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ABSTRACT

Nine years after its first publication, aspect-oriented programming (AOP) is finding more and more support, but adoption by the
industry is still slow. The subclass proxy approach, a new implementation mechansim for .NET-based AOP tools, claims to have
the potential of easy adoptability. This paper analyzes subclass proxies as a lightweight infrastructure for AOP, characterizing
its properties, advantages, and disadvantages as compared to other implementation techniques. It evaluates technical strengths
and weaknesses as well as psychological factors which could influence adoption, and it shows the results of performance
benchmarks. In addition, it augments the mechanism with a new way of providing aspects woven at runtime with efficient and
safe access to objects’ private members.
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1. INTRODUCTION

Since 1997, when Gregor Kiczales, John Lamping,
Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin intro-
duced the term aspect-oriented programming (AOP)
[KL+97], AOP has found a lot of support in the re-
search community. Successful implementations of the
paradigm on the Java platform include AspectJ [LK98],
JBoss AOP [Bur04], and Spring AOP [JH+05]. Still,
industrial adoption of this new mechanism for software
development is naturally slow, and adoption in the field
of .NET is hampered by the lack of production-quality
AOP tools for this platform.

Recently, projects such as NAspect [Joh05] and XL-
AOF [eKS05b] (originally introduced for modelling
the concerns of space-based distributed applications in
an aspect-oriented fashion [SeK04]) have introduced
light-weight implementations of the aspect-oriented
programming paradigm based on the .NET platform.
Both of them are founded on the same technology,
which we call subclass proxies. Using subclass proxies
as an infrastructure for AOP has some technical advan-
tages over the more classic approaches (i.e. weaving
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compilers and postcompilers), as well as the important
benefit of being easy to adopt by software developers.

In this paper, we perform an analysis of the technol-
ogy backing both NAspect and XL-AOF. We analyze it
on a technical level, describing its implementation, and
show its potential as a weaving approach, classify it and
characterize it and its properties, advantages, and disad-
vantages, and we evaluate the concept from an adopt-
ability viewpoint. We also introduce a novel way of
allowing aspects to efficiently access private fields and
methods of their target objects, which was a privilege
of code-weaving approaches until now. By providing a
performance analysis, we show that the performance of
solutions based on subclass proxies is better than it is
often assumed of proxy-based approaches.

The rest of this paper is structured as follows: section
2 describes the technical background of the subclass
proxy mechanism and its use for aspect-orientation
(note that we use notions such as aspect, advice,
introduction, and join point as defined by AspectJ
[LK98] without further explanation). Section 3 aug-
ments the mechanism by introducing an approach for
accessing a target object’s private secrets from within
a subclass proxy-based aspect. Section 4 does an
extensive analysis of the concept’s potential as a base
for AOP and section 5 evaluates it from a performance
viewpoint. Section 6 concludes the paper.

2. SUBCLASS PROXIES

A proxy P is defined to be an object which acts as a
placeholder for a target object T [GHJV95]. Wherever



T is expected, the proxy can be used instead, trans-
parently extending the target object’s behavior or con-
trolling access to it without client code needing to be
adapted. Runtime proxies are proxies created dynam-
ically at run time, without the programmer having to
prepare a dedicated proxy class for every target class.

The Microsoft .NET Common Language Runtime
provides a transparent proxy [Low03] mechanism
whose uses are limited by its functionality and its
impact on application design. Design-wise, it re-
quires the proxied object to be derived from the
System.ContextBoundObject base class. This will
not be an option in some cases, in other scenarios
it might require unclean changes to the application
design, which is contrary to the goals of AOP [KL+97].
Functionally, it is designed for .NET Remoting (i.e.
communication between different application domains,
processes, or computers) and it cannot extend behavior
of an object which is accessed from its own context
(including self calls—methods called on the this
reference), a drawback for realizing a join point model.
Introduction can not be implemented using transparent
proxies at all. Positive aspects of the mechanism
include that proxies are also created transparently
because the CLR intercepts the newobj instruction
(new in C#, New in Visual Basic .NET) and returns
a proxy instead of the target object. In addition, the
CLR automatically corrects the this reference within
T ’s methods—it refers to P instead of T , which is
important if it is to be passed to other objects.

Looking for an alternative to transparent proxies, it can
be noted that the property of substitutability used pre-
viously for defining the term “proxy” is similar to the
Liskov Substitution Principle (LSP) [LW94], which de-
scribes the relationship between subtypes. Like a proxy
P, which can be substituted for an object T , the LSP
states that an object of a subtype can be substituted for
one of a supertype. This similarity can be used to imple-
ment proxies using the subtyping mechanisms present
in .NET: interfaces and inheritance.

To realize a proxy using interface implementation—we
call this an interface proxy approach—the target object
T must implement a set of interfaces I and all client
code must access T via these interfaces only. Then, a
proxy object P can be created which also implements I
and holds a reference to T for delegation. T in the client
code can be transparently replaced by P, which plays
the role of a proxy. Within T ’s method implementa-
tions, however, the this reference refers to T rather than
P, which is problematic if the reference is used to ac-
cess the object: such access will not be registered by the
proxy. In addition, like with transparent proxies, the in-
terface proxy approach does not allow self calls to be
extended, it is therefore a suboptimal solution as well.

Realizing proxies using inheritance—the subclass
proxy approach—is different from the aforementioned
approaches. Whereas transparent and interface proxies
have an object instance P replacing a target object
instance T (and delegating), inheritance allows proxy
and target to be one and the same object: a class P is
derived from the target class T , overriding its methods
and delegating to the original implementation. When P
is instantiated, one object instance implements both P’s
and T ’s functionality. Since subclasses are subtypes
in .NET, the LSP applies and instances of P can be
used wherever instances of T are expected. Subclass
proxies intercept self-calls correctly, the this reference
is automatically correct, and introduction is possible
via interface implementation (see below). Figure 1
compares the unproxied scenario with a simplified
drawing of transparent, interface, and subclass proxies.
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Figure 1. Proxy approach visualization.

In contrast to transparent proxies, both interface and
subclass proxy have the disadvantage of needing a class
factory [GHJV95] to make object creation transparent
to client code. Table 1 summarizes the properties of the
different proxy approaches, positive characteristics are
shown in boldface.

Transparent Interface Subclass
Parent class ContextBoundObject arbitrary arbitrary
Creation newobj factory factory
Usage direct interfaces direct
This reference P T P
Extend self calls no no yes
Introduction no yes yes

Table 1. Properties of proxy approaches.

2.1 Runtime Subclass Proxies

In the simplest form, subclasses do not implement a
runtime proxy approach: the programer needs to write
dedicated derived classes for each target type, manu-
ally overriding the methods that need to be extended.
Using code generation, this can however be generi-
cally performed at runtime by a tool or framework.
The .NET Base Class Library provides two powerful
mechanisms allowing for runtime code generation: the
System.Reflection.Emit namespace contains low-level
classes and methods to dynamically generate .NET as-
semblies and types, System.CodeDom provides base
classes for higher-level code generation. In this article,
we will concentrate on System.Reflection.Emit.



Listing 1 shows how to dynamically generate a
subclass of an arbitrary type at runtime using Sys-
tem.Reflection.Emit: it asks the current application
domain to define a dynamic assembly, naming it
“proxies”, which in turn is used to define a dynamic
module named “proxies” as well; by giving the module
a DLL file name (and using the RunAndSave flag when
creating the assembly), it is possible to save the module
to disk after generation in addition to using its types.
The dynamic module is used as a factory for the type
which is to be created. The type’s base class is specified
to be baseType, the parameter passed to the method
(which corresponds to the proxied type T ), its access
attribute is Public to make it publicly accessibly from
other assemblies, and its name is defined by attaching
“___Subclass” to the base type’s name. By calling its
CreateType method, the dynamic type is finished and
the corresponding Type object (P) is returned and can
be instantiated using System.Activator.CreateInstance.

public Type DefineSubclass(Type baseType) {
AssemblyBuilder a =
AppDomain.CurrentDomain.DefineDynamicAssembly(new
AssemblyName("proxies"),
AssemblyBuilderAccess.RunAndSave);

ModuleBuilder m = a.DefineDynamicModule("proxies",
"proxies.dll");

TypeBuilder subtype = m.DefineType(baseType.Name +
"___Subclass", TypeAttributes.Public, baseType);

return subtype.CreateType();
}

Listing 1. Creating a subclass at runtime.

2.2 Weaving Based on Subclass Proxies

Aspect-oriented programming is based on two main
concepts: join points, i.e. points in the imperative pro-
gram flow where aspects’ advice methods are triggered,
and introduction of new members to the aspects’ tar-
get classes. Both concepts can—to a degree—be im-
plemented with subclass proxies; the method of doing
so is described in this section. An analysis on the join
point model which is gained from this mechanism is
performed later in section 4.

Join Points By overriding the methods of its base
class, a proxy class can provide replacement code for
them, delegating to the original (base) implementation
if necessary, and triggering join points before, after, and
instead of (or around) method executions.

With System.Reflection.Emit, overriding methods is
easily possible by inserting code prior to calling Type-
Builder.CreateType. Listing 2 shows how to override
all virtual methods of the given base type. It does so
by using the .NET Reflection mechanism to find all
the public and nonpublic instance methods of the base
type, checking whether they are virtual, and, if yes,
defining a method with the same name and signature.
The signature is found by inspecting the parameters of

the base method and extracting their types (using an
anonymous delegate for brevity); the override’s return
type is the same as that of the base method.

foreach (MethodInfo m in baseType.GetMethods(
BindingFlags.Public | BindingFlags.NonPublic |
BindingFlags.Instance)) {

if (m.IsVirtual) {
ParameterInfo[] parameters = m.GetParameters();
Type[] parameterTypes =

Array.ConvertAll<ParameterInfo,
Type>(parameters,

delegate(ParameterInfo parameter)
{ return parameter.ParameterType; });

MethodBuilder subMethod =
subtype.DefineMethod(m.Name,
MethodAttributes.Virtual |
MethodAttributes.Public,

m.CallingConvention, m.ReturnType,
parameterTypes);

ILGenerator il = subMethod.GetILGenerator();
il.Emit(OpCodes.Ldarg_0);
foreach (ParameterInfo parameter in parameters) {
il.Emit(OpCodes.Ldarg, parameter.Position + 1);

}
il.EmitCall(OpCodes.Call, m, null);
il.Emit(OpCodes.Ret);

}
}

Listing 2. Overriding methods.

The code snippet then defines the override’s method
body via IL (intermediate language) opcodes. The body
loads the object reference (argument 0) and the param-
eters, calls the base method, and finally returns to the
caller. An AOP approach can insert additional code into
the body, implementing before, after, and around advice
and delegating back to the original method if desired.

Opposed to method join points, construction and cre-
ation join points need not be implemented by the proxy
itself: they can be triggered by the factory used to create
the proxy types and their instances. Property get and set
join points are equivalent to method join points, since
all properties are backed by respective getter and set-
ter methods. Finalizer join points can be implemented
the same way as method join points by overriding the
Finalize method of the object. Field get and set join
points cannot be implemented with subclass proxies. It
is up to the AOP implementation of how to bind ad-
vice methods to the join points implemented with the
subclass proxy mechanism, the most runtime-efficient
way being to directly encode calls to advice methods
(or even inline these) into the override’s method body.

Introduction As opposed to compiler-based AOP ap-
proaches, runtime weaving approaches cannot simply
introduce new members to a class. While it is eas-
ily possible to add these members to a subclass proxy,
client code uses the proxy transparently and has no
way of accessing the introduced entities with a stati-
cally typed programming language. The only form of
introduction easily conceivable for runtime approaches
is interface introduction: an aspect can add an interface
and its implementation to an object, and client code can



cast its object reference to the interface type. Since the
proxy implements the interface, the cast succeeds.

Interface introduction can be easily implemented with
Reflection.Emit by having the dynamically created sub-
class implement the interface. This is similar to listing
2 and therefore not separately demonstrated here.

3. PRIVILEGED ACCESS TO TARGET
OBJECTS’ SECRETS

One important property of aspects is that they often
require more privileged access to their target object’s
internals than other objects should have, because they
implement cross-cutting concerns which can be tightly
coupled to the objects they cut. While a subclass proxy
naturally has access to all public and protected (family-
accessible) fields and methods of its base class, it has
no access to private or assembly-visible members.

.NET provides a Reflection mechanism to work around
this: given the necessary rights, every object can reflect
over another object’s private fields and methods in or-
der to inspect and change the fields’ values or invoke
the methods. However, Reflection is not optimized for
performance: our tests have shown that accessing a field
via reflection is around 200 to 700 times slower than di-
rect access, and still 180 times slower than invoking an
accessor method would be. Since field access is such
a basic operation, this might conceivably slow down an
aspect-oriented application, depending on the degree of
coupling between aspects and object state.

It would be desirable, therefore, to at least have acces-
sor methods for those private fields required by an as-
pect. Unfortunately, such a method cannot be added
to a subclass, which has no access to private members.
As a solution, with .NET 2.0 there is a new mecha-
nism called Lightweight Code Generation (LCG), or
Dynamic Methods [Mic06]. It allows methods to be
generated at runtime which can be attached to any exist-
ing type, allowing access to all its private data. Access
to the method is provided via a delegate, allowing flex-
ible invocation which is still 15 to 20 times faster than
reflection-based field access. The diagram in figure 2
shows a performance comparison of the different ways
of accessing fields (measured on an Athlon XP1800+
with 512 MB RAM and .NET framework v2.0.50727).

Field Access Framework For an AOP approach
based on subclass proxies, we suggest a field access
infrastructure which consists of a set of generic dele-
gate types Setter and Getter as strongly typed wrappers
for the accessor methods, an accessor method gener-
ator MethodGenerator which generates the accessor
methods using LCG, and a wrapper structure for fields,
which simply initiates the accessor method generation
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Figure 2. Performance of access methods.

when being constructed and provides a Value property
delegating to the accessor methods for convenient use.

Listing 3 shows the source code for these infrastructure
entities. The method body constructed by CreateSetter
simply loads the given target object (argument 0) fol-
lowed by the value (argument 1), which is then stored
in the given field before returning. The method body
constructed by CreateGetter first loads the target, then
loads the field value, and then returns, leaving the field
value on the evaluation stack, returning it to the caller.
Because the created dynamic methods are associated
with the target type (ClassType), they can safely access
even private fields using the ldfld and stfld opcodes.

delegate FieldType Getter<ClassType, FieldType>(
ClassType target);

delegate void Setter<ClassType, FieldType>(
ClassType target, FieldType value);

class MethodGenerator {
public static Setter<ClassType, FieldType>
CreateSetter
<ClassType, FieldType>(FieldInfo fieldInfo) {

DynamicMethod newMethod = new DynamicMethod(
fieldInfo.Name + "___GeneratedSetter",
typeof(void),

new Type[] { typeof(ClassType),
typeof(FieldType) },

typeof(ClassType));
ILGenerator ilGenerator =
newMethod.GetILGenerator();

ilGenerator.Emit(OpCodes.Ldarg_0);
ilGenerator.Emit(OpCodes.Ldarg_1);
ilGenerator.Emit(OpCodes.Stfld, fieldInfo);
ilGenerator.Emit(OpCodes.Ret);
return (Setter<ClassType, FieldType>)

newMethod.CreateDelegate(
typeof(Setter<ClassType, FieldType>));

}

public static Getter<ClassType, FieldType>
CreateGetter
<ClassType, FieldType>(FieldInfo fieldInfo) {

DynamicMethod newMethod = new DynamicMethod(
fieldInfo.Name + "___GeneratedGetter",
typeof(FieldType), new Type[] {
typeof(ClassType) },

typeof(ClassType));
ILGenerator ilGenerator =
newMethod.GetILGenerator();

ilGenerator.Emit(OpCodes.Ldarg_0);
ilGenerator.Emit(OpCodes.Ldfld, fieldInfo);
ilGenerator.Emit(OpCodes.Ret);
return (Getter<ClassType, FieldType>)

newMethod.CreateDelegate(
typeof(Getter<ClassType, FieldType>));

}



}

struct Field<ClassType, FieldType> {
public readonly FieldInfo FieldInfo;
public readonly ClassType Target;
public readonly Getter<ClassType, FieldType>
Getter;

public readonly Setter<ClassType, FieldType>
Setter;

public Field(ClassType target, FieldInfo
fieldInfo) {
this.FieldInfo = fieldInfo;
this.Target = target;
this.Getter = MethodGenerator.CreateGetter

<ClassType, FieldType>(fieldInfo);
this.Setter = MethodGenerator.CreateSetter

<ClassType, FieldType>(fieldInfo);
}

public FieldType Value {
get { return Getter(Target); }
set { Setter(Target, value); }
}
}

Listing 3. Infrastructure for efficient field access.

4. CONCEPTUAL ANALYSIS
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Figure 3. Classification of weaving mechanisms.

Figure 3 shows two orthogonal classifications of weav-
ing mechanisms with regard to an assembly’s lifecy-
cle. On the one hand, weaving is classified based on
the kind of woven code: source code weaving manipu-
lates an assembly’s source code to inject aspect or glue
code1; it can be performed either by a code transforma-
tion tool or by a dedicated compiler (plugin). Interme-
diate code weaving manipulates intermediate code (IL
and metadata [ECM05]) to inject aspect or glue code;
this is usually done by a post-compiler or custom class
loader. Augmenting weaving does not manipulate exist-
ing code, but instead augments it with new glue code,
connecting it to aspect code; this can be performed by
frameworks rather than tools. Subclass proxy-based ap-
proaches are augmenting mechanisms, while traditional
approaches like AspectJ are source code or intermedi-
ate code weaving mechanisms or mixes thereof.

On the other hand, weaving can be classified based
on when it is performed: AspectJ, for example, has
traditionally been a static weaver (including load-time
weaving in recent versions) [tAT05]. Contrarily, sub-
class proxy approaches are real runtime weaving ap-
proaches, with the main weaving done at object instan-
tiation time, when the proxy type is created.

1 Glue code is code which “glues” an aspect to its target objects.

With regard to the kind of code being woven, we char-
acterize based on the following properties, displayed in
table 2 with advantageous properties in boldface:

Invasiveness is a measure for the degree of manipu-
lation the weaving approach performs on user-written
code. Source code weaving approaches compiling a
dedicated aspect language have low invasiveness, aug-
menting approaches only extend and also have low in-
vasiveness. Other approaches change the structure of
user-written code and are thus highly invasive.

Debuggability denotes how much effort is needed to
make the woven program debuggable with standard
mechanisms (e.g. Microsoft Visual Studio). This is
easy with proxy-based approaches, because the original
debug information remains valid after weaving. Source
code weaving also results in correct debug informa-
tion. With intermediate code weaving, debuggability
involves manipulating a debugger-specific file format.
This is not portable and often hard: for example, the
undocumented Program Database file format used by
Visual Studio cannot be easily manipulated.

Join point model denotes the join point kinds an ap-
proach can provide. Source code weaving makes no re-
strictions whatsoever to the join point model. With in-
termediate code weaving, the only restrictions are those
posed by IL and metadata (e.g. there are no “for” loops
available in IL; to a certain extent this can be overcome
by pattern matching as it is also done by decompilers).
Augmenting weaving relies on the manipulation mech-
anisms provided by the CLR, i.e. OOP techniques such
as interfaces implementation and method overriding.

Design prerequisites describes prerequisites needed
from the perspective of the application designer. With
subclass weaving, it is necessary to use a factory to in-
stantiate objects. With source code and intermediate
code weaving, there is no such restriction.

Tool prerequisites describes the tools needed for the
approach. Source code weaving needs a precompiler or
real compiler, intermediate code weaving needs a post-
compiler or class loader, augmenting weaving can be
done by a framework or library.

Implementation effort is a measure for the effort
needed to create a tool based on the approach and
keep it up to date with platform changes. Source code
weaving requires the most effort by an implementer:
it needs at least a source code parser and source code
emitter. If the tool is a compiler, complexity is even
worse. With intermediate weaving, an IL and metadata
parser and emitter are needed, although IL is typically
simpler to weave than source code. Augmenting
weaving only requires a very simple framework.

Compatibility is a measure for the compatibility of the
approach with third-party compilers, frameworks, or



metaprogramming tools. With compiler-based source
code weaving tools, third-party compilers cannot be
used. Intermediate code and augmenting weaving tools
pose no compatibility problems and can usually easily
be combined with any compiler, framework, or tool.

Language support denotes the number of supported
programming languages. While intermediate code and
augmenting weaving strategies can handle all program-
ming languages targeting .NET, a source code weaving
tool can only target a single programming language.
Since one of .NET’s goals is to be a multilanguage
environment [ECM05], this is an important restriction
which might exclude a high number of potential users
(much more important than on the Java platform).

Performance is a measure for the runtime efficiency of
the approach. With source code weaving, performance
is optimal, all compiler optimizations and JIT optimiza-
tions can be performed. With IL code weaving, com-
piler optimizations should be disabled in order to re-
tain a powerful join point model (e.g. target methods
must not be inlined by the compiler), but JIT optimiza-
tions can be performed without any restriction. With
augmenting weaving, some optimizations are disabled
by the use of certain OOP features (like virtual method
calls), but most JIT optimizations are available.

Source Intermediate Augmenting
Invasiveness low to high high low
Debuggability no-effort hard no-effort
Join point model arbitrary IL and metadata OOP
Design prerequ. none none factory
Tool prerequ. compiler postcompiler framework
Impl. effort very high high low
Compatibility low high high
Language support one all all
Performance optimal good medium

Table 2. Weaving approaches by code form.

With regard to the time of weaving, we characterize the
approaches as follows, summarized in table 3:

Changeability denotes how much effort is needed to
add or remove an aspect to or from the application.
With static weaving, recompilation or reinstrumenta-
tion of the assembly is needed, the application has to
be restarted and redeployed. With load-time weaving,
the application domain needs to be reloaded, often re-
quiring a restart. With runtime weaving, changes can be
applied immediately to objects created after the change.

Deactivating aspects is equally possible in all three
weaving variants and requires some sort of join point
manager which is asked before a join point is triggered.

Error detection refers to the point of time when weav-
ing configuration errors are detected. With static weav-
ing, this is before application deployment, whereas it is
after deployment with the other two approaches.

Testability is inversely proportional to the effort needed
to test an object in scenarios with different (or no) as-
pects attached to it. This follows directly from the

changeability: static and load-time weaving require
much effort, whereas runtime weaving does not.

Static Load-Time Runtime
Changeability recompilation reload immediately
Deactivating aspects immediately immediately immediately
Error detection before depl. after depl. after depl.
Testability low low high

Table 3. Weaving approaches by time of weaving.

4.1 Join Point Model

From an AOP perspective, a number of join points can
be implemented using subclass proxies, whereas others
can’t. Table 4 characterizes the join point model real-
izable with the approach. Using a source code weaving
tool, all the join points shown could be realized.

Join Point Type Before Instead of After
Object creation yes yes yes
Constructor execution yes no yes
Class construction no no no
Object finalization yes yes yes
Method execution yes (virtual) yes (virtual) yes (virtual)
Method call no no no
Property get yes (virtual) yes (virtual) yes (virtual)
Property set yes (virtual) yes (virtual) yes (virtual)
Field get no no no
Field set no no no
Exception thrown no no no
Exception caught no no no
Exception escaping yes (virtual) yes (virtual) -
Construct (for, if, . . . ) no no no

Table 4. Join point model with subclass proxies.

While this join point model is definitely restricted when
compared to that of a source code weaving tool, we be-
lieve that this is not a problem in most AOP scenar-
ios. When an application is designed from scratch in
an aspect-oriented way, all join points are known in ad-
vance, before any of the classes or aspects is to be im-
plemented. With a subclass proxy approach, the design
would naturally evolve around the join point kinds be-
ing available, ignoring those which can’t be used. In
most cases, however, small design changes can work
around the missing join point types.

For example, because field access join points cannot
be realized using subclass proxies, a design guideline
could be created to access fields via accessor meth-
ods (or properties) only, which is a common guideline
with OOP already. Those methods whose execution is
needed as a join point would be defined to be virtual.
The only join points which can’t be worked around are:
instead-of constructor execution, class construction, ex-
ceptions thrown and caught in the same method, and
join points at a statement-level granularity. In addition,
subclass proxies cannot advise non-virtual methods or
distinguish between method call and execution.

4.2 Psychological Factors

Adoption of AOP is hindered by many factors, which
are remedied to a great extent by the use of an approach
based on subclass proxies:



AOP as an invasive mechanism: AOP is often re-
garded with distrust, because its tools weave code to-
gether as a black box. Developers can’t see what hap-
pens when aspects and objects are mangled together,
concerns about reliability and debuggability (if an er-
ror occurs in mangled code, will it be retraceable to the
original source code?) as well as the question of unpre-
dictable execution paths in woven code arise. In con-
trast, subclass proxies are built on established object-
oriented concepts such as method overriding and in-
terface implementation. These are well-known, don’t
introduce reliability or debuggability problems, and de-
velopers can comprehend what happens at runtime.

Adaption to new tools: Aspect-oriented tools often re-
place the tools (e.g. compilers) developers are used to
instead of augmenting them. With all approaches, de-
velopers need to adapt to new tools with new error mes-
sages, longer or different update cycles, and sometimes
incompatibilities with the original tools. Since subclass
proxies can be implemented as a framework or class
library, there is no need to switch tools with such an
approach—developers can continue using their familiar
environment and still obtain the benefits of AOP.

Unfinished tools: AOP tools usually need a lot of work,
this is the cause of the lack of production quality .NET-
based AOP tools. However, since subclass proxies are
much simpler to implement than code weaving tools,
the probability of reaching production status is much
higher with this approach.

AOP based on subclass proxies has high adoption po-
tential. With the described prerequisites, users should
be easily convincable of the new technology.

5. PERFORMANCE EVALUATION

With proxy-based approaches, aspect code is not
directly inserted into the target code; object-oriented
mechanisms are used instead. This is often regarded as
a performance disadvantage of such approaches. On
the .NET platform, however, most optimizations are not
done by a language compiler inlining code, but by the
JIT compiler’s optimizer at runtime. There are some
restrictions to JIT optimization with subclass proxies,
because virtual method calls to the target object are
always performed through the proxy and can’t be
replaced by ordinary calls, but these apply just as well
when the application makes use of the object-oriented
mechanisms itself. Most JIT optimizations should not
be affected adversely by the use of subclass proxies.

In this section, we will take a look at two implementa-
tions of the subclass proxy mechanism—NAspect and
DynamicProxy [Ver04] (which XL-AOF is based on)—
and analyze object construction time and method call

time, since these represent the main points during pro-
gram flow where a proxy-based mechanism performs
differently from a mechanism based on code weaving.

5.1 Object Creation

The first time an object is created from a target type, the
proxy-creating factory must construct the new proxy
subclass. This is a lengthy operation, our measurings
have shown this to take up to 37ms (DynamicProxy)
and 12ms (NAspect), as opposed to the few nanosec-
onds an ordinary new operation (usually) needs. Seen
as isolated numbers, this is a tremendous slowdown.

However, analysis of cross-cutting concerns in space-
based computing [eKS05a] reveals that common sce-
narios only have few types being aspectized at the same
time, with a higher number of instances created from
those. In such scenarios, the generated proxy sub-
classes can and should be cached, making an instantia-
tion consist of one hashtable lookup plus one call to the
type’s constructor (either via Reflection or, optimized,
via a delegate), which takes a few hundred microsec-
onds at most in our measurements. In the use cases
we studied, this makes instantiation time of proxied ob-
jects not a problem. On the other hand, if it is vital
that proxied objects of many different types are created
with rigid performance requirements (a few nanosec-
onds per instantiation), pure proxying might not be the
mechanism of choice, although pooling and flyweight
techniques [GHJV95] can improve on that.

Regarding memory usage, an AOP tool based on sub-
class proxies should use as few dynamic assemblies and
modules as possible. Our tests have shown this to scale
much better than having one assembly per proxied type.
Caching of the generated proxy types will also improve
memory footprint. A user should be aware that the only
way to remove the generated proxy types from mem-
ory is by unloading their application domain (of course,
their instances are garbage collected as usual), although
again this will not be an issue in scenarios with a rea-
sonable number of aspectized types.

5.2 Method Invocation

Method join point performance is more important than
object creation performance because the frequency of
method calls as compared to object instantiations is
typically very high. With subclass proxies, method
join points are implemented via method overrides. A
method join point of an optimal proxy is therefore no
different from a virtual method call (a few nanosec-
onds) plus one non-virtual base call if delegation to the
original code is needed (a few nanoseconds as well).
This optimal approach however requires injection of
advice code into the subclass proxy, which is not triv-
ial to implement. Current implementations therefore
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Figure 4. Method call benchmarks.

choose not to directly invoke the base method from
within the override. Instead, they encapsulate the base
call and hand it to an interceptor provided by the aspect,
which may then choose to invoke the method or not.
For this encapsulation, DynamicProxy constructs a del-
egate, whereas NAspect relies on Reflection. Both ap-
proaches are not ideal what regards method interception
performance, although delegates are an order of magni-
tude faster than Reflection.

Figure 4 shows a method call benchmark done with an
AMD XP1800+ system. The values for ordinary vir-
tual call, DynamicProxy, and NAspect are measured,
the value for the ideal proxy is calculated—an imple-
mentation can achieve this performance if call times are
of much importance. We measured the call and return
time of empty methods (with the proxies delegating to
the original empty methods); in real scenarios, these
values have to be seen in relation to concrete method
execution time. For example, our tests have shown that
with an average method whose body needs several mi-
croseconds for execution, the measured call times are
not that significant.

To summarize, while current implementations show
medium to significant method call slowdowns, an ideal
subclass proxy approach can lead to call times in the
range of nanoseconds, not much higher than ordinary
method calls. Even the call times of current implemen-
tations are less significant if the called methods have
nontrivial bodies.

6. CONCLUSION

In this paper, we have motivated, described, and ana-
lyzed the subclass proxy mechanism as an implemen-
tation infrastructure for aspect-oriented programming.
We compared the different proxy mechanisms available
on the .NET platform, identifying the subclass proxy
mechanism as the most powerful of these. Classify-
ing the weaving approach implementable with subclass
proxies, we have shown the disadvantages of the model,
such as a more constrained join point model and design

restrictions, but have also identified technical advan-
tages over classical implementation mechanisms, such
as easy debuggability and runtime weaving capabilities.

Performance benchmarks have shown current subclass
proxy implementations to be of medium performance;
however the proxy concept could be improved in this
regard if necessary in order to achieve call times not
much different from ordinary virtual calls.

Analyzing the psychological properties of subclass
proxies, we have identified a high potential of the
non-invasive mechanism which requires no dedicated
compiler tools—we ourselves have successfully used
the approach for developing space-based distributed
applications [SeK04]. Such light-weight implemen-
tations could finally lead to industrial acceptance of
aspect-oriented programming.
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