
MC# 2.0: a language for concurrent distributed
programming based on .NET

Yury Serdyuk

Program Systems Institute of
Russian Academy of Sciences

Russia (152020), Pereslavl-
Zalessky

Yury@serdyuk.botik.ru

ABSTRACT

In this paper, we introduce a new version of MC# — a language for .NET-based concurrent distributed
programming. This language is an adaptation of the basic idea of the Polyphonic C# language (Benton N.,
Cardelli L., Fournet C., Microsoft Research Laboratory, Cambridge, UK) for the case of distributed
computations.
We present the background and goals of developing the language and introduce its novel constructs : movable
methods, channels and handlers. We describe the specific features of MC# and formulate differences between its
current and previous versions. Examples of programming in MC# are given: a program for finding prime
numbers by Eratosthenes sieve, and a program named all2all which demonstrates interaction between distributed
processes. In conclusion, we give a brief description of the current implementation along with the list of
applications that have been developed, and identify directions for future work.

Keywords
Concurrent distributed programming, MC#, movable methods, channels, handlers, Runtime-system, .NET.

1. INTRODUCTION
The wide use of computer systems with massive
parallelism, such as multicore processors, clusters
and Grid-architectures, posed again the problem for
developing high-level, powerful and convenient
programming languages that would allow one to
create complex and at the same time reliable software
systems that efficiently use the possibilities of
concurrent distributed computations and are easily
scalable to a given number of processors, nodes or
computers.

Currently available program interfaces and libraries
for organizing parallel computations, such as
OpenMP [OpenMP] (for systems with shared

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
FULL papers conference proceedings
 ISBN 80-86943-06-2
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

memory) and MPI (Message Passing Interface) [MPI]
(for systems with message passing), have been
implemented for C and Fortran languages, and hence
are very low-level and inadequate for modern object-
oriented programming languages like C++, C# and
Java. Additionally, such interfaces rely on the use of
libraries rather than on appropriate programming
language constructs.

In general, a modern high-level programming
language consists of two parts:

1) basic constructs of the language itself, and

2) a collection of specialized libraries accessible
through appropriate APIs (Application
Programming Interfaces).

New demands on increased programmers
productivity (achieved through a higher abstraction
level of language constructs, among other things), as
well as on reliability and security of programs they
develop, account for a tendency to transfer key
concepts of most important APIs into the
corresponding native constructs of programming
languages.

For example, the embedding of asynchronous
methods and chords into Polyphonic C# [BCF04],
which is an extension of the C# language, allows one
to use it without the System.Threading library, which
is normally required to implement multithreaded
applications on top of .NET. On the other hand, the
introduction of new data type constructors (for
streams, anonymous structures, discriminated unions
and others) along with appropriate query definition
tools into Cω language [BMS05] renders obsolete
the ADO.NET data subsystem (specifically, the
traditional System.Data and System.XML libraries
intended to handle relational and semistructured
data).

We suggest that the next step in this direction be to
introduce high-level constructs for creating
concurrent distributed programs into the object-
oriented language, and thus to free the programmer
from the need to use the System.Remoting library
(and, in many cases, also the System.Threading
library), which is required to develop conventional
distributed applications using C#.

From the practical point of view, the goal pursued by
the developers of MC# was to design a language for
industrial concurrent distributed programming which
is going to involve more and more human resources,
with the oncoming age of multicore computations.
This language aims to replace C and Fortran
languages in this area. It allows to create complex
software systems that have satisfactory effectiveness
when executed on parallel architectures. The choice
C# as a basic language gives the possibility of using a
modern object-oriented programming language
equipped with rich libraries (like libraries for Web-
application development, specifically, for dealing
with Web-services, designing graphical applications,
implementing systems with a high degree of security
etc.), and, at the same time, to eliminate such low-
level and unsafe features as C pointers which
dramatically decrease programmer’s productivity and
the reliability of software systems. In this regard, our
approach coincides with that taken in the
development of the X10 language [SJ05], which is
oriented towards “non-uniform cluster computing” .

In MC# language, in contrast to using MPI interface,
there is no need to distribute computational processes
over cluster nodes explicitly (though such possibility
also is provided by the language) – it is enough only
to identify which functions (methods) can be
executed concurrently. Moreover, in MC# language
the new computational processes can be created and
distributed over accessible nodes during program
execution dynamically (X10 language also provides
for that possibility for “activities”), that is impossible
for MPI-programs. Similarly, there is no necessity to

code by hand an object (data) serialization preparing
moving them to remote node or machine — the
Runtime-system performs an object
serialization/deserialization automatically.

In fact, MC# language is an adaptation of the basic
idea of the Polyphonic C# language (more precisely,
of the basic idea of the join calculus [FG02]) for the
case of concurrent distr ibuted computations. As a
matter of fact, the authors of the Polyphonic C#
language presumed that asynchronous methods would
be used either on a single computer or on a set of
machines where they have been fixed and interact
through the remote method call tools provided by the
.NET Remoting library. In the case of MC#, the
execution of an autonomous asynchronous method
can be scheduled on a different machine selected
either of two ways: by explicit indication by the
programmer (which is not a typical case) or
automatically (in this case, usually a cluster node or
machine in the Grid network with the least workload
is selected). Interaction of asynchronous methods that
are executed on different machines is implemented
through message passing using channels and channel
message handlers. In MC#, channels and handlers are
defined using chords in the Polyphonic C# style.

Channel message handlers are a new feature of MC#
2.0 as compared to the previous version of the
language [GS03]. The second significant distinction
consists in a different semantical treatment of
channels and handlers (see the third key feature of
MC# language in Section 2.1 and a forthcoming
paper [S06]).

The paper is organized as follows. Section 2
describes the novel constructs of the MC#
language  movable methods, channels and channel
message handlers. In Section 3, we demonstrate how
MC# constructs can be applied to develop two
concurrent distributed programs — finding prime
numbers by Eratosthenes sieve and all2all program
demonstrating interaction of distributed processes. In
Section 4, we give details about the current MC#
implementation, which consists of a compiler and a
Runtime-system. We provide conclusions and
directions for the future work in Section 6.

2. NOVEL CONSTRUCTS OF MC#:
MOVABLE METHODS, CHANNELS
AND HANDLERS
In any sequential object-oriented language,
conventional methods are synchronous: the caller
always waits until the method called is completed,
and only then continues its work.

The key feature of Polyphonic C# (which, in fact,
became a proper part of the Cω language — and from

now on we will refer only to the latter) is the
introduction of so called “asynchronous” methods in
addition to conventional synchronous methods.
Indeed, such asynchronous methods are intended for
playing two major roles in programs:

1) the role of autonomous methods implementing
the concurrent parts of the basic algorithm and
executed in separate threads, and

2) that of the methods intended for delivering
data (possibly, with preliminary processing of it)
to conventional, synchronous methods.

In the MC# language, these two kinds of methods
form two special syntactic categories of:

1) movable methods and

2) channels

respectively.

In Cω, auxiliary asynchronous methods used for data
delivery are usually declared together with
synchronous methods. In MC#, the latter are
represented as another special syntactic category that
includes channel message handlers (channel
handlers or even handlers for short).

2.1 Movable methods
Writing a parallel program in MC# language reduces
to labeling with the special keyword movable the
methods that may be transferred to other machines for
execution:

modifiers movable method_name (arguments) {

 < method body>

}

In MC#, movable methods are the only way to create
and run the concurrent distributed processes. A
consequence of the mentioned above properties of the
movable methods is that

1) method call completes almost immediately (time is
spent only on transferring the needed data to the
remote machine),

2) movable methods never return a result (for
interaction of movable methods among them and with
other parts of the program, see Section 2.2 “Channels
and handlers”).

Correspondingly, by the rules of correct definition,
movable methods:

- may not have a static modifier, and

- never use a return statement.

The movable method call has two syntactical forms:

1) object_name.method_name (arguments)

- in this case, the Runtime-system selects the
execution location for a given movable method
automatically, and

2) machine_name@object_name.method_name

 (arguments)

- in this case, the execution location is indicated
by the programmer explicitly.

Worth to note is that the objects created during an
MC# program execution are static by their nature:
once created, they don’ t move and remain bound to
the place (machine) where they were created. In
particular, it is on this machine that they are
registered by the Runtime-system, which is necessary
for delivering channel messages to those objects.

The first key feature of MC# language (or, more
precisely, of its semantics) is that, in general, during a
movable method call, all necessary data, namely

1) the object itself to which the given movable
method belongs, and

2) arguments (both objects and scalar values)
for the latter

are only copied (but not moved) to the remote
machine (in nonfunctional mode – see below). As a
consequence, changes made afterwards to the copy
will not affect the original object.

In particular, if a copied object has channels or
handlers, they also are copied to the remote
machine — they become “proxy” tools for the
original objects (see Section 2.2 for details).

There are two modes of parallelizing MC# programs:
“ functional” and “nonfunctional” (or objective), and
the choice will, in the end, affect the efficiency of
program execution. These modes are defined by the
modifiers functional and nonfunctional in the
movable method declaration (the default value is
functional).

In the functional mode, an object for which a
movable method is called, is not transferred to a
remote machine (i.e., all needed data are passed to
the movable method through its arguments).
Conversely, by specifying the nonfunctional
modifier, we force the object to be moved to the
remote machine.

The use of MC# on cluster architectures, which
typically consist of the frontend machine and the
subordinate nodes, is specific in that the names for
both the frontend and the node are to be specified if a
movable method is being called under explicit
indication of execution location:

 machine_name : node_name@o.m (args)

Movable methods in MC# are similar to “activities”
in X10. In the latter, asynchronous activities are

created by a statement async (P) S, where P is a
place expression and S is a statement. In contrast to
MC# language with a “method level” concurrency, it
is possible for multiple activities to be created in-line
in a single method in X10.

2.1 Channels and handlers
Channels and channel message handlers are the tools
to support the interaction of distributed objects.

Syntactically, channels and handlers are declared
using chords in the Cω style. In the following
example, the channel sendInt for transferring single
integers is defined along with the corresponding
handler getInt:

CHandler getInt int () & Channel sendInt (int x)

 { return (x);}

In such declarations, handlers have the following
general format:

modifiers CHandler handler_name

 return_type (args)

We can also declare a channel or a group of channels
without a handler. In this case, we can use values
being received by the channel through the global
variables.

By the rules of correct definition, channels cannot
have a static modifier, and so they are always bound
to some object much in the same way as ordinary
methods:

Figure 1. An object with channel c and

handler h

Thus, we may send an integer x by the channel
sendInt as

 a.sendInt (x),

where a is an object for which the channel sendInt
has been defined.

A handler is used to receive values from its jointly
defined channel (or group of channels). For example,
to receive a value from the channel sendInt we need
to write

 int m = a.getInt ()

If, by the time a handler is called, the channel is
empty (i.e. if there have been no calls to this channel
at all or all of the values sent through this channel

before were selected during previous calls to the
handler), then the call blocks. After receiving a value
from the corresponding channel, the body of the
chord (which may consist of arbitrary computations)
runs and returns the result value to the handler.

Conversely, if a value is sent on a channel when there
are no pending calls to the handler, the value is
simply saved in the internal channel queue, where all
the values coming with multiple sendings to this
channel are accumulated.

It is worth to note that separate methods (handler or
channels) from the chord are typically called from
different threads of which the entire concurrent
distributed program consists.

Similarly to Cω, it is possible to define several
channels in a single chord. This is a major tool for
synchronizing the concurrent processes in MC:

CHandler equals bool () & Channel c1 (int x)

 & Channel c2 (int y) {

 if (x == y) return (true);

 else return (false);

}

Thus, a general rule for chord triggering is the
following: the body of a chord is executed only after
all methods declared in the chord header have been
called.

The above example illustrates the case of a single
handler for multiple channels:

Figure 2. An object with a single handler for

multiple channels

It is also possible to declare a channel shared by
several handlers:

Figure 3. An object with a “ shared” channel

Object

 h

c Object

 h

c1

c2

Object

 h1

 h2

c1

c2

c3

So, once we have the values in both channels c1 and
c2, handler h1 can be triggered. Similar is the case
for channels c2 and c3 and handler h2. In general, all
this together leads to non-determinism in program
behaviour.

The second key feature of MC# language is that
the channels and handlers can be passed as arguments
to the methods (in particular, to the movable
methods) separately from the object to which they
belong (in this sense, they are similar to the pointers
to methods or, in C# terms, to the delegates).

The third key feature of MC# language is that if
channels or handlers were copied to a remote site (by
which we mean a cluster node or a computer in the
Grid-network) autonomously or as part of some
object, then they become proxy objects, or
intermediaries for the original channels and handlers.
And the point here is that this replacement is hidden
from the applied programmer — he can use the
passed channels and handlers (in fact, their proxy
objects) on the remote site as the original ones: as
usual, all actions over the proxy objects are
transferred to the original channels and handlers by
the Runtime-system. In this sense, channels and
handlers are different from ordinary objects:
manipulations over the latter on a remote site are not
transferred to the original objects (see the first key
feature of MC# language).

Fig. 4 and Fig. 5 schematically demonstrate the
passing and use of channels and handlers on a remote
site. The subscripts in the channel and handler names
denote the original site where they were created.

Figure 4. Message sending by remote channel:

(0) copying of the channel to remote site,

(1) message sending by (remote) channel,

(2) message redirection to the original site.

Figure 5. Message reading from remote handler :

(0) copying of the handler to remote site,

(1) message reading from (remote) handler,

 (2) reading redirection to the original site,

(3) message return from the original site,

(4) result message return.

It turns out that these tools are enough to organize
interaction of arbitrary complexity between the
concurrent distributed processes.

In MC#, distributed processes can interchange
arbitrary objects using channels and handlers. In X10,
data interchange between places is realized through
explicit spawning of asynchronous activities. So, if
some thread wants to get a remote value v, it must
create two activities:

 final place origin = here;

 finish async (v) = {

 final int x = v;

 async (origin) y = x;

 }

In contrast to this, MC# Runtime-system hides from
the programmer the spawning of auxiliary threads
during message passing (see the example programs in
the next Section).

3. PROGRAMMING IN MC#
In this Section, we will demonstrate the specific
constructs of MC# language — movable methods,
channels and handlers — and their semantic
properties, on the example of two concurrent
distributed programs.

First, we will build a parallel distributed program for
finding prime numbers by the sieve method (also
known as “Eratosthenes sieve”).

Given a natural number N, we need to enumerate all
primes in the interval from 2 to N.

The sieving method is the following recursive
procedure applied to the original list [2, … , N]:

1) select the head of the given list and output it
to the resulting list of primes;

Site s

 Object a

 hs cs

Site r

(0) (4)

(2) hs (1)

 (3)

Site s

 Object a

 hs cs

Site r

(0) (1)

(2) cs

2) construct a new list by deleting from the
given list all integers that are multiples of
the head of this list;

3) apply the given procedure to the newly
constructed list.

The main computational subroutine, which we called
Sieve and the recursive calls to which will be
distributed over a computer network, has two
arguments: the handler getList to read the given list of
numbers it will search for primes and the channel
sendPrime to write the resulting list of primes. The
end marker in both lists is -1.

An elementary step of unfolding the distributed
computations (which consists of producing the next
unit of the “conveyor” which sieves the integer
stream) is sketched on Fig. 6.

Figure 6. Unfolding step in the distr ibuted sieve
method

The full program text in MC# is given below. The
original integer list [2, … , N] is sent on the channel
Nats and the resulting list of primes is received from
the channel sendPrime by the handler getPrime:

class Eratosthenes {

 public static void Main (str ing[] args) {

 int N = System.ConvertToInt32 (args[0]);

 Eratosthenes E = new Eratosthenes();

 new CSieve().Sieve (E.getNat, E.sendPrime);

 for (int n=2; n <= N; n++)

 E.Nats (n);

 E.Nats (-1);

 while ((int p = E.getPrime()) != -1)

 Console.WriteLine (p);

 }

 CHandler getNat int() & Channel Nats (int n)

 { return (n); }

 CHandler getPrime int() & Channel sendPrime

 (int p) { return (n); }

}

class CSieve {

 movable Sieve (CHandler int() getList,

 Channel (int) sendPrime) {

 int p = getList();

 sendPrime (p);

 if (p != -1) {

 new CSieve().Sieve (hin, sendPrime);

 filter (p, getList, cout);

 }

 }

 CHandler hin int() & Channel cout (int x)

{ return (x); }

 void filter (int p, CHandler int() getList,

 Channel (int) cfiltered) {

 while ((int n = getList()) != -1)

 if (n % p != 0) cfiltered (n);

 cfiltered (-1);

 }

}

The second program, called all2all, demonstrates
how we can provide for interaction inside a set of
distributed processes in accordance with the “all to
all” principle.

Below, each distributed process is an object of the
DistribProcess class. It starts on a remote site
selected by the Runtime-system, by calling the Start
movable method of the mentioned class.

In turn, each distributed process creates BDChannel
(Bidirectional channel) object containing the channel
Send and the handler Receive, on its own site. By
interchanging BDChannel objects, distributed
processes can send or receive messages to and from
one another regardless of their physical location.
BDChannel object interchange is realized through the
main process which is executed on the machine
where the application was started.

Below we present the full program text in MC#
where the number N of distributed processes is given
as the input parameter.

class All2all {

 public static void Main (str ing[] args) {

 int i;

 int N = System.Convert.ToInt32 (args [0]);

Site i

 Sieve

Site i

 Sieve

 filter

Site i + 1

 Sieve

 // N is number of distributed processes

 All2all a2a = new All2all();

 DistribProcess dproc = new DistribProcess();

 // Launch distributed processes

 for (i = 0; I < N; i++)

 dproc.Start (i, a2a.sendBDC, a2a,sendStop);

 // Receive BDChannel objects from processes

 BDChannel[] bdchans = new BDChannel [N];

 for (i = 0; I < N; i++)

 a2a.getBDC (bdchans);

 // Send BDChannel array to each process

 for (i = 0; i < N; i++)

 bdchans [i].Send (bdchans);

 // Receive stop signals from processes

 for (i = 0; i < N; i++)

 a2a.getStop();

 }

 CHandler getBDC void(BDChannel[] bdchans) &

 Channel sendBDC (int i, BDChannel bdc) {

 bdchans [i] = bdc;

 }

 CHandler getStop void() & Channel sendStop() {

 return;

 }

}

class BDChannel {

 CHandler Receive object()

 & Channel Send (object obj) {

 return (obj);

 }

}

class DistribProcess {

 movable Start (int i, Channel (int, BDChannel)

 sendBDC, Channel () sendStop) {

 // i is a process proper number

 int j;

 BDChannel bdc = new BDChannel();

 sendBDC (i, bdc);

 BDChannel[] bdchans =

 (BDChannel[]) bdc.Receive();

 // Send messages to other processes

 for (j = 0; j < bdchans.Size; j++)

 if (j != i)

 bdchans[j].Send (“Message from process “ + i +

 “ to process “ + j);

 // Receive messages from other processes

 for (j = 0; j < bdchans.Size; j++)

 if (j != i)

 Console.WriteLine (“Process “ + i + “ : “ +

 (str ing) bdchans [j].Receive());

 // Send stop signal to the main program

 sendStop();

 }

}

4. IMPLEMENTATION
All described above is the development and
improvement of the ideas from [GS03]. Therein, the
functions of the channel message handlers were
shared by the synchronous methods in the chords and
the special built-in objects, called “bidirectional
channels” . Below, we describe the current
implementation based on bidirectional channels.

The implementation of MC# language consists of

1) a compiler from MC# to C#, and

2) a Runtime-system.

The compiler’s main function is to replace movable
methods calls by queries to the Runtime-system
which schedules (selects a location of) execution for
the methods. Translating the chords is conducted
mainly in the same way as in Polyphonic C#, using
bitmasks to mark the presence of received channel
messages. Once a bitmask is filled up, received
message content is extracted and the chord body
execution starts. In this part of the compiler, the
mechanism of monitors implemented in the .NET
class Monitor is relied on heavily.

The MC# compiler performs two passes: at the first
pass, it gathers information about channels declared
by the chords and at the second pass, it emits C# code
including, in particular, the needed objects and
methods to deal with the channels. Specifically, the
compiler is implemented using the ANTLR parser
generation framework (http://www.antlr.org).

The main components of the Runtime-system are:

1) Resource Manager  a process
implementing (currently, the simplest)
centralized scheduling of resources (mainly,
the cluster nodes) and running on the cluster
frontend, and

2) WorkNode  a process running on each
cluster work node.

Besides, there are mcsboot and mcshalt utilities to
start and terminate the Runtime-system,
correspondingly.

The main purpose of the WorkNode process is to
accept the movable methods scheduled for execution
on the given work node and to run them in separate
threads. Before running, it deserializes the object
associated with a movable method and the method’s
arguments. The WorkNode process has, as a
component part, a Communicator process running in
its own thread. Communicator is responsible for
receiving and delivering the channel messages
intended for objects located on the given node. For
this purpose, all objects having channels (and
handlers) are registered in a special table located on
the node. Thus, a channel message has the following
format to ensure proper message delivery:

< (IP-)address, Communicator port, object number,

 channel name, message content >

The compiler and the Runtime-system run under both
Windows and Linux. For the latter we use the Mono
system (http://www.mono-project.com)  a free
implementation of .NET framework for Unix-like
systems.

By way of experiments, we have written a large series
of parallel programs in MC#, such as calculation of
Mandelbrot set (fractals), 3D rendering, Web search
through the Google Web-service, radar-tracking
signals processing, solving computational molecular
dynamics tasks, etc. Running these tasks on the
cluster, we used up to 96 processors. For all
mentioned applications, we got an easy to read and
compact code and satisfactory results in terms of the
efficiency of parallelizing. The graph on Fig. 8 shows
the relationship between the processing time (in sec.)
for a 40 Mb input file and the number of processors
in the radar-tracking signal processing task. The tests
were conducted on the “SKIF K-1000” cluster (98th
in Top500, November 2004) of the United Institute
of Informatics Problems, National Academy of
Sciences of Belarus.

0,0
5,0

10,0

15,0

20,0

25,0

30,0
35,0

40,0
45,0

50,0

1 2 4 8 12 16 20 24 28 32

Figure 8. Processing time for 40 Mb

radiohologram

5. CONCLUSIONS
This work presents an extension of C# language with
the high-level features for concurrent, distributed
programming based on the asynchronous
programming model of Polyphonic C#. It can be
considered as a general-purpose language for
practical industrial programming, which oriented
towards creating complex parallel software systems
intended to run on cluster architectures.

We built a prototype implementation of MC#
language for Linux cluster and a network of Windows
machines. (The MC# project site is at:
http://u.pereslavl.ru/~vadim/MCSharp)

Our future work will focus on implementing the MC#
language in full accordance with the ideas put
forward in the paper. Along with that, we are going to
develop a more efficient Runtime-system by
implementing a decentralized scheduling of movable
methods calls and providing support for modern fast
interconnects (Infiniband, QsNet II). A version of
MC# programming system for metacluster
computations is under development.

ACKNOWLEDGMENTS
The author wishes to thank Vadim Guzev and Alexei
Molodchenkov for participating in the
implementation of MC# programming system and
applications for it.

REFERENCES
[BCF04] Benton, N., Cardelli L., Fournet C. Modern

Concurrency Abstractions for C#. ACM
Transactions on Programming Languages and
Systems, Vol.26, No.5, 2004, pp. 769-804.

[BMS05] Bierman, G., Meijer, E., Schulte, W. The
essence of data access in Cω. ECOOP 2005,
LNCS 3586, Springer, 2005. pp. 287-311.

[FG02] Fournet, C., Gonthier, G. The join calculus: a
language for distributed mobile programming. In
Proc. Applied Semantics Summer School, 2000.
LNCS, Vol.2395, Springer, pp. 268-332.

[GS03] Guzev, V., Serdyuk, Y. Asynchronous
parallel programming language based on the
Microsoft .NET platform. PaCT-2003, LNCS,
2763, Springer, pp. 236-243.

[S06] Serdyuk, Y. A formal basis for the MC#
programming language (to appear).

 [MPI] Message Passing Interface: http://www-
unix.mcs.anl.gov/mpi/

[OpenMP] OpenMP specifications:
http://www.openmp.org/specs.

[SJ05] Saraswat, V.A., Jagadeesan R. Concurrent
Clustered Programming, CONCUR 2005, LNCS
3653, Springer, 2005, pp.353-367.

