
Implementing a mobile agent infrastructure on the
.NET framework

Antonio Boccalatte, Alberto Grosso, Christian Vecchiola

DIST – University of Genoa
Via Opera Pia 13

 16142, Genova, Italy
{nino, agrosso, christian}@dist.unige.it

ABSTRACT

This paper presents the solution adopted by the AgentService platform in implementing a software infrastructure
for mobile agents. The mobility service takes advantage of the agent model provided by the platform which
offers the separation between the state of the agent and its activities. The modular architecture of the platform
allows an elegant integration of the mobility service whose implementation resides within an additional platform
module. The mobility infrastructure offers its services to the agents that can be stopped, moved, and restarted in
a transparent manner. AgentService provides a sort of weak mobility service: during a transfer the state of the
agent is maintained while the activities it performs are started from the beginning. The mobility infrastructure is
a component that enriches the platform features and allows the implementation of more complex services such
as load balancing strategies among different AgentService installations.

Keywords
Agent Mobility, Load Balancing Policy, Agent Framework

1. INTRODUCTION
Software mobility is a software property which can
bring robustness, performance, scalability or
expressiveness to systems [Kar98a]. Code mobility
concerns the ability to migrate a unit of running code
from one host to another by preserving partially or
totally its execution state [Cab00a]. In particular,
systems that completely maintain the execution state
are said to support strong mobility, while systems
that discard the execution state are said to provide
weak mobility. The possibility of moving running
code among computing environments is an
interesting opportunity for dynamic intelligent agent
systems. Agents are autonomous, pro-active, and
socially able: the ability to move and to migrate
between different nodes of the community enhances
the previously cited features. Hence, as for objects,
mobility is an interesting property for agents and

mobile agents have emerged as a paradigm for
structuring distributed applications.
A definition which sufficiently characterizes the
essence of a mobile agent system has been proposed
by Chen and Nwana [Che95a, Nwa96a]: “..a mobile
agent is a software entity which exists in a software
environment. It inherits some of the characteristics of
an agent. A mobile agent must contain all of the
following models: an agent model, a life-cycle
model, a computational model, a security model, a
communication model and finally a navigation
model.”.
The idea of mobile agent that cannot be implemented
without providing multi-agent systems with a
software infrastructure that allows the transfer of
agents in a transparent manner. This paper describes
the solution adopted within the AgentService
framework to implement mobility for agents. The
proposed solution turns out to be very effective
thanks to the agent model adopted by the framework
which separates the state and the behavior of a
software agent. By using serialization and reflection
the state of the agent and some information of the
active behavior of the agent are persisted and
transferred to the target site. In the following, the
authors will illustrate the main features of the
AgentService framework and will explain in detail
the architecture and the implementation of the
mobility infrastructure. A use case will also explain

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

Journal of .NET Technologies
Copyright UNION Agency – Science Press,
Plzen, Czech Republic

how to use the mobility infrastructure to implement
more complex services such as load balancing among
different AgentService installations.

2. AGENTSERVICE
AgentService Main Features
The agent oriented paradigm [Wol99a] can be a
useful abstraction to model open and dynamic
communities. An agent is an autonomous software
entity provided with some levels of “intelligence”.
Moreover, by means social ability, agents can
enhance their performances by interoperating in
communities called multi-agent systems (MASs)
[Wei99a]. A widely accepted architecture
specification for multi-agent systems with a reference
agent model is the one proposed by the Foundation
of Intelligent Physical Agents (FIPA) [Fip01a].

AgentService [Boc04a] is a framework for
developing multi-agent systems based on the
Common Language Infrastructure, whereof .NET
framework is one implementation. AgentService
provides a specific agent model and a runtime
environment for agent execution compliant with the
FIPA specifications. In literature there are many
works concerning agent platforms, the most
interesting and known are Zeus [Nwa98a], FIPA-OS
[Pos00a], and JADE [Bel99a]; AgentService is
characterized by an extremely modular architecture
and a flexible agent model which allows the
implementation of different agent architectures.

Two different kinds of modules have been designed
to model all the features of the AgentService
platform: core modules and additional modules. Core
modules implement all the services required by the
platform instance to set up its activity; they involve
management of assemblies in which agent templates
are defined (Storage Module), the messaging service,
the management of the agent’s persistence, and a
logging service. Through additional modules new
features can be added to the platform: they enrich the
platform capabilities but they are not essential for the
standard activity of agents.

Within AgentService, agents are designed as
software entities whose activity is defined by a
particular managed set of data (Knowledge objects)
and performed by a set of concurrent behaviors
(Behavior objects). A Knowledge object represents a
set of correlated data modeling a structured concept
of the problem domain. A collection of specified
Knowledge objects define the state of a software
agent: it can be persisted and portions of it can be
shared among the different Behavior objects.
Behavior objects contain all the agent computational
logic and define the agent aggregate behavior.
Behavior objects are concurrent and share the

information they need by means of the Knowledge
objects. Such distinction between activities and data
allows a clear decomposition of the agent definition,
represents a flexible and generic model. From the
implementation point of view every agent instance is
deployed in a dedicated Application Domain, which
ensures the autonomy and safety of the code
executed inside it (agent activities).

3. MOBILITY IN AGENTSERVICE
Introduction
According to the definition given by Chen and
Nwana [Che95a, Nwa96a] a mobile agent inherits all
the properties of a software agent and, in addition,
contains a navigation model which embraces all
aspects of agent mobility from the discovery and
resolution [Whi95a] of destination hosts to the
manner in which a mobile agent is transported.
Hence, the introduction of a navigation model
implies the extensions of the agent model defined
within AgentService with the previously discussed
features.

It can be observed that the ability of identifying and
discovering destination hosts is already implemented
by using the directory services of the platform:
AgentService platforms can join together and define
a federation. A federation defines the boundaries into
which the mobility service takes place. In the
following the authors will focus the attention on the
second element characterizing the navigation model
that is the machinery required to transfer agents. In
order to move an agent the model defining its life
cycle needs to be extended with an additional state
which characterize the agent while is being moved.
As suggested by the FIPA specifications the common
life cycle of an agent has been extended by adding
the transit state and two actions to enter and leave
that state (move and execute). The agent itself can
require the move action while the platform, through
the Agent Management System (AMS), is
responsible of completing the migration by
performing the execute operation.

In addition, mobile agents require a suitable runtime
environment which provides a transfer service
allowing them to move from one node to another:
this environment is built on top of a host system.
Within AgentService, this runtime provides to the
agent with a transfer service based on a variation of
weak mobility: even if the execution does not
continue exactly by executing the next instruction a
partial resume of the execution state has been
implemented. The main idea is to exploit the adopted
agent model and move just the agent state
(knowledge objects) among platforms. Within the
target platform the agent activities can be restarted

taking advantage of the persisted agent state. In
addition, the framework provides developers with an
entry point, the Resume method, for checking the
state and the activities of the agent before it
continues the execution.

Architecture of the Mobility Service
The architecture of the mobility service takes full
advantage from the agent model adopted by the
platform: the separation among the agent state from
the activities it performs makes the migration process
simple. In order to run an agent the runtime
environment needs the information defining the
agent state and the assemblies containing the agent
definition. Hence, moving an agent among
AgentService installations requires moving its state
and ensuring the presence of that agent type
definition on the target platform. Once an agent is
moved it is possible to restart its activity by
instantiating a new agent of that specific type and
restoring its state. State restoration involves loading
the transferred knowledge objects and the activation
of all the behaviors objects running when the agent
was stopped. The information about knowledge
objects and the state of each behavior (ready, active,
suspended) are all what is really needed to move an
agent.

The process which transfers an agent is activated by
a request and can be described as follows:

1. negotiate: the AMS of the source target
contacts the AMS of the target platform and
asks if the agent can be moved;

2. stop and persist: if the agent can be moved,
the AMS stops its activity, persists its state,
and puts it into the transit state (move
action);

3. transfer: the AMS instruct the mobility
module to move the agent. The state of the
agent is transferred to the target platform.
This operation may require the transfer of
the assemblies describing the types of the
agent or used by it;

4. restore: the mobility module notifies the
AMS that the transfer is completed. The
AMS creates an instance of the same type of
the agent received sets its state and invokes
the Resume method allowing the
programmer to customize the re-activation
of the agent;

5. execute: the agent changes its state from
transit into its original state, the AMS of the
source platform is notified of the successful
transfer and the agent is activated (execute
action).

This process is implementation independent and
AgentService defines an interface (IMobilityModule)
that every module that wants to offer this service
must implement. In this way, developers can
implement the service as they prefer: a web service,
an ftp service, or a custom channel.

The model adopted by AgentService to define an
agent greatly simplifies the work of the mobility
module. Thanks to the clear separation among the
state and the activities the maintenance of the
execution state is obtained by saving all the
knowledge objects composing the knowledge base of
the agent and the status of the behavior objects.
When the agent is restored the information saved are
loaded into the new instance and all the activities
previously stopped are started. In particular, the
mobility infrastructure has to deal with the transfer of
assemblies if the repositories of the two platforms are
not synchronized.

The entire process that allows mobility of agents
takes place if and only if the platforms are allowed to
transfer agents; otherwise it stops the negotiation
phase. The AMS of the source platform will look in
the platform configuration to determine if it is
allowed exporting agents, while the AMS of the
target platform will check if it is allowed to import
agents. These information are contained in the
platform profile and administrators can customize the
platform behavior by modifying the profile in the
configuration file.

4. LOAD BALANCING POLICY
Load balancing in AgentService is managed by the
Load Balancing Policy (LBP) module. It provides a
service that federates platform instances and creates a
unique environment in which agents can move. By
default, LBP comes with two policies. The first
policy balances the number of agent among
platforms, while the second is based on the number
of exchanged messages moving in the same platform
the agents interacting more frequently. The platform
context, provided by AgentService to each module,
gives access to these information. LBP modules,
installed on different nodes, cooperate to constitute a
federation of platforms defining the border within the
balancing policies can be applied. The federation
system adopts a client/server model: each node
provides its platform profile to the master node
which maintains the federation and applies policies.
The LBP configuration file defines the structure of
the federation indicating which node works as server.
At runtime new platforms can dynamically join the
federation by registering their profiles to the master
node. The master node applies balancing policies
every time an interesting event occurs (i.e. the
creation of a new agent, the registration of a new

platform with the federation). Developers can
implement new load balancing policies and
dynamically load them in the server LBP module as
plug-ins. Hence only the LBP module of the master
node handles the balancing policy.

5. CONCLUSIONS
The AgentService modular architecture allows the
design and the implementation of additional services
which are fully integrated with the standard ones.
The mobility module provides a weak mobility
service even if it automatically maintains the agent
state. Developers are provided with facilities for
customizing agent resumption. The presence of a
software mobility infrastructure allows the platform
to be enriched with more capabilities. The load
balancing policy (LBP) module provides an
interesting service for resources management
exploiting the mobility service. The LBP module
allows administrators to apply load balancing
algorithms to a federation of AgentService platforms.
The agent transfer process was tested applying the
default balancing policies. The tests pointed out that
the most onerous operation during the mobility
process is the transfer of assemblies required for
agent activities. This is a minor drawback since in
common balancing scenarios all the nodes are likely
to run the same agent types; hence there is no need
for huge assembly transfers.

The mobility infrastructure suffers from the lack of
interoperability with different FIPA compliant
platforms, in particular Jade. The development of an
interoperable mobility infrastructure is a very
challenging task which involves a lot of problems
due to the adoption of different technologies,
architectures, and agent models.

6. REFERENCES
[Kar98a] Karnik, N. M., and Tripathi, A. R. Design

Issues in Mobile-Agent Programming Systems.
IEEE Concurrency 6(3), pp. 52-61, July-
September 1998.

[Cab00a] Cabri, G., Leopardi, L., and Zambonelli, F.
Weak and Strong Mobility in Mobile Agent

Applications. Proceedings of the 2nd
International Conference and Exhibition on The
Practical Application of Java (PA JAVA 2000),
Manchester (UK), April 2000.

[Che95a] Chess, D., Harrison, C., and Kershenbaum.
A. Mobile Agents: Are they a good idea?.
Technical Report, IBM T.J. Watson Research
Center, NY, March 1995.

[Nwa96a] Nwana, H. Software agents: An Overview,
Knowledge and Engineering Review 11(3),
November 1996.

[Wol99a] Wooldridge, M. Intelligent Agents. In
Multi-agent Systems – A Modern Approach to
Distributed Artificial Intelligence, G. Weiss Ed.,
Cambridge, MA, pp. 27-78, 1999.

[Wei99a] Weiss, G. Multi-agent Systems – A
Modern Approach to Distributed Artificial
Intelligence, G. Weiss Ed., Cambridge, MA,
1999.

[Boc04] Boccalatte, A., Gozzi, A., Grosso, A., and
Vecchiola, C. AgentService. The Sixteenth
International Conference on Software
Engineering and Knowledge Engeneering
(SEKE’04), Banff Centre, Banff, Alberta, Canada
20-24 June 2004.

[FIP01a] FIPA Abstract Architecture Specification,
http://www.fipa.org/specs/fipa00001/

[Nwa98a] Nwana, H.S., Ndumu, D.T., and Lee, L.C.
ZEUS: An advanced Tool-Kit for Engineering
Distributed Multi-Agent Systems. Proceedings of
PAAM98, pp. 377-391, London, U.K., 1998.

[Pos00a] Poslad, S., Buckle, P., and Hadingham, R.
The FIPA-OS agent platform: Open Source for
Open Standards, PAAM2000, Machestor, UK,
April 2000.

[Bel99a] Bellifemine, F., Rimassa, G., Poggi, A.
JADE - A FIPA-compliant Agent Framework.
Proceedings of the 4th International Conference
and Exhibition on The Practical Application of
Intelligent Agents and Multi-Agents, London,
1999.

[Whi95a] White J.: The foundation of the electronic
market place. General Magic white paper 1995.

