
RMI Object Consistency Maintenance Techniques at
Distributed Computing

Seong Eun Chu

Department of Computer Science
Chonnam National University

300 Yongbong-Dong
Bug-Gu

500-757, Gwangju, Korea

sechu@jnu.ac.kr

Jae Nam Kim
Department of Digital Animation
Kwangju Women’s University

165 Sanjeong-Dong
Gwangsan-Gu

506-713, Gwangju, Korea

jnkim@mail.kwu.ac.kr

Dae Wook Kang
Department of Computer Science

Chonnam National University
300 Yongbong-Dong

 Bug-Gu
500-757, Gwangju, Korea

dwkang@jnu.ac.kr

ABSTRACT
Various object caching techniques between a client and a server have been proposed at distributed computing.
However, these techniques have handled data consistency only. They have not handled object own consistency.
In this paper, we proposed two techniques for object consistency maintenance. The first technique makes it
possible that the client confirms the object update time in the server based on RMI (Remote Method Invocation).
The second is that the server broadcasts invalid message to the clients. Both techniques are evaluated
experimentally, and results show that they could be applied selectively at the distributed applications considering
object update frequency.

Keywords
RMI (Remote Method Invocation), Consistency Maintenance, Distributed Computing.

1. INTRODUCTION
New objects are created in server and methods of the
objects are invoked by clients of the different
memory address in distributed computing. There are
several techniques such as RMI, CORBA, DCOM,
EJB for the development of object oriented
distributed applications. RMI does not need to install
separately the middleware for supporting information
communication between objects or components
because it has been implemented already at JVM.
Therefore, RMI has been used widely at distributed
computing environments as the most simple object
communicational model [Dow98]. A data caching at
distributed computing environments has been used
efficiently when the frequency of data access is high.
Generally, caching is simple, but many elements
should be considered to maintain consistency of
caching.

Existing techniques about consistency maintenance
have been classified by detection-based and
avoidance-based categories. Detection-based
algorithms permit stale data in local, examine the
validity of a server when read or write operations are
performed. These algorithms maintain the
consistency by sending many messages to ensure the
validity of data, therefore bandwidth is wide.
Avoidance-based algorithms don't allow a reference
opportunity about the stale data to maintain

consistency. Because this consistency checks are
delayed to the last, the decrease of the number of
message transmission and rapid response are possible,
but conflict is found late, which is increasing
aborting rate. [Fra97, Fra96]. However, it is difficult
for these techniques to apply to objects that have
complex characteristics such as abstraction,
encapsulation, polymorphism, inheritance [Wol96].
Therefore, the researches to maintain object
consistency are need.

In this paper, we proposed two techniques for the
maintenance of an object caching consistency based
on RMI. The first technique is Time Stamp (TS)
technique that compares update time in a server with
cache time in a client when a client asked a server of
consistency check to use a cached object. We applied
TS to RMI. This modified RMI is called TS-RMI.
The second is Invalid Message (IM) technique that
broadcasts object updating message to all clients
using this cached object when object is changed in
server. This modified RMI which applies IM to RMI
is called IM-RMI. We measured average response
time of method invocation according to object update
frequency under equal computing environments to
compare TS-RMI with IM-RMI.

The rest of the paper is organized as follows. In
section 2, we describe related work. The proposed
consistency maintenance techniques are explained in

section 3, and experimental results are presented in
section 4. Finally, we conclude our work and suggest
future work in section 5.

2. RELATED WORK
In fixed computing environment, data consistency
maintenance techniques have been classified by
detection-based and avoidance-based. At mobile
computing environments, detection-based algorithms
such as NWL-NH are used between a mobile host
and a base station, avoidance-based algorithms such
as O2PL are used between fixed hosts [Jin95],
techniques such as AT, SIG periodically broadcast a
client the fact that database is updated for
consistency maintenance in disconnection [Bar94].

Detection-based algorithms permit stale data in local,
examine the validity of a server when read or write
operations are performed. In C2PL, synchronization
has been needed. A server doesn't send updating
message to a client and takes the responsibility for all
locking and deadlock detection. 2PL techniques are
expanded from client/server environments to
centralized control database environments, whereas
implementation is simple, Each time they make a
server perform validity check process at read or write
operations, therefore, message transmission
frequency is high and bandwidth is narrow [Car91,
Wan91]. NWL is an asynchronous technique.
Message transmission frequency is low in NWL. It is
different from C2PL in write operations, and it
makes server check validity. NWL-NH is adapted at
mobile environments. After server broadcasts
updated data items to a client periodically, a client
removes invalid data items in cache [Jin95]. AOCC
is a detection-based optimistic technique that allows
a transaction to access cached data. It defers validity
check until the transaction commits phase. In AOCC,
if a transaction aborts locally, the server need not be
notified as all of the transactions are performed
locally until the commit. Because it is incurred
primarily in the client, it makes abort cost low and
performance high [Bod04].

Avoidance-based algorithms don't allow a reference
opportunity about the stale data to maintain
consistency. CBL is locally cached page copies are
always guaranteed to be valid, so transactions can
read them without contacting the server (i.e., only a
local read lock is required). On a cache miss, the
client sends a page request message to the server.
The server returns a valid copy of the requested page
when it determines that no other active clients
believe they have write permission for the page. In
callback locking, write intentions are declared
synchronously, a client must have write permission
on a page before it can grant a local write lock to a

transaction. Because write permissions are obtained
during transaction execution, transactions can
commit after completing their operations without
performing any additional consistency maintenance
actions [Fra97]. ACBL is a synchronous avoidance-
based algorithm as it uses lock-escalation messages
in a synchronous manner, it sends a request for lock-
escalation and waits for a reply before proceeding
[Bod04, Gru97, and Zah97]. AACC technique is that
all client/server manage lock with page and object
unit, read-lock divide by private-read lock and
shared-read lock. Private-read lock is cached to one
client and shared-read lock is cached to several
clients. AACC has high performance than ACBL,
and low aborting rate than AOCC [Tam98]. O2PL
acquires read and write lock locally until transaction
completion, examines accuracy to a server when
there is completion. It shows that transmission
messages are reduced as compared with C2PL [Fra96,
Car91].

3. PROPOSED TECHNIQUES
Object caching consistency means that an original
object in a server is equal to a cached object in a
client. The proposed techniques applied object
caching consistency maintenance problem to RMI.
These modified RMI that apply proposal techniques
in general RMI is called TS-RMI and IM-RMI. We
need some hypotheses as follows. First, objects of
old version may be in cache basically. Second,
Remote method invocation is happening from many
clients to optimum level frequently. Also, we put
Cache Manager and Consistency Manager commonly
in modified RMI and take charge processing about
caching and consistency maintenance respectively.

3.1 Time Stamp Technique (TS-RMI)
This technique adds to general RMI time stamp
function to compare client's cache time to server's
update time for consistency. Client's cached object is
changed into a new object that reflects server's
update time recently. Time comparison is processed
by client-initiated which try to use object.
Consistency is maintained, when cache time is the
greater equal than update time (⑧Valid of [Figure
1]). Therefore, Client's Cache Manager invokes a
local object method. This process shows ①-⑩ in
[Figure 1].

In other case, the object was stored in caching table
before a remote object is changed. That is, it is state
that consistency doesn't maintain (Ⓖ Invalid of
[Figure 1]). At this time, Server's Consistency
Manager invokes remote method, then it makes
Skeleton transmit result and an object to Stub
through network.

Figure 1. System Model of TS-RMI

Stub changes contents of caching table with a
transmitted object (Update on Caching Table Ⓚ),
returns result to a client object. This process shows
Ⓐ-Ⓛ marked in [Figure 1].

When the remote method is invoked for the first time,
there is no cached object in the caching table (③
Non-cached of [Figure 1]). In this case, consistency
check is not necessary. Stub stores result and an
object that transmitted from Skeleton in caching table
(Add to Caching Table ⑫), returns result to client
object. This process shows ①-⑬ marked in [Figure
1].

An advantage of TS-RMI is the fact that the
consistency checked simply, the communication
bandwidth is decreased by handling client-initiated
consistency check. Also, server's responsibility for
consistency maintenance is decreased because it is
not necessary for server to send object update
message.

3.2 Invalid Message Technique (IM-RMI)
In IM-RMI, as soon as a caching object is changed, a
server broadcasts invalid message to clients which
have ever used the remote object caching (1-3 of
[Figure 2]). Therefore, it must have information
about all clients that possesses a cached object on
broadcasting message table in a server. Whenever
caching happens, Server's Cache Manager keeping

client's IP-Address in own broadcasting message
table.

On the other hand, a client maintains consistency by
checking transmitted state of invalid message.
Consistency is maintained when client did not
receive invalid message (⑤ Valid of [Figure 2]),
therefore, Client's Cache Manager invokes a local
object method. This process shows ①-⑦ in [Figure
2].

In the case of receiving a invalid message,
consistency is not maintained (Ⓔ Invalid of [Figure
2]), then Client's Consistency Manager makes Stub
invoke a remote method, gets result and a object by
Skeleton from Server's Cache Manager, stores
updated object in client's caching table, and sets
invalid message field as default value (zero) for next
invocation (Update on Caching Table Ⓜ). This
process shows Ⓐ-Ⓝ marked in [Figure 2].

When the remote method is invoked for the first time,
there is no cached object in the caching table (③
Non-cached of [Figure 2]). In this case, consistency
check is not necessary. Stub stores result and an
object that is transmitted from Skeleton in caching
table (Add to Caching Table ⑬), returns result to a
client object. This process shows ①-⑭ marked in
[Figure 2].

Figure 2. System Model of IM-RMI

An advantage of IM-RMI is the fact that the
consistency check around time is decreased because
client access to server only when client has received
invalid message. Therefore, this RMI can get fast
response time.

4. PERFORMANCE COMPARISON
We experimented with server such as Pentium IV
3.0GHz, Main Memory 2GB, Windows XP, Desktop
Computer, Marvell Yukon 88E8001 PCI Gigabit
Ethernet Controller, LAN 100Mbps, and client such
as Pentium IV 1.6GHz, Main Memory 256MB,
Windows XP, IBM Laptop Computer, Orinoco
Wireless LAN PC Card (5volt), WaveLAN 11Mbps.
Both a server and a client are installed in JDK
1.5.0_06.

0

100

200

300

400

500

600

700

800

900

1000

1:1 2:1 2.4:1 2.8:1 3:1 6:1 10:1 14:1 24:1 60:1 100:1 140:1 180:1 200:1

object's update frequency
(Invocation:Updating times)

ResponseTime (ms)

IM-RMI

TS-RMI

Figure 3. Average Response Time Comparison

TS-RMI with IM-RMI
We measured response time respectively, while a
method is invoked 30 times, object updated intervals
are from 500 ms to 100,000 ms, and then compared
TS-RMI with IM-RMI under equal computing
environments. Elapsed time of remote method takes
about 500 ms. In case an object update cycle takes
500 ms, whenever a method invoked, an object was
changed (1:1). In case an object update cycle takes
100,000 ms, when a method is invoked 200 times, an
object was changed only one (200:1).

As experimental results, the more object update is,
TS-RMI is faster than IM-RMI in response time.
Otherwise, IM-RMI is faster than TS-RMI in
response time as shown in [Figure 3].

5. CONCLUSIONS
In this paper, we proposed two techniques for object
consistency that has complex characteristics such as
abstraction, encapsulation, polymorphism,
inheritance. We experimented based on RMI. One is
TS-RMI that compares update time of a server with
cache time of a client when client checks consistency
to server for using cached object. The other is IM-
RMI that broadcasts an object updating message to
all clients using this cached object when object is
changed in server. As results, TS-RMI was efficient

when the frequency of server object update is high,
and IM-RMI was efficient that server's object update
is infrequent. Therefore, modified RMI could apply
selectively at the distributed applications considering
object update frequency.

We have presented mechanisms for efficient caching
consistency of objects for RMI applications. Using
these mechanisms, caching can be easily and
transparently added to existing RMI applications,
while preserving RMI compatibility. The central
mechanism includes the ability to support the Cache
Manager and Consistency Manager. Stub and
Skeleton class that generated by RMIC are modified
by CRMIC. No changes are required to existing
Client and Server applications. Also existing RMI
performance can be enhanced without losing
backward-compatibility. The future work of this
study will be additional technique for mobile
computing environments.

6. REFERENCES
[Bar94] Barbara D., Imielinski T., ″Sleepers and

Workaholics: Caching Strategies in Mobile
Environments″, ACM SIGMOD, pp. 1-12, 1994.

[Bod04] Bodorik P., Jutla D., Lu Y., ″Interoperable Server-
based Cache Consistency Algorithm″, IEEE Database
Engineering and Applications Symposium, 2004.

[Car91] Carey M., Franklin M., Livny M., Shekita
E., ″Data Caching Tradeoffs in Client-Server DBMS
Architectures″, ACM SIGMOD, pp. 357-366, 1991.

[Dow98] Downing T. B., ″Java RMI: Remote Method
Invocation″, IDG Books, pp. 13-15, 1998.

[Fra96] Franklin M., Carey M., ″Client Data Caching: A
Foundation for High Performance Object Database
System″, Kluwer Academic Publishers, 1996.

[Fra97] Franklin M., Carey M., Livny M., ″Transactional
Client-Server Cache Consistency: Alternatives and
Performance″, ACM TODS, pp. 315-363, 1997.

[Gru97] Gruber R., ″Optimism VS. Locking: A Study of
Concurrency Control for Client Server Object-Oriented
Databases″, Ph.D Thesis, MIT, 1997.

[Jin95] Jin Jing et al., ″Distributed Lock Management for
Mobile Transaction″, IEEE Distributed Computing
System, 1995.

[Tam98] Tamer M., Kaladhar M., ″An Asynchronous-
Based Cache Consistency Algorithm for Client Caching
DBMSs″, VLDB, pp. 440-451, 1998.

[Wan91] Wang Y., Rowe L., ″Cache Consistency and
Concurrency Control in a Client/Server DBMS
Architecture″, ACM SIGMOD, pp. 367-376, 1991.

[Wol96] Wollrath A., Riggs R., Waldo J., ″A Distributed
Object Model for the Java System″, 2nd Conference on
Object-Oriented Technologies, 1996, Toronto, Ontario,
Canada.

[Zah97] ZahariousDakis M., Franklin M., ″Adaptive, Fine
Grained Sharing in a Client-Server OODBMS: A
Callback-Based Approach″, ACM TODS, pp. 570-627,
1997.

