
Phalanger: Compiling and Running PHP
Applications on the Microsoft .NET Platform

Jan Benda

Charles University in Prague
Malostranske namesti 25

11800 Prague
Czech Republic

jbe@php-compiler.net

Tomas Matousek
Charles University in Prague

Malostranske namesti 25
11800 Prague

Czech Republic

tomas@php-compiler.net

Ladislav Prosek
Charles University in Prague

Malostranske namesti 25
11800 Prague

Czech Republic

lada@php-compiler.net

ABSTRACT

This paper addresses major issues related to compilation of applications written in the PHP language and their
solutions proposed and implemented in the Phalanger system targeting the Microsoft .NET platform. Main focus
is given to those PHP features that are specific to the interpreted and dynamic nature of this language and that are
making the compilation process more challenging. Since a language compiler and runtime are usually tightly
coupled, this paper also presents parts of the Phalanger runtime related to the discussed language features.
Additionally, the support for various web application execution scenarios within the ASP.NET server is outlined
as PHP applications usually target web servers. The effectiveness reached by the compilation to the intermediate
language of the .NET platform is demonstrated in a comparison with existing products addressing an
optimization of PHP code execution.

Keywords
PHP language, .NET Framework, compiler, web applications

1. INTRODUCTION
The PHP became the most popular interpreted
language for web application development due to its
ease of use and availability. On the other hand, the
interpretation yields sub-optimal performance and
also requires presence of the source code on the web
server.

This work is not the first one to address these issues.
One of today’s most common optimizations relies on
converting PHP source code units into a binary
representation stored in the interpreter cache. The
cached binary representation eliminates the need to
read the source files and build the structures
necessary for their interpretation repeatedly. The
Zend Optimizer [23] is an example of this approach.

Another approach consists of a translation of the PHP
source code into the language whose compiler
already exists. Products using this technology are the
Roadsend Compiler [19], which translates the PHP
language to the C language, and recently released
Resin Quercus [4] whose target language is Java.

Despite these efforts, the Phalanger [9] discussed in
this paper still stands as the only existing PHP
language compiler [2] with the support for the latest
PHP features (version 5.1.2 at the time of writing this
paper) and virtually all PHP runtime libraries. It
brings the PHP language to the family of the .NET
languages [1] and makes it possible for other .NET
applications to cooperate with PHP applications
regardless of the programming language they are
written in. Therefore, the Phalanger enables seamless
integration of the existing PHP applications with the
new technologies of ASP.NET [10], and thus saving
resources that would otherwise be needed for
reprogramming them. On the other hand, the .NET
programmers can also utilize the advantages of using
a dynamic language in their new applications.

This paper is laid out as follows. Section 2 describes
how specific PHP language constructs are handled by
the Phalanger compiler to achieve high performance
of the compiled code. Section 3 outlines the run-time
environment provided to the PHP programs compiled

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006

Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

by the Phalanger. Section 4 discusses the related
works and Section 5 compares them with the
Phalanger in a performance benchmark. Finally,
Section 6 concludes and outlines the future work.

2. PHP LANGUAGE COMPILATION
The PHP language [3] is a procedural language
originally developed to be processed by an
interpreter. This is why some features cannot be
compiled in a straightforward manner. The challenges
of compiling the PHP language and our proposed
solutions are presented in this section.

Scripts
A PHP script is a compilation unit in the Phalanger. It
consists of snippets of HTML and PHP code one
penetrating the other, with the code enclosed in a
special type of tags. The pieces of HTML code
outside the PHP brackets are treated as if they were
printed out by the PHP code via the echo statement.

Therefore, from the compiler’s point of view the
script consists of a sequence of statements. Apart
from the statements available in the commonly used
procedural languages, function, class and interface
declarations are also statements in PHP. Phalanger
compiles classes and interfaces into separate CLR
types [5]. Functions and other non-declarative
statements are compiled into a single static script

type. This CLR type contains public static methods
corresponding to the functions declared in the script
and a single public static method containing all the
non-declarative statements of the script (the global

code of the script – the code that is supposed to run
when the script is executed).

All code defined explicitly in the script as well as the
code created at run-time is executed in a common
script context. Script context is an object associated
with the running script, keeping track of the script
state – the defined constants, global variables,
functions, classes, script dependent configuration etc.
The current script context object is accessible to each
user function and method via a reference passed as an
argument along the execution path. If the script is
running on a web server, the script context object is
created for each request and is held by the request

context object, which contains additional data
specific to the request processing.

The following PHP source code sample shows three
pieces of global code: ‘<html>’, ‘$x = 1;’ and ‘if
($y)’, and two declarations, one of them conditional.

<html> ... HTML snippet

<? ... opening script tag

 $x = 1; ... global variable assign.

 function f() { } ... unconditional decl.

 if ($y) { class C { } } ... conditional decl.

?> ... closing script tag

Raw structure of the compilation result follows.

class C#1 : PhpObject { }
static class ScriptType
{
 public static f(ScriptContext sc) { }
 public static Main(ScriptContext sc)
 {
 sc.Echo("<html>");
 sc.SetVariable("x", 1);
 sc.DeclareFunction("f", f);
 if (Ops.IsTrue(sc.GetVariable("y")))
 sc.DeclareClass("C", typeof(C#1));
 }
}

Declarations
Declarations of functions, classes and interfaces
stated directly in the global code (i.e. not enclosed in
another statement) are unconditional declarations
(the function declaration in the above example). In
addition to this common usage, PHP allows
declarations inside a function body, if statement
block, etc. Such a declaration is a conditional

declaration (see the class declaration in the example).
It depends on run-time conditions whether and when
this declaration takes effect.

Once a declaration statement is executed (the
declaration becomes active) it cannot be undone and
a redeclaration is not allowed. However, multiple
declarations of the same entity (function, class or
interface) using the same name can appear in the code
or be defined at run-time provided that at most one
becomes active at run-time. Such declarations of an
entity are referred to as its versions in the Phalanger.
Hence, all versions except for at most one must be
conditional. Note that if an unconditional version is
present the conditional ones shall never be activated.
On the other hand, it is not an error to declare them.
There are no explicit means for conditional
compilation in the PHP language so the regular
conditional statements are used for that purpose.
Versions are maintained by the Phalanger runtime
ensuring that at most one gets activated.

Active versions of functions are stored in the script
context in a hash table mapping a function name to an
instance of a delegate. The delegate instance
represents the CLR method implementing the active
version. Another hash table is designated to store the
type objects representing the active class and
interface versions. Each declaration statement adds
an entry to the respective hash table at the point of its
execution or at the beginning of the global code for
unconditional declarations.

A multi-version function call operator then looks up
the active version in the table and calls it via the
delegate. Analogously, the new operator looks up the
active version of the type in the hash table and
instantiates it. These operators are emitted by the
compiler only if the actual target of a function
invocation or a class instantiation is not known at

compile time. This includes not only the multi-
version targets but also targets unknown at compile-
time and targets referenced by the name stored in a
variable. Otherwise, for the targets known at compile-
time, the direct method invocation and class
instantiation IL instructions [7] are emitted into the
resulting byte code.

Inclusions and Run-time Evaluated Code
The PHP language contains several inclusion
statements. Their behavior is almost equivalent to an
insertion of the code contained in the included script
to the place of the inclusion statement. Implementing
the inclusions in this way is undesirable for the
compiled language. The compiler processes the
individual scripts separately, thus enabling reuse of
the compiled modules without the need of repeated
processing.

An inclusion whose argument can be determined at
compile-time is resolved immediately (static

inclusion) otherwise the inclusion is deferred to run-
time (dynamic inclusion). The script included
dynamically is bound with the including one at run-
time which is, of course, slower than compile-time
linking. Unfortunately, many PHP scripts use
inclusion expressions that cannot be evaluated at
compile-time. The algorithm used by the PHP
interpreter for resolving the inclusions makes it even
more difficult for the compiler to make the decision
at compile-time even if the target is specified by a
string literal. By inspecting many existing PHP
applications and libraries, we observed that the vast
majority of them use only a handful of patterns for
specifying the inclusion target. For example, a
common pattern is

include($AppRoot . "path/to/file.php");

where $AppRoot is a PHP variable containing the
application root path computed by the previous code
and the dot operator performs a string concatenation.
Although the expression cannot be evaluated at
compile time, the inclusion can be made static. The
trick inheres in configuring the compilation of the
application so that one or more regular expression
patterns are matched against the source code of each
inclusion argument to replace the recognized patterns
with associated literal constants – the paths relative to
the application source root, which is already known
to the compiler.

Declarations contained in dynamically included
scripts are unknown to the compiler at the time when
the including script is being compiled, thus their uses
must be compiled as uses of unknown functions,
classes or interfaces. Obviously, this presents a
problem when declaring a class that inherits from
class (or implements an interface) not known at

compile-time. In such case, the derived class is
treated as unknown despite the fact that its
declaration is known to the compiler. This is because
the changes in the superclass or implemented
interface (which can take place at run-time) can
totally change the behavior of any method of the
class. In the current version of the Phalanger, such
declaration is converted into an eval construct that
evaluates the source code at run-time. This way, the
compilation of the declaration is deferred to run-time
at which point all super-classes and implemented
interfaces are known. This approach is easy to
implement yet is not optimal as the run-time
compilation is expensive. The future versions of the
Phalanger will emit the declaration in the form
independent of the unknown base classes and
interfaces where possible.

The behavior of the eval construct is similar to the
dynamic inclusion. The difference is mostly in the
persistence as the eval’ed code is compiled into an in-
memory dynamic assembly and is not persisted.

Apart from the eval construct, there are other
constructs and functions that utilize run-time code
compilation. Those include the assert construct,
which evaluates a string containing a PHP
expression, the create_function library function,
which enables the user to define an anonymous
(lambda) function with a specified body, and some
others. Even though the source code passed to these
routines can be created at run-time, it is often not the
case and the parameters are usually literal strings. In
that case, the compiler processes the literals as if they
were regular source codes and immediately generates
the IL code during the initial compilation; the
compilation at run-time is no longer necessary.

Variables
Global variables are stored in a hash table held by the
script context object. Both direct and indirect
accesses are thus performed similarly to the original
PHP interpreter – using a hash table lookup. There is
not much opportunity for optimization here since the
global variables can be changed anytime from any
function or any script that may be even unknown at
compile-time.

On the contrary, the local variables are accessible
only within the scope of the function that declares
them. Therefore, it is often possible to represent them
by the CLR local variables allocated on the stack.
This is an important optimization as it is applicable to
the vast majority of functions and the creation of the
hash table in the function’s prologue and the
following look-ups are expensive. Nonetheless, in
some rare cases the list of local variables and their
values needs to be available at run-time. This only
happens when a function contains an eval construct, a

run-time evaluated assert construct, an inclusion, a
call to a function working with the variable list (e.g.
extract function), or an indirect function call, which
can target the latter. In such cases, a hash table of
local variables, which is similar to that of the global
ones, has to be created in the function prologue and
all uses of the local variables become look-ups in the
hash table.

Note that an indirect variable access (access by name)
is usually not an obstacle to the optimization of local
variables unless there are too many variables used in
the function. An indirect access is compiled into a
switch over the variable names known at compile-
time. Only when the indirectly accessed variable is
unknown at compile-time (the default case in the
switch is reached) the hash table for the local
variables unknown at compile-time is created if it
didn’t already exist and the local variable is looked
up. Therefore, a dynamic access to the variable
doesn’t necessarily degrade the performance by
creating and accessing the hash table.

So far, the compiler doesn’t perform any type
analysis. Gains of such analysis are very limited due
to the nature of the PHP language and are usually not
worth the increased complexity of the compiler.
Reasoning about the types of the global variables is
completely useless as their estimated types can be
changed by the code unknown at compile-time. On
the other hand, the type inference for local variables
might be considered. For example, a local variable
controlling the for-loop holds usually an integer in
the scope of the loop. Nonetheless, effects of such
optimizations might be negligible when compared to
the expensiveness of run-time code evaluation and
other features.

Therefore, each variable is currently either of type
Object (common super-type of all CLR types) or a
special type called PhpReference. The latter type is
used for variables with aliases, i.e. for those variables
that may potentially be used with &-modified
assignment operator (by-reference assignment) or that
can be passed to a function using by-reference
semantics. All global variables are of type
PhpReference as it is unknown whether they are
aliased or not.

In order to cope with PHP references in the way they
are used in the language, the PhpReference type
introduces an additional level of indirection. The type
comprises of a single field of type Object containing
the actual value of the variable.

For example, if two variables are assigned by
reference, say $x =& $y, subsequent assignments by
value to any of them modifies the other as well.
Hence, the assignment $x = 1 changes values of both
$x and $y to 1. In compiled code, these variables will

be of the type PhpReference. The assignment by
reference makes them refer to the same instance of
the PhpReference (the one of $y). The assignment by
value assigns to the field of the PhpReference
instance, so all variables sharing this instance get the
same value.

Functions and Methods
User functions are compiled as public static methods
of the script type representing the source file that
declares the functions. User methods are compiled as
methods of the CLR type representing the
corresponding user class. Two overloads are
generated for each user routine: an argument-full
implementation and an argument-less stub.

The argument-full overload is used by calls whose
target is known at compile-time. Its signature
includes all user-defined formal arguments. The body
contains the compiled code of the routine preceded
by a prologue processing arguments and initializing
local variables (populating local variables table,
checking type hints, etc.).

Contrary to argument-full overloads, all argument-
less stubs have the same signature. In many cases a
call to a compile-time unknown function needs to be
made. Signature uniformity allows delegates of a
single type to be used for such calls. The caller
pushes the arguments onto an internal stack and calls
the argument-less stub via the delegate. The task of
the stub is to move the actual arguments from the
internal stack to the evaluation stack, and call the
argument-full implementation. The internal stack is a
pre-allocated resizable array residing in the script
context.

Object Oriented Features
The PHP language is a class-based object-oriented
language supporting run-time modification of the
instance fields and some other unusual features. The
Phalanger compiler supports the entire object model
proposed by PHP5.

PHP classes and interfaces are represented directly by
CLR classes and interfaces, respectively, preserving
the inheritance hierarchy. The common base class for
PHP classes implements much of the PHP specific
behavior such as by-name field access and method
invocation, instance serialization, dumping,
comparison, etc. Compiled PHP classes can be easily
reused by other .NET languages. The role of the
Phalanger as a consumer and extender of classes
produced by other .NET languages is currently
limited to cases where such class has been designed
for the Phalanger by following several rules related to
method signatures, field types and helper methods.
These requirements stem from the dynamic and
loosely typed nature of the PHP language making

late-binding a very frequent phenomenon that should
be highly optimized. Being able to directly consume
and extend classes produced by other .NET
languages would be a great improvement as the
whole .NET Class Library and many other libraries
would become immediately available to PHP
programmers. The solution that features .NET
Framework 2.0 Lightweight Code Generation [10] is
currently being designed and will be implemented in
the next versions of Phalanger.

In the PHP language, instance field declarations are
optional. The declared fields are compiled as instance
fields of the resulting CLR class and a method giving
fast indirect access to these fields is emitted to each
class with at least one instance field declared.
Instance fields created at run-time are stored in a hash
table associated with the instance. Although the
compiler is able to discover what fields might
possibly be created at run-time, it is incorrect to treat
them as if they were declared so, because the
semantics of accessing these fields is generally
unknown at compile time (for example, a subclass
can overload field access by declaring the __get and
__set methods, which consequently turns some
undeclared field access operations in its base class to
__get and __set invocations).

When a field is accessed within a method using the
$this pseudo-variable and the corresponding field is
found at compile-time, an IL instruction is emitted to
accesses it directly. Otherwise, the lookup has to be
deferred to run-time and a call to the run-time
operator method is emitted instead. A field access via
an ordinary variable is always deferred to run-time
because the current version of the compiler doesn’t
perform any type analysis. Either way, there will
always be cases when such field access has to be
dynamic.

Method declarations are compiled in a similar way to
the functions. There are two ways of invoking
methods in the PHP language – virtual and non-
virtual. Virtual invocation is denoted by the

$instance→method(arguments) operator, whereas
class::method(arguments) operator performs a non-
virtual invocation. Both operators can be used to
invoke instance as well as static methods. When
invoking a static method in the virtual manner,
$instance is used merely to lookup the method
implementation. On the other hand, when an instance
method is invoked statically, it is given the call site’s
$this as the instance (if the caller’s $this is not
assignable to the callee’s one or the caller has no
$this at all, a dummy instance is created). Due to the
lack of the type analysis, virtual invocation is
currently always resolved at run-time via an operator.
Non-virtual invocations can be compiled as direct

invocations, provided that the class is known at the
compile-time.

Some more unusual object features found in the PHP
language include the possibility to declare abstract
static and final static methods and the possibility to
change a member visibility from protected to public
by the subclass. In most cases, the Phalanger uses
custom attributes to map such features to the CLR.

3. LANGUAGE RUN-TIME
The PHP interpreter provides hundreds of functions
to the programmers. These functions can be divided
into two main categories:

• built-in functions – the most commonly used
functions implemented directly by the interpreter

• external functions – additional functions
implemented in dynamic libraries (.dlls) provided
often by third parties.

The Class Library – Built-in Function Set
The Phalanger Class Library provides the
implementations of the built-in functions and classes.
This library is designed to be simply extensible and
language independent. The current library functions
are implemented in the C# language as public static
methods logically grouped to the encapsulating CLR
static classes. The semantics of by the PHP functions
and classes, required for the use from a PHP code, is
added via metadata associated with the respective
methods and types. These metadata drive the
compiler when it emits calls to the library functions
and operations on the library classes.

The Extensions – External Function Set
The external PHP functions are implemented in
dynamically linked libraries. These libraries are
loaded to the PHP interpreter’s address space and
communicate with PHP via Zend API – a predefined
set of functions.

Virtually all PHP extension libraries working against
Zend API of PHP 4.3.* are now available to .NET
applications via Phalanger’s Extension Manager. The
Extension Manager emulates the original PHP
interpreter environment, provides the necessary API
to the extensions and bridges the gap between the
unmanaged world of the PHP extensions and the
managed world of Phalanger in both directions. This
solution enables access to the functionality of any
PHP extension not only to the PHP scripts, but also
to any other .NET language.

The original dynamic libraries are encapsulated by
the managed wrappers. A managed wrapper is a tool-
generated assembly comprising of stubs representing
functions and methods provided by the corresponding
extension. Each stub marshals its arguments to native
PHP structures, performs the call to the PHP

extension and unmarshals the results back to the
managed form.

Because the PHP extension dynamic libraries do not
contain type information, additional hand-written
XML files describing function and method signatures
are used by the wrapper generator. The generator
analyses the dynamic library, adds the type
information and emits managed stubs into the
resulting assembly. Both versions of the stubs
(argument-full and argument-less) are generated to
allow indirect calls from the compiled PHP code.

Using the managed wrappers, the native
implementations of external functions are completely
hidden to the outside managed world so the caller
doesn’t need to care about the fact that the
functionality is actually implemented in the native
dynamic library. Hence, the library implementation
can be transparently replaced by a managed one
anytime without modification of the calling code.

There are two modes of loading PHP extensions
using the Extension Manager: collocated and
isolated. The web server administrator may configure
individual extensions depending on their reliability
preferring either performance or safety.

Trusted extensions may be collocated in the address
space of the PHP application process, in the same
application domain as the compiled PHP code,
leading to much better performance. In this scenario
the stubs only convert the managed data to the native
PHP structures and back.

Untrustworthy extensions may be loaded into an
isolated process. The main process, which executes
the compiled PHP code, is then protected from being
damaged or even crashed by the code of the
unmanaged extension. The two processes
communicate via .NET Remoting using the shared
memory channel or any other channel type.

ASP.NET Cooperation
Since the PHP scripts usually constitute web
applications, the run-time support for the web
environment is essential. A PHP web application
comprises of the set of scripts and data files stored in
a virtual directory on the web server. This directory
needs to be configured as an ASP.NET application in
order to be managed by the Phalanger. The Phalanger
provides a module serving web requests and
configures the ASP.NET to use it. The integration
with ASP.NET server allows the Phalanger to take
advantage of such features as monitoring source code
and configuration changes, hierarchical per directory
configuration, and sophisticated session handling.

When the request is issued to the Phalanger web
application, an object called request handler is
created to process it. The handler first checks the

compilation cache – a directory in which the
compiled script assemblies are stored. If the compiled
assembly that corresponds to the requested script is
found in the cache, it is loaded (unless already in the
memory) and executed. Otherwise, the compiler is
executed to compile the script and store it in the
cache. The response is always generated by the
compiled script. If the script is requested frequently,
it resides in the memory in a form of just-in-time-
compiled native code and the execution is thus really
fast as the benchmark results below demonstrate.

The Phalanger also provides an option to pre-compile
the entire web application to a single assembly. The
request handler then searches the pre-compiled
assembly for the requested script’s type. By utilizing
this scenario, the application source code is not
needed any more unless the user requires the
Phalanger to watch for its changes. Hence, the web
application can be deployed in the compiled form in
order to protect the intellectual property in the source
code.

The pre-compilation is also essential for large
applications comprising of thousands of scripts. That
many scripts consume enormous amount of memory
if compiled into separate assemblies and then all
loaded. Compiling the application to a single
assembly makes it more compact and saves the
memory.

In cases when an application is pre-compiled, yet the
source code still undergoes changes, the Phalanger
enables to mark the script types with timestamps so
that it can detect changes to the source file during the
application execution. The Phalanger maintains the
table of invalidated scripts at run-time and recompiles
the script into a separate assembly stored in the cache
if the script is invalidated.

4. RELATED PRODUCTS
The Phalanger system is one of the few alternatives to
the PHP interpreter. The majority of existing PHP
web applications is powered by the PHP interpreter
alone. If the performance is not sufficient due to high
server load, an accelerator is usually added to cache
the preprocessed script files. There are many
accelerators available today, including the Zend
Optimizer [23], the Turck MMCache [22] and the
eAccelerator [3].

Apart from the Phalanger, only two other systems
take the approach of compilation. The first is the
Roadsend Compiler [19] which compiles the PHP
code into the native binaries using the C language as
an intermediary. The second is the Resin Quercus [4]
targeting Java Virtual Machine by translating PHP
source codes into the Java language. The major
disadvantage of both is a lack of support for all PHP

extensions, which makes these systems currently
almost unusable in practice. Additionally, the
Roadsend Compiler doesn’t currently support the
latest versions of the PHP language. The very first
beta version of the Quercus has been released several
months ago. The system is still under development,
and it hasn’t been tested on a real-world application
yet.

5. BENCHMARKS
The benchmark presented below compares the
Phalanger with the versions 5.0.4 and 4.3.11 of the
PHP interpreter optionally accelerated by the Zend
Optimizer. The benchmark measures the overall
performance of the phpBB message board system
[17] version 2.0.14 by issuing a series of requests that
exercise the common operations performed by the
message board system users. Since all tested PHP
engines use the same database server and the requests
are sent sequentially, the benchmark measures the
relative differences in the speed of request
processing. To measure the results, the benchmark
uses the Microsoft Web Application Stress Tool [14].
The configuration used for the benchmark was Intel
Pentium M 1.4 GHz with 1 GB RAM running
Windows XP Professional SP2, IIS 5.1 web server
[11] and MSDE 2000 SP3 database engine [12].

Figure 1 visualizes the results of the benchmark. The
first three columns show the performance of various
Phalanger configurations. The first measurement, the
managed MSSQL extension, shows the best results.
This extension is a C# reimplementation of the PHP
MSSQL extension using Microsoft SQL driver

available with the .NET Framework. The second and
the third Phalanger configurations exercise the native
MSSQL extension shipped with the PHP 4.3.11
interpreter encapsulated in the managed wrapper. The
poor result of the third test is caused by isolating the
extension into a separate process. Performance
degradation is expected in this case since all data
transferred between the application and the SQL
server has to be passed through .NET Remoting
channel connecting the two processes. Therefore, the
extension isolation is not appropriate for extensions
transferring large amount of data.

The remaining four tests are performed on the PHP
interpreter with and without use of the Zend
Optimizer. The conclusion of the benchmark is that
the most powerful Phalanger configuration improves
the performance of the phpBB application by the
factor of 2.3 when compared with the best
configuration of the PHP interpreter.

Of course, the absolute numbers of the benchmark are
not relevant. Series of other benchmarks which varied
in the used database server (Microsoft SQL Server
[12], MySQL Server [15]), web server (Apache [20],
IIS 6 [11]), particular operations performed on the
application as well as benchmarks performed on
different applications showed that the version 1.0 of
the Phalanger in the configuration with managed
extensions makes the request processing about two
times faster than the PHP interpreter accelerated by
the Zend Optimizer.

10,76

7,73

1,83

4,75

3,92
3,51 3,33

0

2

4

6

8

10

12

Phalanger

managed

MSSQL

Phalanger

native MSSQL

(collocated)

Phalanger

native MSSQL

(isolated)

PHP 4.3.11

MSSQL

Zend Optimizer

PHP 5.0.4

MSSQL

Zend Optimizer

PHP 4.3.11

MSSQL

PHP 5.0.4

MSSQL

re
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Figure 1. Performance comparison of the phpBB web application running on the Phalanger and the PHP

interpreter (not) being accelerated by the Zend Optimizer.

6. CONCLUSION & FUTURE WORK
The Phalanger is a functional tool which allows to
deploy existing PHP applications without
significant modifications on an ASP.NET web
server, increasing the throughput significantly
compared to the original PHP interpreter. Phalanger
proves that the PHP language compilation targeting
the .NET Framework is not only feasible, but even
advantageous.

Apart from the demonstrated performance
improvements, the Phalanger provides the means
for migration of existing PHP applications to the
modern web environment of ASP.NET, allows the
.NET programmers to utilize useful functionality
implemented in the numerous PHP libraries and
gives the PHP application developers the ability to
access .NET Framework libraries as well as develop
their PHP applications inside Microsoft Visual
Studio .NET [13].

Another advantage of targeting the .NET
Framework over compiling to the native code or to
some kind of specific byte-code stems from the
amount of work that Microsoft invested to improve
the .NET execution engine itself. In general, the
performance of applications targeting .NET
Framework gets better with the new versions of the
.NET run-time. For example, the .NET
implementation of the Python scripting language,
IronPython, gained a significant increase in
performance when migrated from .NET Framework
version 1.1 to version 2.0 without any changes to
the IronPython scripting engine itself [7]. Further
improvements were achieved by utilizing new
features of the platform. Phalanger is likely to get
the same benefits when ported to the new version of
.NET.

The first final version of the Phalanger system has
been released recently and dozens of widely used
PHP applications and frameworks, including a huge
application comprising of about 2000 script files,
have been successfully tested on it. The first goal of
the Phalanger system, to be able to run the existing
PHP4 and PHP5 applications, has been, to a large
degree, achieved. However, as the development of
new PHP libraries and features (such as Reflection
API, Standard PHP Library and features proposed
by PHP6) continues, it is necessary to include them
in the Phalanger so that the newest versions of the
PHP applications continue to run on Phalanger.

The great challenge and the major goal for the next
version of the Phalanger is to make the PHP
language the first class language of the .NET
Framework, i.e. to make all .NET classes accessible
directly from the PHP language. The next version of

the Phalanger will run on .NET Framework 2.0
which will allow it to use the new features of the
.NET engine and make the compiled PHP
applications even faster. The Mono platform [16]
will also be supported.

REFERENCES
[1] .NET Languages: www.dotnetlanguages.net

/DNL/Resources.aspx
[2] Aho, A. V., Sethi, R., Ullman, J. D.:

Compilers, Addison-Wesley, 1986
[3] Alcantara F., Vanbrabrant B., Tabary, F.:

eAccelerator, eaccelerator.net
[4] Caucho Technology, Inc.: Resin Quercus,

www.caucho.com/resin-3.0

[5] ECMA: Common Language Infrastructure,
msdn.microsoft.com/net/ecma

[6] Gough, J.: Compiling for the .NET Common

Language Runtime, Prentice Hall, 2001
[7] Hugunin, J.: IronPython: A fast Python

implementation for .NET and Mono, PyCON
2004, python.org/pycon/dc2004/papers/9

[8] Lidin, S.: Inside Microsoft .NET IL Assembler,
Microsoft Press, 2002

[9] Matousek, T., Prosek, L., Novak, V., Novak,
P., Benda, J., Maly, M.: Phalanger,
www.php-compiler.net

[10] Microsoft: .NET Framework Platform
www.microsoft.com/net

[11] Microsoft: Internet Information Services,
www.microsoft.com/iis

[12] Microsoft: SQL Server,
www.microsoft.com/sql

[13] Microsoft: Visual Studio .NET,
www.microsoft.com/vstudio

[14] Microsoft: Web Application Stress Tool,
www.microsoft.com/technet/archive
/itsolutions/intranet/downloads/webstres.mspx

[15] MySQL AB: MySQL Server, www.mysql.com

[16] Novell and contributors: Mono Project,
www.mono-project.com

[17] phpBB Group: phpBB, www.phpbb.com

[18] Richter, J.: Applied Microsoft .NET

Framework Programming, Microsoft Press,
2002

[19] Roadsend, Inc.: Roadsend Compiler,
www.roadsend.com

[20] The Apache Software Foundation:
Apache HTTP Server Project,
httpd.apache.org

[21] The PHP Documentation Group:
PHP Manual, www.php.net/manual

[22] Turck Software: Turck MMCache,
turck-mmcache.sourceforge.net

[23] Zend, Inc.: Zend Platform:
www.zend.com/products/zend_platform

