
Handling Session Classes for Predicting ASP.NET
Performance Metrics

Ágnes Bogárdi-Mészöly

BUTE, Department of Automation
and Applied Informatics

Goldmann György tér 3. IV. em.
 1111, Budapest, Hungary

agi@aut.bme.hu

Tihamér Levendovszky
BUTE, Department of Automation

and Applied Informatics
Goldmann György tér 3. IV. em.

1111, Budapest, Hungary

tihamer@aut.bme.hu

Hassan Charaf
BUTE, Department of Automation

and Applied Informatics
Goldmann György tér 3. IV. em.

1111, Budapest, Hungary

hassan@aut.bme.hu

ABSTRACT
Distributed systems and web applications play an important role in computer science nowadays. The most
common consideration is performance, because these systems must provide services with low response time,
high availability, and certain throughput level. With the help of performance models, the performance metrics
can be determined at the early stages of the development process. The goal of our work is to predict the response
time, the throughput and the tier utilization of web applications, based on queueing models handling one and
multiple session classes, with MVA and approximate MVA (Mean-Value Analysis) evaluation algorithm, in
addition to balanced job bounds calculation. We estimated the model parameters based on one measurement. We
implemented the MVA and the approximate MVA evaluation algorithm for closed queueing networks along
with the calculation of the balanced job bounds with the help of MATLAB. We have tested a web application
with concurrent user sessions in order to validate the models in ASP.NET environment.

Keywords
Web application, web performance, queueing models, performance prediction, and measurements.

1. INTRODUCTION
New frameworks and programming environments
have been released to aid the development of
complex web-based information systems. These new
languages, programming models and techniques are
proliferated nowadays, thus, developing such
applications is not the only issue anymore: operating,
maintenance and performance questions have
become of key importance. One of the most
important factors is performance, because network
systems face a large number of users, they must
provide high-availability services with low response
time, while they guarantee a certain level of
throughput.

These performance metrics depend on many factors.
Several papers have investigated various
configurable parameters, how they affect the

performance of a web-based information system.
Statistical methods, hypothesis tests are used in order
to retrieve factors influencing the performance. An
approach [Sop05a] applies analysis of variance,
another [Bog05a] performs independence test.

The performance-related problems emerge very often
only at the end of the software project. With the help
of properly designed performance models, the
performance metrics of a system can be determined
at the earlier stages of the development process
[Smi90a] [Smi01c]. In the past few years several
methods have been proposed to address this goal. A
group of them is based on queueing networks or
extended versions of queueing networks [Jai91a]
[Man02a] [Urg05a]. By solving the queueing model
using analytical and simulation solutions,
performance metrics can be predicted. Another group
uses Petri-nets or generalized stochastic Petri-nets
[Ber02b] [Kin99a], which can represent blocking and
synchronization aspects much more than queueing
networks. The third proposed approach uses a
stochastic extension of process algebras, like TIPP
(Time Processes and Performability Evaluation)
[Her00a], EMPA (Extended Markovian Process
Algebra) [Ber98a] and PEPA (Performance
Evaluation Process Algebra) [Gil94a].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

Today one of the most prominent technologies of
web-based information systems is Microsoft .NET.
Our primary goal was to predict the response time of
ASP.NET web applications based on queueing
models handling one and multiple session classes,
because response time is the only performance metric
to which the users are directly exposed. Our
secondary goals were to predict the throughput and
the utilization of the tiers.

The organization of this paper is as follows. Section
2 covers backgrounds and related work. Section 3
presents our demonstration and validation of the
models in the ASP.NET environment, namely,
Section 3.1 describes our estimation of the model
parameters, Section 3.2 presents our implementation
of the MVA and the approximate MVA evaluation
algorithm along with the calculation of the balanced
job bounds, and Section 3.3 demonstrates our
experimental configuration as well as our
experimental validation of the models. Finally, we
draw conclusions.

2. BACKGROUNDS AND RELATED
WORK
Queueing theory [Jai91a] [Kle75a] is one of the key
analytical modeling techniques used for computer
system performance analysis. Queueing networks
and their extensions (such as queueing Petri nets
[Kou03a]) are proposed to model web applications
[Man02a] [Urg05a] [Urg05b] [Smi00b].

In [Urg05a] [Urg05b], a basic queueing model with
some enhancements is presented for multi-tier web
applications. An application is modeled as a network
of M queues: (Figure 1). Each queue
represents an application tier, and it is assumed to
have a processor sharing discipline, since this
discipline closely approximates the scheduling
policies applied by most of the operating systems.

MQQ ,...,1

A request can take multiple visits to each queue
during its overall execution, thus, there are
transitions from each queue to its successor and its
predecessor as well. Namely, a request from queue

 either returns to with a certain probability
, or proceeds to with the probability

. There are only two exceptions: the last queue
, where all the requests return to the previous

queue , and the first queue , where the
transition to the preceding queue denotes the
completion of a request. denotes the service time
of a request at

mQ 1−mQ

mp 1+mQ

mp−1

MQ
)1(=Mp 1Q

mS

mQ)Mm(≤≤1 .

Internet workloads are usually session-based. The
model can handle session-based workloads as an

infinite server queueing system , that feeds the
network of queues and forms the closed queueing
network depicted in Figure 1. Each active session is
in accordance with occupying one server in . The
time spent at corresponds to the user think time
Z. It is assumed that sessions never terminate.
Because of the infinite server queueing system, the
model captures the independence of the user think
times and the service times of the request at the
application.

0Q

0Q

0Q

Z

Z

Z

1S

1Q

2S

2Q

MS

MQ

Mp

11 −− Mp21 p−11 p−

3p

2p

1p

0Q

Figure 1. Modeling a multi-tier web application
using a queueing network

An enhancement of the baseline model [Urg05a] can
handle multiple session classes. Incoming sessions of
a web application can be classified into multiple (C)
classes. N is the total number of sessions, and
denotes the number of sessions of class c, thus,

. A feasible population with n sessions

means that the number of sessions within each class c
is between 0 and , and the sum of the number of
sessions in all classes is n. In order to evaluate the
model, the service times, the visit ratios, and the user
think time must be measured on a per-class basis.

cN

∑ =
=

C

c cNN
1

cN

The model can be evaluated for a given number of
concurrent sessions N. A session in the model
corresponds to a customer in the evaluation
algorithm. The MVA (Mean-Value Analysis)
algorithm for closed queueing networks [Jai91a]
[Rei80a] iteratively computes the average response
time of a request and the throughput. The algorithm
introduces the customers into the queueing network
one by one, and the cycle terminates when all the
customers have been entered.

In addition, the utilization of the queues can be
determined from the model, using the utilization law
[Jai91a] [Kle75a]. The utilization of the queue m is

mmm SXVU = , where X is the throughput and is
the visit number (the number of visits to made
by a request during its processing).

mV

mQ

The MVA algorithm is only applicable if the
queueing network is in product form, namely, the
network has to satisfy the conditions of the job flow

balance, one-step behavior, and device homogeneity.
Furthermore, the queues are assumed either fixed-
capacity service centers or infinite servers, and in
both cases exponentially distributed service times are
assumed.

MVA is a recursive algorithm. Handling one session
class for large values of customers, or if the
performance for smaller values is not required, MVA
can be too expensive computationally. If we handle
multiple session classes, the time and space
complexities of MVA are proportional to the number
of feasible populations, and this number rapidly
grows for relatively few classes and jobs per class.
Thus, it can be worth using an approximate MVA
algorithm [Rai91a] [Sin05a] or a set of two-sided
bounds [Rai91a] [Zah82a].

These bounds referred to as balanced job bounds are
based on the issue that a balanced system has a better
performance than a similar unbalanced system. A
system without a bottleneck device is called a
balanced system, in other words, the total service
time demands are equal in all queues. The balanced
job bounds are very tight, the upper and lower
bounds are very close to each other as well as to the
real performance. D is the sum of total service
demands, is the average service

demand per queue, and is the maximum
service demand per queue.

MDDavg /=

maxD

⎭
⎬
⎫

⎩
⎨
⎧

+
−+−

ZD
DDNDZND avg)1(,max max

ZDN
DNDNDNR
+−

−
−+≤≤

)1(
)1()1()(max

ZDN
DNDNDZ

N

+−
−

−++
)1(

)1()1(max

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−++

≤≤

ZD
DDNDZ

N
D

NX
avg)1(

,1min)(
max

The model validation presented in [Urg05a] was
executed in a J2EE environment, while in this paper
the models are demonstrated and validated in an
ASP.NET environment. In order to improve the
model, it must be enhanced to handle the limits of the
four thread types in .NET thread pool, in addition to
the global and the application queue limit [Mei04a],
since in previous work [Bog05a] we have proven by
statistical methods [Bra87a], that the limits of the
four thread types, namely, the maxWorkerThreads,
maxIOThreads, minFreeThreads, minLocalRequest-

FreeThreads, along with the global and application
queue limit, namely, the requestQueueLimit, app-
RequestQueueLimit parameters have a considerable
effect on performance, in other words, they are
performance factors.

3. CONTRIBUTIONS
We have implemented a three-tier ASP.NET test web
application (Figure 2). Compared to a typical web
application, it has been slightly modified to suit the
needs of the measurement process.

Figure 2. The test web application architecture

Thereafter, we have demonstrated and validated the
models in the ASP.NET environment. Firstly, we
have estimated the input values of the model
parameters from one measurement. Secondly, we
have implemented the MVA and the approximate
MVA algorithm, along with the calculation of the
balanced job bounds with the help of MATLAB, and
we have evaluated the model. Finally, we have tested
a typical web application with concurrent user
sessions, comparing the observed and predicted
values in order to validate the models in the
ASP.NET environment.

We expect that the baseline model and the model
handling multiple session classes can be validated in
ASP.NET environment. The thread pool settings and
the queue limits are common in the two
environments (J2EE and .NET), but the concrete
threads (four types, their partitioning in the thread
pool) and queues (two types, their placement and
configuration) are specific to .NET. Thus, a general
model for the two environments with specific
extensions is expected, which is more accurate than
the baseline model or the model handling multiple
session classes. The algorithms presented in
[Urg05a] could not be reused directly, because they
must be extended.

Estimation of the Model Parameters
The web application was designed in a way that the
input values of the model parameters can be
determined from the results of one measurement.
Each page and class belonging to the presentation,
business logic or database was measured separately.

Handling one session class, the input parameters of
the model are the number of tiers, the maximum
number of customers (simultaneous browser
connections), the average user think time Z , the
visit number and the average service time mV mS
for . mQ)Mm(≤≤1

During the measurements the number of tiers was
constant (three). The maximum number of customers
means that the load was characterized as follows: we
started form one simultaneous browser connection
then we continued with two, until 52 had been
reached. In order to determine the average user think
time we averaged the sleep times in the user scenario.
To determine we summed the number of
requests of each page and class belonging to the
given tier in the user scenario. To estimate

mV

mS we
averaged the service times of each page and class
belonging to the given tier.

Handling multiple session classes, the input model
parameters are the number of tiers, the number and
the maximum number of customers, respectively, on
a per-class basis, the average user think time cZ , the

visit number , and the average service time cmV , cmS ,
for (, mQ Mm ≤≤1 Cc ≤≤1).

There were two classes. The number of sessions for
one class was constant 10, while the number of
simultaneous browser connections for the other class
was varied up to a maximum number of customers.
The load was characterized as follows: we started
from one simultaneous browser connection then we
continued with 5, 10, until 70 had been reached. To
determine cZ , the sleep times in the user scenario
were averaged per class. In order to determine ,
the number of requests of each page and class
belonging to the given tier and class in the user
scenario was summed. In order to estimate

cmV ,

cmS , , the
service times of each page and class belonging to the
given tier and class were averaged.

Model Evaluation
The conditions described in Section 2 have been
satisfied: the number of arrivals to a queue equals the
number of departures from the queue, the
simultaneous job moves are not observed, since the
queues have processor sharing discipline, and finally,
the service rate of a queue does not depend on the
state of the system in any way except for the total
queue length. In addition, the queues are
fixed-capacity centers, and the queue is an
infinite server. Therefore, the MVA algorithm can be
applicable to evaluate the model (Figure 1) of the test

web application (Figure 2), because the model is in a
product form.

321 ,, QQQ

0Q

We implemented the MVA and approximate MVA
algorithm for closed queueing networks, in addition
the calculation of the balanced job bounds with the
help of MATLAB. Our MATLAB scripts can be
downloaded from [Mat06a].

When we handle one session class, the inputs of the
script are the number of tiers, the maximum number
of customers, the average service times, the visit
numbers, and the average user think time. When we
handle multiple session classes, the inputs the
number of tiers, the number and the maximum
number of customers, respectively, on a per-class
basis the average service times, the visit numbers,
and the average user think time. The scripts compute
the response times, the throughputs and the tier
utilizations up to a maximum number of customers.
MVA provides a recursive way, approximate MVA
computes these in a few steps, while balanced job
bounds method completes in one step.

Model validation
Finally, our experimental configuration and
experimental validation of the model in ASP.NET
environment are demonstrated.

The web server of our test web application was
Internet Information Services (IIS) 6.0 with
ASP.NET 1.1 runtime environment, one of the most
proliferated technologies among the commercial
platforms. The database management system was
Microsoft SQL Server 2000 with Service Pack 3.
The server runs on a 2.8 GHz Intel Pentium 4
processor with Hyper-Threading technology enabled.
It had 1GB of system memory; the operating system
was Windows Server 2003 with Service Pack 1. The
emulation of the browsing clients and measuring the
response time were performed by ACT (Application
Center Test), a load generator running on another PC
on a Windows XP Professional computer with
Service Pack 2 installed. It ran on a 3 GHz Intel
Pentium 4 processor with Hyper-Threading
technology enabled, and it also had 1GB system
memory. The connection among the computers was
provided by a 100 Mb/s network.

ACT [Ald03a] is a well-usable stress testing tool
included in Visual Studio .NET Enterprise and
Architect Editions. The test script can be recorded or
manually created. Virtual users send a list of HTTP
requests to the web server concurrently. Each test run
takes 2 minutes and 10 seconds warm-up time for the
load to reach a steady-state. In the user scenario,
sleep times are included to simulate the realistic
usage of the application.

When we handle one session class, while the number
of simultaneous browser connections varied, the
average response time and throughput per class were
measured (Figure 3).

Figure 3. The observed response times and
throughputs handling one session class

Handling multiple session classes, there were two
classes of sessions: a database reader and a database
writer. The number of simultaneous browser
connections of one class was fixed at 10, while the
number of simultaneous browser connections of the
other class varied, and we measured the average
response time and throughput per class (Figure 4).

Figure 4. The observed response times and
throughputs handling multiple session classes

The results presented in Figure 3 and in Figure 4
correspond to the common shape of response time
and throughput performance metrics. Increasing the
number of concurrent (reader) clients, the (reader)
throughput (served requests per second) grows
linearly, while the average (reader) response time
advances barely. After the saturation the (reader)
throughput remains approximately constant, and an
increase in the (reader) response time can be
observed. In the overloaded phase, the (reader)
throughput falls, while the (reader) response time
becomes unacceptably high.

Handling one session class, we experimentally
validated the model to demonstrate its ability to

predict the response time and the throughput of
ASP.NET web applications with MVA (Figure 5),
and approximate MVA algorithm. We have found
that the model handling one session class predicts the
response time and throughput acceptably.

Figure 5. The observed and predicted response
times and throughputs handling one session class
with MVA

Moreover, from the model, the utilization of the tiers
can be predicted. The results are depicted in Figure
6. The presentation tier is the first that becomes
congested. The utilization of the database queue is
the second (29%), and the utilization of the business
logic queue is the last one (17%).

Figure 6. The tier utilization handling one session
class with MVA

Thereafter, we demonstrate that the response time,
the throughput and the tier utilization of ASP.NET
web applications move within tight upper and lower
bounds (Figure 7, Figure 8). We have found that the

response time, the throughput, and the queue
utilization from the observations fell into the upper
and lower bounds. Thus, the balanced job bounds
handling one session class predict the response time,
the throughput, and the utilization of the tiers
acceptably.

Figure 7. The observed and predicted response
times and throughputs handling one session class
with balanced job bounds

Figure 8. The tier utilization handling one session
class with balanced job bounds

Finally, the model handling multiple session classes
was experimentally validated. We have found that
the model predicts the response time and throughput
with approximate MVA acceptably (Figure 9). While
the presentation tier is congested, the utilization of
the database queue is about 84%, and the utilization
of the business logic queue is about 16% (Figure 10).
We have found that the response time, the
throughput, and the utilization from the observations
as well as from the approximate MVA fell into the

upper and lower bounds. Hence, the balanced job
bounds predict the response time, the throughput,
and the utilization acceptably (Figure 11).

Figure 9. The observed and predicted response
times and throughputs handling multiple session
classes with approximate MVA

Figure 10. The tier utilization handling multiple
session classes with approximate MVA

4. CONCLUSIONS AND FUTURE
WORK
We have demonstrated and validated queueing
models handling one and multiple session classes in
ASP.NET environment, namely, the input model
parameters were estimated from one measurement,
the MVA and approximate MVA evaluation
algorithm, in addition the calculation of the balanced
job bounds were implemented with the help of
MATLAB, and a measurement process was executed
in order to experimentally validate the models.

Figure 11. The observed and predicted response
times and throughputs handling multiple session
classes with balanced job bounds

Our results have shown that the models handling one
and multiple session classes predict the response time
and the throughput acceptably with MVA and
approximate MVA evaluation algorithm, along with
the calculation of balanced job bounds. Furthermore,
the presentation tier is the first to become congested.
The utilization of the database tier is the second one,
and the utilization of the business logic queue is the
last one.

In order to improve the model, the limits of the four
thread types in .NET thread pool, the global and
application queue limits must be handled along with
other features. These extensions of the model and the
validation of the enhanced models, as well as the
validation of the models in ASP.NET 2.0
environment are subjects of future work.

5. REFERENCES
[Ald03a] Aldous, J., and Finnel, L. Performance

Testing Microsoft .NET Web Applications.
Microsoft Press, 2003.

[Ber98a] Bernardo, M., and Gorrieri, R. A Tutorial
on EMPA: A Theory of Concurrent Processes
with Nondeterminism, Priorities, Probabilities
and Time. Journal of Theoretical Computer
Science, Vol. 202, pp. 11-54, 1998.

[Ber02b] Bernardi, S., Donatelli, S., and Merseguer,
J. From UML Sequence Diagrams and
Statecharts to Analysable Petri Net Models. In
Proceedings of ACM International Workshop
Software and Performance. Rome, Italy, pp. 35-
45, 2002.

[Bog05a] Bogárdi-Mészöly, Á., Szitás, Z.,
Levendovszky, T., Charaf, H. Investigating
Factors Influencing the Response Time in
ASP.NET Web Applications. Proceedings of
Lecture Notes in Computer Science, 3746, pp.
223-233, 2005.

[Bra87a] Brase, C.H., and Brase, C.P.
Understandable Statistics. D. C. Heath and
Company, 1987.

[Gil94a] Gilmore, A.S., and Hillston, J. The PEPA
Workbench: A Tool to Support a Process
Algebra-Based Approach to Performance
Modelling. In Proceedings of Seventh
International Conference Modelling Techniques
and Tools for Performance Evaluation, pp. 353-
368, 1994.

[Her00a] Herzog, U., Klehmet, U., Mertsiotakis, V.,
and Siegle, M. Compositional Performance
Modelling with the TIPPtool. Journal of
Performance Evaluation, Vol. 39, pp. 5-35, 2000.

[Jai91a] Jain, R. The Art of Computer Systems
Performance Analysis. John Wiley and Sons,
1991.

[Kin99a] King, P., and Pooley, R. Derivation of Petri
Net Performance Models from UML
Specifications of Communication Software. In
Proceedings of 25th UK Performance Eng.
Workshop, 1999.

[Kle75a] Kleinrock, L. Queueing Systems, Volume
1: Theory. John Wiley and Sons, 1975.

[Kou03a] Kounev, S., Buchmann, A. Performance
Modelling of Distributed E-Business
Applications using Queueing Petri Nets.
Proceedings of IEEE International Symposium on
Performance Analysis of Systems and Software,
Austin, Texas, USA, 2003.

[Man02a] Manescé, D.A., and Almeida, V.A.F.
Capacity Planning for Web Services. Prentice
Hall, 2002.

[Mat06a] Our MATLAB scripts can be downloaded
from - http://avalon.aut.bme.hu/~agi/research/

[Mei04a] Meier, J.D., Vasireddy, S., Babbar, A., and
Mackman, A. Improving .NET Application
Performance and Scalability (Patters &
Practices). Microsoft Corporation, 2004.

http://avalon.aut.bme.hu/~agi/research/

[Rei80a] Reiser, M., and Lavenberg, S.S. Mean-
Value Analysis of Closed Multichain Queuing
Networks. Journal of Association for Computing
Machinery, Vol. 27, pp. 313-322, 1980.

[Sin05a] Sinclair, B., Mean Value Analysis.
Computer Systems Performance Handout, 2005.

[Smi90a] Smith, C.U. Performance Engineering of
Software Systems. Addison-Wesley, 1990.

[Smi00b] Smith, C.U., Williams, L.G. Building
responsive and scalable web applications.
Computer Measurement Group Conference,
Orlando, FL, USA, pp. 127-138, 2000.

[Smi01c] Smith, C.U., and Williams, L. G.
Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software.
Addison-Wesley, 2001.

[Sop05a] Sopitkamol, M., and Menascé, D.A. A
Method for Evaluating the Impact of Software

Configuration Parameters on E-Commerce Sites.
In Proceedings of the ACM 5th International
Workshop on Software and Performance, Palma,
Illes Balears, Spain, pp. 53-64, 2005.

[Urg05a] Urgaonkar, B. Dynamic Resource
Management in Internet Hosting Platforms.
Dissertation, Massachusetts, 2005.

[Urg05b] Urgaonkar, B., Pacifici, G., Shenoy, P.,
Speitzer, M., and Tantawi, A. An Analytical
Model for Multi-tier Internet Services and its
Applications. Journal of ACM SIGMETRICS
Performance Evaluation Review, Vol. 33, No. 1,
pp. 291-302, 2005.

[Zah82a] Zahorjan, J., Sevcik, K.C., Eager D.L., and
Galler, B. Balanced Job Bound Analysis of
Queueing Networks. Journal of Communications
of the ACM, Vol. 25, No. 2, pp. 134-141, 1982.

	INTRODUCTION
	BACKGROUNDS AND RELATED WORK
	CONTRIBUTIONS
	Estimation of the Model Parameters
	Model Evaluation
	Model validation

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

