMPI checks
first if a pending MPI_Receive exists. If it find a
pending receive, then it pops the queue, wakes the
thread using the popped synchronization objects
and returns.

When it comes to collective operations, PMPI uses
a thread pool to perform the collective task. PMPI
uses a simple algorithm for collective tasks. Each
communicator has a master node known to all
participating nodes. The communicator master node
is responsible for coordinating the collective calls.
In other worlds, its the master communicator node
who decides when the collective call is done. PMPI
implements this by using a thread pool in the
communicator master node. When the collective
call is made, PMPI checks if the node is the master
in the target communicator. If it is not, then it uses a
methodology similar to Send_Receive explained
before. If it finds the node to be the communicator
master, then it creates one thread for each node in
the communicator, and blocks on the
synchronization object. When the thread in the pool
terminates, it verifies if other threads in the pool
had terminated; if not, then the thread blocks on a
synchronization object. If the thread happens to be
the last one, then the thread wakes all other threads
using the synchronization object. By this means, the
communicator master manages the collective
operation.

The agents will be a separate component. For MS
Windows, the agent is implemented as Windows
Service. The agent will be responsible for starting
the programs on participating nodes. In addition,
the agent will supply managing data about the
nodes themselves such as available memory, CPU
load, speed, administrative domains and other
managing data. Today, most operating systems
implement the Web-Based Enterprise Management
(WBEM), which is an industry initiative to develop
a standard technology for accessing management
information in an enterprise environment. WMI is
the Micorsoft implementation of WBEM.

The PIPs are part of PMPI architecture but are not
yet implemented. PIPs will be implemented using
Web Services. The remote object model explained
will be substituted by Web Service model. The PIP
will be a gateway on behalf of the calling node. The
architecture and implementation of PIP will
consider having two communicating PIPs on behalf
of the send and receiving nodes.

3. PROGRAMMING MODEL
The programming model is as simple as any
existing MPI implementation. The master node
initializes the MPI computation using a XML
computation file. PMPI is object based. Therefore,
the MPI functions should be called as object
methods.

When PMPI is initialized, it publishes a remote
object at a known end point. Each participating
node knows the address and port of all other nodes
in the MPI computation. When the program calls a
MPI function, PMPI receives the function call and
transmits it to the corresponding node after
resolving its address internally. Although current
implementation did not target nodes running behind
NATs and firewall, PMPI layered implementation
makes it easy to build semantics to solve the
complications raised by firewalls and NATs with
out programmer awareness. This helps the
programmer to devote his efforts on programming
rather than MPI communications. Future works will
customize the real proxy of the .NET Remoting
object to intercept message calls and select the
destination accordingly.

We wrote applications in VB.NET, C#, managed
C++, and J#. We ran each application on a different
node. All four nodes ran under Microsoft Windows
XP operating system. For MONO running on Linux
Redhat 9, we were limited to C# since it is the only
existing non-beta compiler. For simplicity, we used
only the above programming languages, but this
can extend to any available .NET programming
language. The MPI computation ran as if programs

at all nodes were written in the same programming
language.

Figure 4 shows part of the sample application
written in C# where the code initializes an MPI
computation, gets its task Id within
COMM_WOLRD, gets COMM_WORLD size,
sends data to “dest” node and later receives data
from “dest” node. Note that the MPI functions are
methods of a PMPI object called “obj”. These
methods are either static or instance methods. Static
methods of PMPI enable us to write multithreaded
programs running on a machine where all threads
use the same PMPI object. Also, it is possible to
start multiple PMPI objects where each object
participates in a different MPI computation with out
the need to MPI communicators.

4. SAMPLE APPLICATION
We used as a sample application the master-worker
model for matrix multiplication (A x B = C). The
results of this sample are compared to MPICH2 for
Windows in the next section.
The master (task Id 0) sends matrix B to all
participating nodes (workers), and distributes the
rows of matrix A into worker nodes evenly.
Workers perform the multiplication and send back
the result to the master node. Master node
accumulates the results from all workers into matrix
C. The sample application was taken from the
examples that install with MPICH2. In this sample
application, the master does not participate in the
MPI computation. It just sends the data to workers
and gets back the results into matrix C.

5. RESULTS
The performance tests are done with the sample
application written in C#. We set the number of
columns in matrix A to 1200 and the number of
columns of matrix B to 500. We varied the number
of rows of matrix A to 2400, 4800, 9600 and 19200
respectively. For each problem size, we executed
the application on one to all six nodes.

The tests are executed in three sets. The first set of
tests is the results obtained executing the sample
application on a homogeneous platform corporate
network. The second test is done on the same
corporate network with both PMPI and MPICH2.
The last test is done on a cluster using
homogeneous and heterogeneous platforms.

5.1 Results using Corporate Homogenous
Platform
We tested the application first on standalone
machines with out using parallel MPI computation.
We rewrote the application taking out all MPI
commands and compiled them using Microsoft
Visual C++, Microsoft C# and MONO C#
compilers.
The corporate network was composed of AMD 1.5
GHZ, 512 KB cache CPUs with 256 MB RAM and
40 GB HD. The nodes run under Windows XP. One
node had dual operating systems: Windows XP and
Redhat 9. The obtained results are as follows. C#
managed code application executed 27% slower
than C++ application on machine running Windows
XP or Windows 2003 operating system. On
machine running Linux Redhat 9 with mono .NET
framework, C++ executed 10 times faster than C#!
Comparing .Microsoft NET C# running on
Windows XP to MONO 1.05 C# compiler Running
under Linux Redhat 9, Microsoft C# executed 5
times faster than MONO C#.

Before going any further, let me clarify some
details about array access in managed world and
some performance issues. Each time an element of
an array is accessed, the CLR ensures that the index
is within the array’s bound. This prevents you from
accessing memory that is outside the array, which
would potentially corrupt other objects. If an
invalid index is used to access an array element, the
CLR throws a System.IndexOutOfRangeException
exception.

The index checking comes at a performance cost. If
we have confidence in our code, we can access an
array without having the CLR perform index
checking. This feature is not allowed in all .NET
languages and is not CLS complaint. Accordingly,
only .NET languages that have this feature will
benefit from fast array access such as C#.
To give an idea on how much gain we get using fast
array access, we show the following results. C#
using managed array access executes 20% slower
than C# using fast array access on the machine
running Windows XP. On Linux, C# using
managed array access, executed 5 times slower than
C# using fast array access. As we note, the
performance gain in Linux is huge (500%).

Figure 4: Part of the sample application

MPI obj = new MPI();
obj.MPI_Init(args);
id=obj.MPI_Comm_Rank(MPI_Comm_World);
tasks=obj.MPI_Comm_Size(MPI_Comm_World);
obj.MPI_Send(offset, 1,
 MPI_Integer, dest, mtype,
 MPI_Comm_World);
obj.MPI_Send(rows, 1, MPI_Integer, dest,
 mtype, MPI_Comm_World);

The problem with fast array is that not all .NET
languages support it since it is not a CLS compliant.
In addition, it is harder to code than managed array
access since it uses pointers. Accordingly, the
benefit of using fast array is limited to only a subset
of .NET programming languages.
Later, we executed the application using both
MPICH2 and PMPI using managed array access
with PMPI. The sample application running on
PMPI nodes was written with C#, Java.NET,
managed C++ and VB.NET. The compiler choice
did not affect the result. We used a various
combination of the programming languages and we
got the same results. The results are shown only for
Windows OS since we used MPICH2 for windows.
In figures 5, we show a comparison between PMPI
and MPICH2 for different problem sizes executing
on 6 nodes. The results demonstrate that PMPI
executed slower than MPICH2 between 40% and
70%.

Figure 6 shows the linear relation ship between the
number of nodes and the execution time. As we
increase the participating nodes, the execution time
decreases linearly.

Figure 5: comparison between PMPI and MPICH2

Figure 6: Execution time as a function of
participating nodes

5.2 Results using cluster with a
Heterogeneous Platform

The cluster, named BIO, is composed of 8 nodes
each with dual 2.0 GHZ, 512 KB cache CPUs with
512MB RAM and 40 GB HD.

As before, we tested the application first on a
standalone machines with out using parallel MPI
computation. We rewrote the application taking out
all MPI commands and compiled them using
Microsoft C# compiler and mono C#.

Later, we executed the application on the cluster
using up to six nodes where nodes varied between
nodes running Windows 2003 server and nodes
running Linux Redhat 8. The result is shown below
in figure 7. As the figure shows, Microsoft .NET
platform performed better than MONO .NET
framework. When we mixed the nodes between
Windows and Linux operating systems, PMPI
executed with performance equivalent to the
average of executing on each platform
independently.

Figure 7: PMPI on a heterogeneous platform

5.3 Result analysis
As shown in section 5, PMPI executes as a linear
function of the problem size. The execution time
increased linearly as we increased the matrix size.
Also, as we increase the number of nodes, the
execution time decreased almost linearly.

Although PMPI executes slower than MPICH2, the
main overhead is a result of managed array access
and the use of high construct communication
construct of the .NET framework. This overhead
was expected and is subject for future work.

In addition, we detected that the use of thread
pool within the program structure, degraded PMPI
performance in a master-worker model. This loss of
performance resulted from the fact that the
operating system has full control of the thread pool
which resulted in activating threads to receive the
results from nodes while other threads were still
sending data to other nodes. With a custom thread
pool, PMPI will have full control on the executing
thread, and in turn, can block receiving threads
while PMPI is sending. This will improve a lot
performance especially when we have large number
of nodes. This happens because as we increase the
number of nodes, we have greater the tendency of
nodes completing their jobs before the master.

PMPI with multiPlatform

0 50 100 150 200 250 300 350 400 450 500

2 3 4 5 6
nodes

Tempo

Windows Linux Mixed

Time x Number of Nodes

60.0
70.0
80.0
90.0

100.0
110.0
120.0
130.0

3 4 5 6
Number of nodes for size=9600

Time

Time x Problem size (n = 6)

0
20
40
60
80

100

120

140

160

180

2400 4400 6400 8400 10400 12400 14400 16400 18400
Problem Size PMPI MPICH2

Moreover, there are some other code tuning of
PMPI that can improve performance such as
reducing .NET framework boxing, a mechanism
that .NET framework exchange data between the
allocated stack and managed heap. Boxing in .NET
managed code is known to have performance cost
and minimizing it can improve performance a lot.

6. RELATED WORKS
In this section we discuss related work the can be
use parallel computing on a multiplatform. In
[Fer05], experiment with implementation of parallel
programs using C# running on Unix and Windows
is done. In [Will01], a binding between an already
implemented MPI interfaces and C# is done. In
[Car00], a Multiplatform MPI implementation is
done for JAVA programming language. However,
none of the above works have focused and worked
with a Multiprogramming Language MPI.

7. CONCLUSION AND FUTURE
WORKS
The first implementation of PMPI was shown to be
feasible and it is possible to execute MPI standards
on a multi-language and multiplatform systems.
Although the first implementation showed that
PMPI is slower than MPICH2, the difference is
explained by known issues and these issues can be
eliminated. Care should be taken when using a
heterogeneous system including Linux with
managed array access. As shown in the preliminary
results, mono performs very poor with managed
array access. In such a case, we should consider
using fast array access.

The next step in this project is to span PMPI to
multiple administrative domains that span
geographic area across the internet. In addition,
lower communication constructs can improve
performance in addition to use a custom thread pool
to manage threads instead of the operating system
thread pool. This will give us a complete control on
the threads. Also, we will do a comparison between
JavaMPI to PMPI .

REFERENCES
[And00a] Andrews, G.R. Foundation of

Multithreading, Parrallel, and Distributed
Programming, pp 115-243, 2000.

[Rit02a] Ritchter,J. and Balena,F. Applied
Microsoft Dotnet Framework Programming in
Microsoft C# 2002.

[Fos95a] Foster, I.. Designing and Building Parallel
Programs, pp 275-310, 1995

[Don03a] Dongarra,J. and Foster,I. and Fox,G. and
Gropp, W., Kennedy,K. and Torczon,L.
White,A. Sourcebook Of Parallel Computing.
2003.

[Ram02a] Rammer, I. Advanced Dotnet Remoting
in C#.2002.

[Boc03a] Bock,J. and Barnaby,T. Applied Dotnet
Attributes. 2003

[East04a] Easton, M.J. and King, J. Cross-Platform
Dotnet Development. 2004

[Jon04a] Jones, A., Ohlund,J. and Olson, L.
Network Programming for the Microsoft
Dotnet Framework. 2004.

[Ard02a] Ardestani, K. and Ferracchiati, F. and
Gopikrishna,S., Redkar,T., Sivakumar, S.,
Titus, T. Visual Basic Dotnet Threading. 2002.

[Sha03a] Sharp, J. and Jagger, J. Microsoft Visual
C# Dotnet. 2003.

[McL03a] McLean, S. and Naftel,J. and
Williams,K. Microsoft Dotnet Remoting. 2003.

 [Mar04a] Mariani,R. , Bohling, B., C.Smith, and
S.Barber. Improving Dotnet Application
Performance and Scalability. 2004.

[MPI94a] MPI FORUM. 1994. The MPI message
passing interface standard. University of
Tennesse,Knoxville.

[MON05a] The MONO project. http://www.go-
MONO.com

[ECMa] ECMA ISO/IEC 23270, ISO/IEC 23271
and ISO/IEC 23272. http://www.ecma.ch and
http://msdn.microsoft.com/net/ecma

 [Kel02a] Kelly,W., Roe,P. and Sumitomo,J. , G2:
A Grid Middleware for Cycle Donation using
Dotnet , The 2002 International Conference on
Parallel and Distributed Processing Techniques
and Applications, Las Vegas, June 2002.

[Kel02b] Kelly,W. and Roe,P., Donating Cycles
over the Internet Using Web Services , The
Eighth Australian World Wide Web
Conference, Sunshine Coast, July 2002

[Fer05] Ferreira, F and Sobral, Joao, ParC#:
 Parallel Computing with C# in .Net*,
 Springer-Verlag Berlin Heidelberg 2005
[Will01] Willcock,J and Lumsdaine,A and
 Robison,A, Using MPI with C# and the
 Common Language Infrastructure Indiana
 University Computer Science Department
 Technical Report 570
[Car00] Carpenter,B, Getov,V, Judd,G, Skjellum,T

and Fox,G MPJ: MPI-like Message Passing for
Java. Concurrency: Practice and Experience
Volume 12, Number 11. September 2000

http://www.go
http://www.ecma.ch
http://msdn.microsoft.com/net/ecma

