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ABSTRACT 

In this paper, we introduce a new version of MC# — a language for .NET-based concurrent distributed 
programming. This language is an adaptation of the basic idea of the Polyphonic C# language (Benton N., 
Cardelli L., Fournet C., Microsoft Research Laboratory, Cambridge, UK) for the case of distributed 
computations. 
We present the background and goals of developing the language and introduce its novel constructs : movable 
methods, channels and handlers. We describe the specific features of MC# and formulate differences between its 
current and previous versions.  Examples of programming in MC# are given: a program for finding prime 
numbers by Eratosthenes sieve, and a program named all2all which demonstrates interaction between distributed 
processes. In conclusion, we give a brief description of the current implementation along with the list of 
applications that have been developed, and identify directions for future work. 
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1. INTRODUCTION 
The wide use of computer systems with massive 
parallelism, such as multicore processors, clusters 
and Grid-architectures, posed again the problem for 
developing high-level, powerful and convenient 
programming languages that would allow one to 
create complex and at the same time reliable software 
systems that efficiently use the possibilities of 
concurrent distributed computations and are easily 
scalable to a given number of processors, nodes or 
computers. 

Currently available program interfaces and libraries 
for organizing parallel computations, such as 
OpenMP [OpenMP]  ( for systems with shared  
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memory) and MPI (Message Passing Interface) [MPI] 
(for systems with message passing), have been 
implemented for C and Fortran languages, and hence 
are very low-level and inadequate for modern object-
oriented programming languages like C++, C# and 
Java. Additionally, such interfaces rely on the use of 
libraries rather than on appropriate programming 
language constructs. 

In general, a modern high-level programming 
language consists of two parts: 

1) basic constructs of the language itself, and 

2) a collection of specialized libraries accessible 
through appropriate APIs (Application 
Programming Interfaces). 

New demands on increased programmers 
productivity (achieved through a higher abstraction 
level of language constructs, among other things),  as 
well as on reliability and security of programs they 
develop, account for a tendency to transfer key 
concepts of most important APIs into the 
corresponding native constructs of programming 
languages. 



For example, the embedding of asynchronous 
methods and chords into Polyphonic C# [BCF04], 
which is an extension of the C# language, allows one 
to use it without the System.Threading library, which 
is normally required to implement multithreaded 
applications on top of .NET. On the other hand, the 
introduction of new data type constructors (for 
streams, anonymous structures, discriminated unions 
and others) along with appropriate query definition 
tools into Cω language [BMS05] renders  obsolete 
the ADO.NET data subsystem (specifically, the 
traditional System.Data and System.XML libraries 
intended to handle relational and semistructured 
data).  

We suggest that the next step in this direction be to  
introduce high-level constructs for creating 
concurrent distributed programs into the object-
oriented language, and thus to free the programmer 
from the need to use the System.Remoting library 
(and, in many cases, also the System.Threading 
library), which is required to develop conventional 
distributed applications using C#. 

From the practical point of view, the goal pursued by 
the developers of MC# was to design a language for 
industrial concurrent distributed programming which 
is going to involve more and more human resources, 
with the oncoming age of multicore computations. 
This language aims to replace C and Fortran 
languages in this area. It allows to create complex 
software systems that have satisfactory effectiveness 
when executed on parallel architectures. The choice 
C# as a basic language gives the possibility of using a 
modern object-oriented programming language 
equipped with rich libraries (like libraries for Web-
application development, specifically, for dealing 
with Web-services, designing graphical applications, 
implementing systems with a high degree of security 
etc.), and, at the same time, to eliminate such low-
level and unsafe features  as C pointers which 
dramatically decrease programmer’s productivity and 
the reliability of software systems. In this regard, our 
approach coincides with that   taken in the 
development of the X10 language [SJ05], which is 
oriented towards “non-uniform cluster computing” . 

In MC# language, in contrast to using MPI interface, 
there is no need to distribute computational processes 
over cluster nodes explicitly (though such possibility 
also is provided by the language) – it is enough only 
to identify which functions (methods) can be 
executed concurrently. Moreover, in MC# language 
the new computational processes can be created and 
distributed over accessible nodes during program 
execution dynamically (X10 language also provides 
for that possibility for “activities” ), that is impossible 
for MPI-programs. Similarly, there is no necessity to 

code by hand an object (data) serialization preparing 
moving them to remote node or machine — the 
Runtime-system performs an object 
serialization/deserialization automatically. 

In fact, MC# language is an adaptation of the basic 
idea of the Polyphonic C# language (more precisely, 
of the basic idea of the join calculus [FG02]) for the 
case of concurrent distr ibuted computations. As a 
matter of fact, the authors of the Polyphonic C# 
language presumed that asynchronous methods would 
be used either on a single computer or on a set of 
machines where they have been fixed and interact 
through the remote method call tools provided by the 
.NET Remoting library. In the case of MC#, the 
execution of an autonomous asynchronous method 
can be scheduled on a different machine selected 
either of two ways: by explicit indication by the 
programmer (which is not a typical case) or 
automatically (in this case, usually a cluster node or 
machine in the Grid network with the least workload 
is selected). Interaction of asynchronous methods that 
are executed on different machines is implemented 
through message passing using channels and channel 
message handlers. In MC#, channels and handlers are 
defined using chords in the Polyphonic C# style. 

Channel message handlers are a new feature of MC# 
2.0 as compared to the previous version of the 
language [GS03]. The second significant distinction 
consists in a different semantical treatment of 
channels and handlers (see the third key feature of 
MC# language in Section 2.1 and a forthcoming 
paper [S06]). 

The paper is organized as follows. Section 2 
describes the novel constructs of the MC# 
language  movable methods, channels and channel 
message handlers. In Section 3, we demonstrate how 
MC# constructs can be applied to develop two 
concurrent distributed programs — finding prime 
numbers by Eratosthenes sieve and all2all program 
demonstrating interaction of distributed processes. In 
Section 4, we give details about the current MC# 
implementation, which consists of a compiler and a 
Runtime-system. We provide conclusions and 
directions for the future work in Section 6.             

2. NOVEL CONSTRUCTS OF MC#: 
MOVABLE METHODS, CHANNELS 
AND HANDLERS 
In any sequential object-oriented language, 
conventional methods are synchronous: the caller 
always waits until the method called is completed, 
and only then continues its work. 

The key feature of Polyphonic C# (which, in fact, 
became a proper part of the Cω language — and from 



now on we will refer only to the latter) is the 
introduction of so called “asynchronous” methods in 
addition to conventional synchronous methods. 
Indeed, such asynchronous methods are intended for 
playing two major roles in programs: 

1) the role of autonomous methods implementing 
the concurrent parts of the basic algorithm and 
executed in separate threads, and 

2) that of the methods intended for delivering 
data (possibly, with preliminary processing of it) 
to conventional, synchronous methods. 

In the MC# language, these two kinds of methods 
form two special syntactic categories of: 

1) movable methods and 

2) channels 

respectively. 

In Cω, auxiliary asynchronous methods used for data 
delivery are usually declared together with 
synchronous methods. In MC#, the latter are 
represented as another special syntactic category that 
includes channel message handlers (channel 
handlers or even handlers for short). 

2.1 Movable methods 
Writing a parallel program in MC# language reduces 
to labeling with the special keyword movable the 
methods that may be transferred to other machines for 
execution: 

modifiers movable method_name ( arguments )   {  

 < method body> 

}  

In MC#, movable methods are the only way to create 
and run the concurrent distributed processes. A 
consequence of the mentioned above properties of the 
movable methods is that 

1) method call completes almost immediately (time is 
spent only on transferring the needed data to the 
remote machine), 

2) movable methods never return a result (for 
interaction of movable methods among them and with 
other parts of the program, see Section 2.2 “Channels 
and handlers”). 

Correspondingly, by the rules of correct definition, 
movable methods: 

- may not have a static modifier, and 

- never use a return statement. 

The movable method call has two syntactical forms: 

1) object_name.method_name ( arguments ) 

- in this case, the Runtime-system selects the 
execution location for a given movable method 
automatically, and 

2) machine_name@object_name.method_name 

 ( arguments ) 

-   in this case, the execution location is indicated 
by the programmer explicitly. 

Worth to note is that the objects created during an 
MC# program execution are static by their nature: 
once created, they don’ t move and remain bound to 
the place (machine) where they were created. In 
particular, it is on this machine that they are 
registered by the Runtime-system, which is necessary 
for delivering channel messages to those objects. 

The first key feature of MC# language (or, more 
precisely, of its semantics) is that, in general, during a 
movable method call, all necessary data, namely 

1) the object itself to which the given movable 
method belongs, and 

2) arguments (both objects and scalar values) 
for the latter 

are only copied (but not moved) to the remote 
machine (in nonfunctional mode – see below). As a 
consequence, changes made afterwards to the copy 
will not affect the original object. 

In particular, if a copied object has channels or 
handlers, they also are copied to the remote 
machine — they become “proxy” tools for the 
original objects (see Section 2.2 for details). 

There are two modes of parallelizing MC# programs: 
“ functional”  and “nonfunctional”  (or objective), and 
the choice will, in the end, affect the efficiency of 
program execution. These modes are defined by the 
modifiers functional and nonfunctional in the 
movable method declaration (the default value is 
functional). 

In the functional mode, an object for which a 
movable method is called, is not transferred to a 
remote machine (i.e., all needed data are passed to 
the movable method through its arguments). 
Conversely, by specifying the nonfunctional 
modifier, we force the object to be moved to the 
remote machine. 

The use of MC# on cluster architectures, which 
typically consist of the frontend machine and the 
subordinate nodes, is specific in that the names for 
both the frontend and the node are to be specified if a 
movable method is being called under explicit 
indication of execution location: 

 machine_name : node_name@o.m ( args ) 

Movable methods in MC# are similar to “activities”  
in X10. In the latter, asynchronous activities are 



created by a statement async ( P ) S, where P is a 
place expression and S is a statement. In contrast to 
MC# language with a “method level”  concurrency, it 
is possible for multiple activities to be created in-line 
in a single method in X10. 

2.1 Channels and handlers 
Channels and channel message handlers are the tools 
to support the interaction of distributed objects. 

Syntactically, channels and handlers are declared 
using chords in the Cω style. In the following 
example, the channel sendInt for transferring single 
integers is defined along with the corresponding 
handler getInt: 

CHandler  getInt int () & Channel sendInt ( int x ) 

 {  return ( x );}  

In such declarations, handlers have the following 
general format: 

modifiers CHandler  handler_name  

                                            return_type (args) 

We can also declare a channel or a group of channels 
without a handler. In this case, we can use values 
being received by the channel through the global 
variables. 

By the rules of correct definition, channels cannot  
have a static modifier, and so they are always bound 
to some object much in the same way as ordinary 
methods:                     

 
Figure 1. An object with channel c and  

handler  h 

Thus, we may send an integer x by the channel 
sendInt as 

 a.sendInt ( x ), 

where a is an object for which the channel sendInt 
has been defined. 

A handler is used to receive values from its jointly 
defined channel (or group of channels). For example, 
to receive a value from the channel sendInt we need 
to write 

 int  m = a.getInt ( ) 

If, by the time a handler is called, the channel is 
empty (i.e. if there have been no calls to this channel 
at all or all of the values sent through this channel 

before were selected during previous calls to the 
handler), then the call blocks. After receiving a value 
from the corresponding channel, the body of the 
chord (which may consist of arbitrary computations) 
runs and returns the result value to the handler. 

Conversely, if a value is sent on a channel when there 
are no pending calls to the handler, the value is 
simply saved in the internal channel queue, where all 
the values coming with multiple sendings to this 
channel are accumulated. 

It is worth to note that separate methods (handler or 
channels) from the chord are typically called from 
different threads of which the entire concurrent 
distributed program consists. 

Similarly to Cω, it is possible to define several 
channels in a single chord. This is a major tool for 
synchronizing the concurrent processes in MC: 

CHandler  equals bool () &  Channel c1 ( int  x ) 

                                         &  Channel c2 ( int y ) {  

 if   ( x == y ) return  ( true ); 

 else               return ( false ); 

}  

Thus, a general rule for chord triggering is the 
following: the body of a chord is executed only after 
all methods declared in the chord header have been 
called. 

The above example illustrates the case of a single 
handler for multiple channels: 

 
Figure 2. An object with a single handler  for  

multiple channels 

It is also possible to declare a channel shared by 
several handlers:
 

 
Figure 3. An object with a “ shared”  channel 
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So, once we have the values in both channels c1 and 
c2, handler h1 can be triggered. Similar is the case 
for channels c2 and c3 and handler h2. In general, all 
this together leads to non-determinism in program 
behaviour. 

The second key feature of MC# language is that 
the channels and handlers can be passed as arguments 
to the methods (in particular, to the movable 
methods) separately from the object to which they 
belong (in this sense, they are similar to the pointers 
to methods or, in C# terms, to the delegates). 

The third key feature of MC# language is that if 
channels or handlers were copied to a remote site (by 
which we mean a cluster node or a computer in the 
Grid-network) autonomously or as part of some 
object, then they become proxy objects, or 
intermediaries for the original channels and handlers. 
And the point here is that this replacement is hidden 
from the applied programmer — he can use the 
passed channels and handlers (in fact, their proxy 
objects) on the remote site as the original ones: as 
usual, all actions over the proxy objects are 
transferred to the original channels and handlers by 
the Runtime-system. In this sense, channels and 
handlers are different from ordinary objects: 
manipulations over the latter on a remote site are not 
transferred to the original objects (see the first key 
feature of MC# language). 

Fig. 4 and Fig. 5 schematically demonstrate the 
passing and use of channels and handlers on a remote 
site. The subscripts in the channel and handler names 
denote the original site where they were created. 

 

 
Figure 4. Message sending by remote channel: 

(0) copying of the channel to remote site, 

(1) message sending by (remote) channel, 

(2) message redirection to the original site. 

 
Figure 5. Message reading from remote handler : 

(0) copying of the handler to remote site, 

(1) message reading from (remote) handler, 

       (2) reading redirection to the original site, 

(3) message return from the original site, 

(4) result message return. 

It turns out that these tools are enough to organize 
interaction of arbitrary complexity between the 
concurrent distributed processes.    

In MC#, distributed processes can interchange  
arbitrary objects using channels and handlers. In X10, 
data interchange between places is realized through 
explicit spawning of asynchronous activities. So, if 
some thread wants to get a remote value v, it must 
create two activities: 

 final   place   origin = here; 

 finish  async  ( v )  = {  

                      final  int  x = v; 

                      async ( origin ) y = x; 

 }  

In contrast to this, MC# Runtime-system hides from 
the programmer the spawning of auxiliary threads 
during message passing (see the example programs in 
the next Section). 

3. PROGRAMMING IN MC# 
In this Section, we will demonstrate the specific 
constructs of MC# language — movable methods, 
channels and handlers — and their semantic 
properties, on the example of two concurrent 
distributed programs. 

First, we will build a parallel distributed program for 
finding prime numbers by the sieve method (also 
known as “Eratosthenes sieve” ). 

Given a natural number N, we need to enumerate all 
primes in the interval from 2 to N. 

The sieving method is the following recursive 
procedure applied to the original list [2, … , N]: 

1) select the head of the given list and output it 
to the resulting list of primes; 
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2) construct a new list by deleting from the 
given list all integers that are multiples of 
the head of this list; 

3) apply the given procedure to the newly 
constructed list. 

The main computational subroutine, which we called 
Sieve and the recursive calls to which will be 
distributed over a computer network, has two 
arguments: the handler getList to read the given list of 
numbers it will search for primes and the channel 
sendPrime to write the resulting list of primes. The 
end marker in both lists is -1. 

An elementary step of unfolding the distributed 
computations (which consists of producing the next 
unit of the “conveyor”  which sieves the integer 
stream) is sketched on Fig. 6. 

 

 
                                                                                                                                                                                           

Figure 6. Unfolding step in the distr ibuted sieve 
method 

The full program text in MC# is given below. The 
original integer list [2, … , N] is sent on the channel 
Nats and the resulting list of primes is received from 
the channel sendPrime  by the handler getPrime: 

class Eratosthenes   {  

 public static void Main (str ing[] args) {  

  int N = System.ConvertToInt32 (args[0] ); 

  Eratosthenes E = new  Eratosthenes(); 

  new CSieve().Sieve ( E.getNat, E.sendPrime ); 

  for  ( int n=2; n <= N; n++ ) 

    E.Nats ( n ); 

  E.Nats ( -1 ); 

  while  (  ( int p = E.getPrime() ) != -1 ) 

   Console.WriteLine ( p ); 

 }  

 CHandler  getNat  int()  & Channel Nats ( int n ) 

 {    return  ( n );  }  

 CHandler  getPrime  int()  & Channel sendPrime     

   ( int  p )  {   return  ( n );  }  

}  

class  CSieve  {  

 movable Sieve ( CHandler  int() getList, 

                            Channel (int) sendPrime ) {  

  int  p = getList(); 

  sendPrime ( p ); 

  if  ( p != -1 )   {  

   new CSieve().Sieve ( hin, sendPrime ); 

   filter ( p, getList, cout ); 

  }  

 }  

 CHandler  hin int()  &  Channel cout ( int x )   

{  return  ( x ); }  

 void filter (int p, CHandler  int() getList,  

                              Channel ( int ) cfiltered )   {  

  while ( ( int n = getList() ) != -1 ) 

    if ( n % p != 0 ) cfiltered ( n ); 

  cfiltered ( -1 ); 

 }  

}  

The second program, called all2all, demonstrates 
how we can provide for interaction inside a set of 
distributed processes in accordance with the “all to 
all”  principle. 

Below, each distributed process is an object of the 
DistribProcess class. It starts on a remote site 
selected by the Runtime-system, by calling the Start 
movable method of the mentioned class. 

In turn, each distributed process creates BDChannel 
(Bidirectional channel) object containing the channel 
Send and the handler Receive, on its own site. By 
interchanging BDChannel objects, distributed 
processes can send or receive messages to and from 
one another regardless of their physical location. 
BDChannel object interchange is realized through the 
main process which is executed on the machine 
where the application was started. 

Below we present the full program text in MC# 
where the number N of distributed processes is given 
as the input parameter. 

class  All2all   {  

 public static void Main (str ing[] args)   {  

  int  i; 

  int  N = System.Convert.ToInt32 ( args [ 0 ] ); 

Site  i 

     Sieve 

 

Site  i 

       Sieve 

 

       filter  

Site  i + 1 

 

 

       Sieve 



               // N is number of distributed processes 

  All2all a2a = new All2all(); 

  DistribProcess dproc = new DistribProcess(); 

  //   Launch distributed processes 

  for  ( i = 0; I < N; i++ ) 

    dproc.Start ( i, a2a.sendBDC, a2a,sendStop ); 

  //   Receive BDChannel objects from processes 

  BDChannel[] bdchans = new BDChannel [ N ]; 

  for  ( i = 0; I < N; i++ ) 

    a2a.getBDC ( bdchans ); 

  //   Send BDChannel array to each process 

  for  ( i = 0; i < N; i++ ) 

     bdchans [ i ].Send ( bdchans ); 

  //   Receive stop signals from processes 

  for  ( i = 0; i < N; i++ ) 

    a2a.getStop(); 

 }  

 CHandler  getBDC void(BDChannel[] bdchans)  & 

       Channel sendBDC ( int i, BDChannel bdc )      {  

    bdchans [ i ] = bdc; 

 }  

 CHandler   getStop void() &  Channel  sendStop() {  

   return; 

 }  

}  

class   BDChannel   {  

  CHandler   Receive object() 

             & Channel Send (object obj )  {  

 return  ( obj ); 

 }  

}  

class DistribProcess   {  

 movable Start ( int  i, Channel  (int, BDChannel) 

                             sendBDC, Channel () sendStop ) {  

  //  i is a process  proper number 

  int   j; 

  BDChannel  bdc = new BDChannel(); 

  sendBDC ( i, bdc ); 

  BDChannel[]   bdchans  =   

      (BDChannel[]) bdc.Receive(); 

  //   Send messages to other processes 

  for   ( j = 0; j < bdchans.Size; j++ ) 

    if  ( j != i ) 

     bdchans[j].Send (“Message from process “ + i + 

                                  “  to process “  + j                     ); 

  //   Receive messages from other processes 

  for   ( j = 0; j < bdchans.Size; j++ ) 

    if  ( j != i ) 

     Console.WriteLine ( “Process “  + i + “ : “  + 

                       (str ing) bdchans [ j ].Receive() ); 

  //   Send stop signal to the main program 

  sendStop(); 

 }  

}  

4. IMPLEMENTATION 
All described above is the development and 
improvement of the ideas from [GS03]. Therein, the 
functions of the channel message handlers were 
shared by the synchronous methods in the chords and 
the special built-in objects, called “bidirectional 
channels” . Below, we describe the current 
implementation based on bidirectional channels. 

The implementation of MC# language consists of 

1) a compiler from MC# to C#, and 

2) a Runtime-system. 

The compiler’s main function is to replace movable 
methods calls by queries to the Runtime-system 
which schedules (selects a location of) execution for 
the methods. Translating the chords is conducted 
mainly in the same way as in Polyphonic C#, using 
bitmasks to mark the presence of received channel 
messages. Once a bitmask is filled up, received 
message content is extracted and the chord body 
execution starts. In this part of the compiler, the 
mechanism of monitors implemented in the .NET 
class Monitor is relied on heavily. 

The MC# compiler performs two passes: at the first 
pass, it gathers information about channels declared 
by the chords and at the second pass, it emits C# code 
including, in particular, the needed objects and 
methods to deal with the channels. Specifically, the 
compiler is implemented using the ANTLR parser 
generation framework (http://www.antlr.org). 

The main components of the Runtime-system are: 

1) Resource Manager  a process 
implementing (currently, the simplest) 
centralized scheduling of resources (mainly, 
the cluster nodes) and running on the cluster 
frontend, and 

2) WorkNode  a process running on each 
cluster work node. 



Besides, there are mcsboot and mcshalt utilities to 
start and terminate the Runtime-system, 
correspondingly. 

The main purpose of the WorkNode process is to 
accept the movable methods scheduled for execution 
on the given work node and to run them in separate 
threads. Before running, it deserializes the object 
associated with a movable method and the method’s 
arguments. The WorkNode process has, as a 
component part, a Communicator process running in 
its own thread. Communicator is responsible for 
receiving and delivering the channel messages 
intended for objects located on the given node. For 
this purpose, all objects having channels (and 
handlers) are registered in a special table located on 
the node. Thus, a channel message has the following 
format to ensure proper message delivery: 

< (IP-)address, Communicator port, object number, 

                                channel name, message content > 

The compiler and the Runtime-system run under both 
Windows and Linux. For the latter we use the Mono 
system (http://www.mono-project.com)  a free 
implementation of .NET framework for Unix-like 
systems. 

By way of experiments, we have written a large series 
of parallel programs in MC#, such as calculation of 
Mandelbrot set (fractals), 3D rendering, Web search 
through the Google Web-service, radar-tracking 
signals processing, solving computational molecular 
dynamics tasks, etc. Running these tasks on the 
cluster, we used up to 96 processors. For all 
mentioned applications, we got an easy to read and 
compact code and satisfactory results in terms of the 
efficiency of parallelizing. The graph on Fig. 8 shows 
the relationship between the processing time (in sec.) 
for a 40 Mb input file and the number of processors 
in the radar-tracking signal processing task. The tests 
were conducted on the “SKIF K-1000”  cluster (98th 
in Top500, November 2004) of the United Institute 
of Informatics Problems, National Academy of 
Sciences of Belarus.                           
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Figure 8. Processing time for  40 Mb 
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5. CONCLUSIONS 
This work presents an extension of C# language with 
the high-level features for concurrent, distributed 
programming based on the asynchronous 
programming model of Polyphonic C#. It can be 
considered as a general-purpose language for 
practical industrial programming, which oriented 
towards creating complex parallel software systems 
intended to run on cluster architectures.  

We built a prototype implementation of MC# 
language for Linux cluster and a network of Windows 
machines. (The MC# project site is at: 
http://u.pereslavl.ru/~vadim/MCSharp) 

Our future work will focus on implementing the MC# 
language in full accordance with the ideas put 
forward in the paper. Along with that, we are going to 
develop a more efficient Runtime-system by 
implementing a decentralized scheduling of movable 
methods calls and providing support for modern fast 
interconnects (Infiniband, QsNet II). A version of 
MC# programming system for metacluster 
computations is under development. 
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