
A Microsoft .NET Front-End for GCC

Martin v. Löwis

Hasso-Plattner-Institut
für Softwaresystemtechnik GmbH

Postfach 900460
+49 331 5509 239

Martin.vonLoewis@hpi.uni-potsdam.de

Jan Möller

Hasso-Plattner-Institut
für Softwaresystemtechnik GmbH

Postfach 900460

Jan.Moeller@hpi.uni-potsdam.de
ABSTRACT

In the past, embedded systems developers have been severely constrained in their choice of programming
languages. Recent advancements in processing power and memory availability allow for new techniques. We
present an extension to the GNU Compiler Collection (GCC) that offers the expressiveness of all Microsoft
.NET languages to embedded systems.

Keywords
Common Intermediate Language, GNU Compiler Collection, GCC.

1. INTRODUCTION
Embedded systems are known for the severe resource
constraints in terms of memory size and clock speed.
For that reason, developers traditionally use
assembler language and C for such systems [Bar99].
Compared to current desktop and server
programming languages such as Java, C#, Python,
Visual Basic, and others, the typical development
environment is tedious to use, and the development is
less productive.

There are two primary aspects of the “desktop”
programming languages that we consider interesting
for embedded developers as well: object-orientation
and safety. With object-orientation, the software may
become more maintainable, as the encapsulation
mechanisms allow for better modularization and
abstraction.

By “safety”, we refer to the reliability aspects that are
typically associated with interpreters: the run-time
system of the language will make sure that invalid
operations (such as out-of-bounds accesses to arrays)
cause a well-defined program termination (typically
through an exception), instead of causing undefined
behavior (such as memory corruption). Safe
programming languages reduce the number of bugs
that remain in the software after testing, as errors are
reliably detected. They also simplify the process of
locating the source of a bug, as the error is often
detected right after it occurred.

Unfortunately, both object-orientation and safety
come at significant run-time cost. Interpreters
execute program code much slower than similar
compiled programs. Alternatively, just-in-time
compilation is used to speed-up execution [Kra98].

Unfortunately, just-in-time compilation is itself
expensive and causes unpredictable run-time
behavior. Furthermore, a just-in-time compiler needs
to be developed for each new target architecture.

As an alternative, we present an approach which
allows static compilation of .NET programs for
embedded targets. We briefly discuss different
aspects of this solution in the remainder of this paper.

2. GCC
The GNU Compiler Collection integrates different
programming languages (C, C++, Java, Ada, …) for
various microprocessor architectures [GS04]. Among
the supported targets are many desktop and
embedded processors; GCC is known for relatively
easy extensibility to new architectures [Sta95]. While
it originally focused on the C language only, it has
recently been extended to object-oriented and safe
languages, such as Java [Bot97].

In GCC, the source code of the input language is
transformed into an intermediate representation1,
which is then processed in optimization passes. The
result of the compilation is then output as an
assembler source code file for the target machine.
This assembler file is processed with assemblers,
loaders, etc. for the target system to produce an
executable program.

The design of GCC is engineered towards
extensibility. Support for new microprocessors can

1 More precisely, there are two internal representations: the

tree structure, and the Register Transfer Language
(RTL).

be added relatively easy by describing the processor
in a machine definition. Using this machine
definition, the compiler can convert the internal
representation (RTL) into assembler code of the
target system. This assembler code is then further
processed in an assembler to object files, and
eventually combined with a linker into executable
files and libraries.

Figure 1. GCC Architecture

In the last few years, the focus in extensibility moved
towards integration of new languages into GCC, and
into integration of new optimization algorithms. To
support a new front-end, several aspects have to be
considered in the compiler framework:

• Integration of the front-end into the build
process,

• Integration of input and output file handling,
• Management of symbol tables,
• Representation of the actual code of the

program,
• Debugger support, and
• Optimization.

For each of these aspects, GCC defines interfaces
which a new front-end must use. For example, to add
a new front-end to the build process of the compiler
itself, one must create a subdirectory in the source
tree, and add files such as Make-lang.in and config-
lang.in. This will automatically result in another
option for the GCC --enable-languages switch, so that
an administrator can enable or disable the build of
this front-end. Likewise, by adding a file lang.opt to
the source directory, the GCC command line option
processing framework will automatically support
language-specific compiler options.

To integrate a front-end into the actual processing
flow in the compiler, the compiler framework defines
certain hook functions which might be filled out by
the front-end. For example, the compiler framework
will invoke a parser call-back, which then should
process all input files for the source language.

To support symbol tables and code representation
uniformly across languages, GCC defines a set of
data structures and utility functions. In the parser, the
front-end will use the utility functions to build a
program representation, which is then passed to the

back-end passes of the compiler. As an example, the
function build_decl is used to create a function
declaration object. This object is enriched, through
further function calls, with the actual body of the
function. Eventually, rest_of_compilation must be
called, which performs the optimization (if
requested), and output the assembler code.

Both optimization and debugger support in the
compiler need the help from both the front-end and
the back-end. The front-end needs to annotate the
tree with programming-level knowledge (e.g.
whether the address of an object was ever taken), and
the back-end needs to specify how many cycles each
instruction consumes, so that the instruction
scheduler can pick the most efficient of several
alternative instruction sequences.

3. The CIL front-end
The Common Intermediate Language (CIL)
[ECM02a] is a platform-independent representation
of object-oriented programs. It was designed to
support a wide range of languages. It focuses on the
C# language [ECM02b], but also supports variants of
Java, C++, Visual Basic, Eiffel, and other languages.
CIL builds the core of the Microsoft .NET
environment.

Our front-end transforms CIL code into the internal
representation, which GCC then optimizes and
outputs for the target system. Similar to the Java
front-end, we use symbolic execution to convert the
stack machine that CIL assumes into the tree
structures of GCC.

GCC

C++

C#

VB

.Net
Compiler

IL
Assembly

x86
asm

h8/300
asm

Figure 2. Integration of the Common

Intermediate Language into GCC

Unlike the Java front-end, we have no plans to
process source code directly. Instead, we use the IL
library from the DotGNU Portable.NET framework
[Dot05] to load IL assembly files into memory, and
traverse the meta-data structures in the assembly. As
a result, we do not have a traditional parser in our
front-end. Instead, we define our own traversal
algorithm, which processes all classes in the
assembly in sequence. For each class, we build the
layout of the class and the structure of the virtual
method table, and emit code for each method.

The IL front-end can, in principle, support all aspects
of the semantics of .NET programs, except for the
dynamic loading of additional assemblies which had

not been compiled through this front-end. In the
current implementation, only a subset of the .NET
concepts is available; see section 5 for details.

4. Target Systems
In principle, it is possible to support all features of
the .NET platform that don’t require dynamic
insertion of behavior. That is, all instructions of the
intermediate language can be converted into
sequences of assembler instructions of the target
system. Through generation of data structures into
the resulting assembler code, introspection of objects
is possible, using the standard APIs. Even dynamic
loading of assemblies is possible, as long as the
assembly to be loaded was compiled using GCC in
advance.

For the remaining features, we plan to support
interoperability with the Mono software [DB04]. To
achieve an integration of Mono, we need to use the
same application binary interface (ABI) that mono
uses, with respect to calling conventions, and
representation of meta-data in memory.

At the same time, we also like to target embedded
systems. At the moment, our primary target is the
Lego Mindstorms hardware [Sat02], which uses the
Renesas H8/300 processor [Ren03]. On this system,
memory is limited. For our .NET implementation,
this means primarily that we have to be very
selective in the subset of the .NET library that we can
support – the entire platform library just won’t fit
into 32k of main memory. In this environment, we
may also have to accept further limitations. However,
depending on the application’s needs, we believe that
all features of the virtual machine can be supported.
The more challenging features are floating point
computations (which require emulation in software,
as the chip has no hardware floating point support),
exception handling, and garbage collection. At this
point, we cannot yet predict what costs in terms of
memory and processor cycles these features will
require.

In addition to the Lego Mindstorms, we also target
Windows CE; in particular CE PC.

5. Current Status
Currently, only a small fraction of the CIL features
are supported, namely

• primitive data types (bool, byte, short, int, float,
double)

• classes, including static and instance attributes
and properties, as well as inheritance,

• static and instance methods, including
parameters, local variables, and constructors,

• arrays and strings,
• delegates

• arithmetic operations, and
• control flow operations (conditional and

unconditional branch instructions).
Using this subset, we have been able to develop
small control programs for the Lego Mindstorms
platform.

On the Windows CE system, we were able to create
control programs which meet hard real-time
constraints.

Work to provide additional features, such as
interfaces, and exception handling, is in progress.
Our current implementation is available from
http://www.dcl.hpi.uni-potsdam.de/
research/lego.NET/release.htm.

6. Conformance
This implementations of the CLI aims to comply
with the Kernel Profile of the ECMA specification
335. Support for the Compact Profile would be
largely possible through integration of library
implementations, such as the ones provided with
Mono. To support the Compact Profile, the biggest
challenge is the support for reflection, in particular,
for the dynamic loading of assemblies. For that to
work, a byte code interpreter or just-in-time compiler
is needed in addition to the statically-compiled code.

With respect to the Kernel Profile as specified in
[ECM02c], section 4.1 (Features Excluded From
Kernel Profile), our implementation has the
following properties:

• Floating Point is supported if the target
processor supports it or an emulation library is
available.

• Non-vector Arrays are not currently supported;
adding support would be straight-forward,
though.

• Reflection is currently not supported, but work
to add support for reflection is in progress. Due
to the overhead of reflection, support for
reflection will be selectable on a per-application
basis. See above for a discussion of dynamic
assembly loading.

• Application domains are currently not
supported; however, concepts needed to support
them (e.g. per-appdomain static class variables)
are already implemented.

• Remoting is not supported; no support is
planned.

• Varargs functions, frame growth, and filtered
exceptions are currently not supported; no
support is planned. Code that tries to use these
features is rejected in the compiler

As shown in section 5, many features of the CLI are
currently unimplemented. Most notably, there is no
support for verification: We assume that all
assemblies passed to the compiler are verifiable.
However, at this point, we don’t foresee any aspects
of the CLI metadata or instruction semantics that are
unsuitable for our implementation approach. For
example, verification would be implemented most
naturally in the compiler itself, causing no run-time
overhead.

7. Related Work
Cygnus Solutions (now Redhat) has developed a
Java front-end [GCJ05], supporting both Java source
code and byte code. The CIL front-end has taken
much inspiration from the latter.

Microsoft currently develops the Phoenix framework
[Lef04], which appears to be similar in architecture
to GCC, and also appears to contain a .NET front-
end. Very little information about Phoenix has been
published so far.

8. REFERENCES
[Bar99] M. Barr. Programming Embedded Systems

in C and C++. O’Reilly, 1999.
[Bot97] P. Bothner. A Gcc-based Java

implementation. IEEE Compcon’97.

[DB04] E. Dumbill, N.M. Bornstein. Mono: A
Developers Notebook. O’Reilly, 2004.

[Dot05] DotGNU Portable.NET.
http://www.dotgnu.org

[ECM02a] ECMA-335. Common Language
Infrastructure, Partition III: CLI Instruction Set.
Dec. 2002.

[ECM02b] ECMA-334. C# Language Specification.
Dec. 2002.

[ECM02c] ECMA-335. Common Language
Infrastructure, Partition IV: Library. Dec. 2002.

[GCJ05] The GNU Compiler for the Javatm
Programming Language.
http://gcc.gnu.org/java

[GS04] B.J. Gough, R.M. Stallman(Forword). An
Introduction to GCC. Network Theory Ltd, 2004.

[Kra98] A. Krall. Efficient JavaVM Just-in-Time
Compilation. PACT, 1998.

[Lef04] J. Lefor. Phoenix as a Tool in Research and
Instruction. July, 2004.

[Ren03] Renesas Technology Corp..H8/300
Programming Manual. 2003.

[Sat05] J. Sato. Jin Sato’s Lego Mindstorms. No
Starch Press, San Francisco, 2002.

[Sta95] R.M. Stallman. Using and Porting GNU CC.
Free Software Foundation, 1995.

