
Web Services Planning Concepts

Peter FARKAS
Senior student

Budapest University of
Technology and Economics
Department of Automation
 and Applied Informatics

 H – 1521 Budapest, Hungary

pfarkas@avalon.aut.bme.hu

Dr. Hassan CHARAF, Ph.D.
Associate professor

Budapest University of
Technology and Economics
Department of Automation
 and Applied Informatics

H – 1521 Budapest, Hungary

hassan@avalon.aut.bme.hu

ABSTRACT
Building distributed applications by using components from different sources may lead to many problems: such
as reliability, confidentiality and quality. The world of web services is dealing with the same disadvantages. To
obtain the proper component is solved: use the UDDI database and select the application. But when you need
something reliable, the “yellow pages” are not capable of providing information about which component can be
built in. Our solution provides additional information about the component quality factors and gives opportunity
to query for QoS-enabled application using UDDI database.

Keywords
XML Web Services, QoS, capacity planning

1. INTRODUCTION
With the widespread of web service the only
differentiating factor become service usability and
utility. Condition of independent messaging is using
standards for service components development.
Application assemblers, who want to make reliable
applications, cannot afford to build in web service
components because of its unpredictable availability.
From now on the popularity of Web Services only
depends on its quality.

2. WEB SERVICE MODEL
The model developed by IBM [WSCA] follows the
typical Broker architecture. Web services based upon
three roles: service provider, service requestor and
service registry. Among them the following
interactions can be built: find, publish or bind. The
three roles and their interactions determine the Web
Services artifact. All of the web services follow the
same pattern. One participant can be left out from the

model at private web service, the service registry. At
this time the service description is published via e-
mail, fax, etc.

Service
requestor

pu
bl

is
h

bind

find

Service
descriptions

Service
registry

service
description

service

Service
provider

Figure 1 Basic web service roles and interactions

Model’s quality expansion
The basic model of web services does not contain any
information about quality measurements. To keep
accessibility open to any platform, the QoS must be
built into this model. All of the roles and interactions
are being discussed in the point of quality view, for
basic information, please read the reference.

2.1.1 Service provider
This is the server side component of the web service.
The owner of the server component is responsible for
the service accessibility, availability and its

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

mailto:pfarkas@avalon.aut.bme.hu
mailto:hassan@avalon.aut.bme.hu

maintenance. Above all of these it determines quality
factors and price of QoS-aware usage.

2.1.2 Service requestor
On the client side we search for certain function that
satisfies our needs. But we also need insurance for
the quality factors. So not only the service description
must be obtained but the quality descriptor as well.

2.1.3 Service registry
In the point of QoS view the registry does not have
any effect on the service. It stores the service
descriptions and hosts requests for the specified
queries.

3. WEB SERVICES’ BOTTLENECKS
The performance of the web services is limited by the
platform, the operating system and the background
services, but the underlying protocols as well. Here
are some examples that may affect on the quality of
web service [QoS4WS]:

• Web server availability and response time
• Application execution time
• Back-end database performance

HTTP
This protocol is a best-effort, stateless delivery
service for data forwarding. Two problems can be
discovered:

1. No guarantee of packets being transported to
the destination

2. No guarantee of the order of the arriving
packets

Bandwidth is clearly a bottleneck as number of users
and amount of data increase, because packets are
discarded when bandwidth is not available.
Traditionally many applications assume infinite
bandwidth and zero-latency, but this assumption is
not real.
In spite of the fact that the IPv6 defines QoS
parameters, web services cannot use this feature,
because the programmer does not permit to specify
which protocol must be used.

XML
The problem with XML lies in its tags. This markup
language allows users to build as long tags as they
would like, therefore the size of the message can be
various. The compression is 400:1 when we use
binary representation of the same data instead of
XML. Quick transfer is not possible when the
message is large, because fragmentation takes time.
The use of XML compression is a way to achieve
better performance.

SOAP
SOAP uses XML to deliver its envelope between
participants. This performance bottleneck can be
eliminated by XML compression. The performance is
degraded by:

1. Extracting SOAP envelopes from SOAP
messages is time expensive

2. No XML data optimalization available
3. Parsing XML data in SOAP envelope also

time-expensive
4. SOAP encoding rules must be included in all

messages
Processing the envelope XML parser must be loaded
and instantiated. Comparing document-parsing time
to checking the wellformedness, validity and
conversion, latter costs more time. For improving
performance use SAX-based parser… it increases
throughput, uses less memory and it is more robust.

WSDL, UDDI
These basic standards of web services do not contain
any useful information about QoS requirements. So,
quality factors must be placed within their extension.

4. QOS-ENABLED WEB SERVICES
The aspect of e-business indicates integration of
applications and web services over the Internet.
Guarantee QoS on it is a great challenge because of
its heterogenity, and unpredictable nature. The most
common problem is that a resource is taken away
from the program when it needs it. It leads to
performance degradation and has affect on quality
factors.
QoS refers to non-functional properties of web
services such as performance, reliability, availability
and security.

QoS support
The most important factor is to discover the proper
QoS language, which is able to describe the web
services in the point of quality view. The separate
QoS language has to answer the following questions:

• What is the expected latency?
• What is the acceptable round-trip time?

4.1.1 Low level support
Only one solution can be found for QoS for web
services, a low level support is presented by
Microsoft’s GXA specification [GXA]. This packet
of recommendation uses the possibility of SOAP
messages extensibility for defining extra functions
such as message routing, coordination, inspection,
transaction-support, and security.

4.1.2 High level support
At the UDDI level there is no solution for quality
support. We have no chance to determine which web
service is able to provide its functionality with quality
assurance. We overwhelmed this disadvantage, and
made a separate QoS language that supports UDDI
queries with quality factors in it.

Mathematical representation
Assume the following example: we want to build a
distributed application with components from
different sources in it. User must query UDDI
database to get description files, but how he can
choose the proper component among them. And what
guarantees the reliability of the selected component.
The answer is that we do not know. QoS for web
service leads to this formula: zPzR

z

T∑
∀

= , where z

indicates the quality factor that needs to be observed
with its P weight-matrix. R represents the goodness of
the web service in quality. To choose the best QoS-
enabled web service, we have to select component
which goodness is the lowest: ROpt min= .

What kind of quality factor do we observe? Minimum
requirements are: response time, network load and
cost.

5. Implementation
To provide quality QoS-enabled web services
foremost we need two things: the most important is a
description language, that defines the QoS parameters
provided by the service provider, and a software
architecture which can guarantee the necessary
factors.

5.1.1 Description language
Web Service QoS Extension Language (WQEL) is
responsible for defining the QoS parameters of the
service. This document is the basic negotiation
certificate for both participants. This language must
be able to describe all of the quality measurement
numbers that are described in the previous sections.
Requirements:

• Abstract, therefore architecture-independent
for its portability

• Simple, easy-to-use, well-arranged
• Extensible for containing implementation

dependant properties not only the abstract
ones

• Based upon web service standards and
protocols, like WSDL

• Can be processed by applications and have
to be in human readable format

These leads to the XML-based descriptive language,
the WQEL. Because the WQEL consist of service
properties of the web service, it is suitable to be close
connection with WSDL. The best solution to extend
the web service description file with quality features
is placing an URL into the WSDL’s <documentation>
part. This URL refers to the document, which
contains the quality parameters of the web service.

5.1.2 WQEL schema
The schema’s structure is similar to the inner content
of WSDL document, but here the quality parameters
associated with service interfaces. The main goal of
this descriptive language that is to correspond to the
basic requirements, and to be extensible as well.
There are some properties that belong to the service,
while others are defining QoS features beneath
operations.

Belongs to the part of
Parameter

service operation
Security √ √
Transactional × √
Cost √ √
Response time × √
Availability √ ×

Table 1 Appearance of QoS criteria
Referring to Table 1, we assume that <service> part
consists of three parts: security (authentication,
encryption), cost (component’s end-user price),
availability (probability that service is available).
Every record in the <operation> part corresponds to
one operation from the service itself. Four optional
parameters are supported at this level: security,
transactional (supports transactional mode), cost and
response time (minimum, maximum and average).
Parameters can be divided into two: numerical data or
not. Numerical factors – like cost, response time,
availability, etc. – can be part of the optimalisation
algorithm to rank the selection. The others can be
used for obtaining minimal information about the web
services to filter out unsuitable ones.
We use abstract definitions instead of concrete
representation because the language has to be
extensible.

5.1.3 QoS architecture for web services
So, if we have the QoS-enabled web service, now we
want to search for it. But to this operation we need a
new architecture, which query for web services
through UDDI databases and discovers the QoS-
aware ones. It is much more easier to choose the
corresponding resultset which satisfy the requested

quality criteria. Web service QoS Architecture
(WQA) requirements are the following:

• Based-upon standards for easy integration
• Collaboration with simple web services and

applications

U D D I
O pe ra to r S ite

C lien t

U D D I
O pe ra to r S ite

P riva te U D D I
Q oS B roker

W eb S e riv ces
Figure 2 WQA structure

This architecture uses UDDI databases to get WSDL
information about web services. But these databases
do not support QoS parametric queries, so we need
something, that processes those type of requests. This
server side component have to be programmable via
API from the client side to reach its functionality.
This API extends UDDI Inquiry functions with two
methods, which are responsible for QoS specific
queries. This component is called QoS Broker.
Typical scenario for requesting a QoS-enabled web
service:

1. Client application requests the list of QoS
Brokers from the UDDI database

2. Selects one and connects to it
3. Sends a QoS-aware query for the broker
4. QoS Broker connects to UDDI database
5. The broker collects all web services which

can provide the significant functionality
6. Filters those components that can provide

the requested quality factors
7. On the resultset processes an algorithm to

choose the optimum services
8. Broker returns the WSDL descriptors to the

client

5.1.4 QoS Broker
This parser stands in the center of the architecture. Its
role is to choose the best, available web service

component from the filtered ones to be built in. Two
tasks should be processed: at first it has to discover
all of the web services which functionality is fitting to
the request. Secondly, on the resultset provided by
UDDI query, filters the QoS-aware services. It
chooses the optimum web service from the
degradated resultset.
But it has to handle standard UDDI request, so the
implementation of the UDDI Inquiry functions need
to be made.

UDDI Inquiry API QoS Broker API
find_binding -
find_business find_business_qos

find_service find_service_qos

find_tModel -

get_bindingDetail -

get_businessDetail -

get_businessDetailExt -

get_serviceDetail -

get_tModelDetail -
Table 2 Extended UDDI API

We have to add two new methods, which correspond
to the QoS queries. Only two places exist where
modifications should be made for quality factor
registration in the UDDI model [UDDI]: the business
and the service entity.

6. ACKNOWLEDGMENTS
Special thanks to my classmate, Gábor Csorba for
testing our solution and giving advises where the
schema needs to be modified.

7. REFERENCES
[GXA] Microsoft Global XML Web Services

Architecture
http://msdn.microsoft.com/library/default.asp?url
=/library/en-us/dngxa/html/gloxmlws500.asp

[QoS4WS] Understanding quality of service for Web
services
http://www-
106.ibm.com/developerworks/library/ws-
quality.html

[UDDI] UDDI version 2.0 API Specification
http://www.uddi.org/pubs/ProgrammersAPI-
V2.00-Open-20010608.pdf (PDF format)

[WSCA] Web Services Conceptual Architecture 1.0
http://www-
3.ibm.com/software/solutions/webservices/pdf/W
SCA.pdf (PDF format)

http://msdn.microsoft.com/library/default.asp?url
http://www.uddi.org/pubs/ProgrammersAPI-

